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Abstract
As time goes by, it becomes more and more apparent that the puzzles of life involve more and more molecular
pieces that fit together in increasingly complex ways. Genomics and Proteomics technologies nowadays, produce
reliable and quantitative data that could potentially reveal all the molecular pieces of a particular puzzle. However,
this is akin to the opening of Pandora’s box; and we are now facing the problem of integrating this vast amount of
data with its incredible complexity into some coherent whole. With the aid of engineering methods designed to
build and analyze computerized man-made systems, a new emerging field called ‘Executable Biology’ aims to create
computer programmes that put together the pieces in ways that allows capturing their dynamicity and ultimately
elucidating how molecular function generates cellular function. This review aspires to highlight the main features
characterizing these kinds of executable models and what makes them uniquely qualified to reason about and ana-
lyze biological networks.
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INTRODUCTION
The field of Executable Biology, which focuses on

the design and analysis of executable computer pro-

grams that mimic biological phenomena [1], has

emerged from several independent studies over the

last decade. Regev and colleagues [2] were the first

to propose treating biological signalling networks as

distributed computer systems. They proposed to use

p-calculus, which is a minimal language for describ-

ing concurrent systems, as a language for modelling

biological systems [2–4]. This was the basis for a large

body of work that uses continuous time Markov

chains (CTMCs, see Glossary) as the underlying

model of computation. Around the same time,

Harel and colleagues [5] have noted the resemblance

between biological systems and reactive systems

which has led to various models of interacting state

machines [5–8]. In addition, three independent stud-

ies have proposed to use hybrid systems as the

underlying computational model for biological sys-

tems [9–11]. Modelling biological networks using

Boolean networks started in the early 70 s [12] and

modelling with Petri nets in the early 90 s [13, 14].

Over the last decade concepts and approaches from

software engineering and computer science have

started to penetrate the field of Systems Biology in

an increasing pace.

The intended use of executable models is to com-

plement informal graphical descriptions with execu-

table formalisms that add formality and dynamicity

to the knowledge base described. With the aid

of formality, communication of models between

researchers is enabled, making it possible to exchange

information as well as to evaluate its accuracy.

Modelling paradigms that are intended for construct-

ing models of molecular interactions have the

additional advantage that they can be built by first

describing the structural connections between
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entities and then constant rates can be added for

model refinement. Besides the basic ability to simu-

late such models, all these frameworks have addi-

tional analysis techniques that can be used to

facilitate our understanding of complex biological

systems. A major research challenge is to find ways

to make these formalisms as convenient and user-

friendly as possible for biologists, with the hope

that these will become useful mainstream techniques

without requiring biologists to become computer

programmers.

In this review, we highlight the features of execu-

table models that make them uniquely adequate for

modelling biological systems, as well as the value of

these features to the modelling of biological signal-

ling networks.

COMPOSITIONALITY
One of the ways engineers handle complexity of

systems is by using ‘compositionality’. Complex sys-

tems are built by breaking them down into parts of

manageable size and complexity that are then com-

posed to give rise to the whole. Compositionality is

natural when coming to reason about biology as

living systems are naturally built through com-

positionality. In many cases the complexity of an

organism arises mainly from the interaction between

the parts comprising it, while the parts have relatively

simple behaviour and well defined boundaries. For

example, a signal transduction pathway occurring

inside a cell and carried out by individual proteins.

Furthermore, the hierarchical structure often found

in biological systems can be exploited more naturally

(e.g. tissues are composed of cells that are composed

of organelles, etc.). Executable models take advan-

tage of compositionality in a natural way. If formal-

ism also supports dual compilation (see Glossary),

executable models effectively create a compositional

way of describing traditional models. Composition-

ality is used almost in all executable models. Here,

we choose to exhibit compositionality through two

lines of work that highlight this feature.

The first line of work, by Fontana, Danos and

colleagues [15, 16], use the Kappa-language (k). A

model in the k-language describes the system that

arises from a collection of agents and rules. Agents,

which are entities in the model, have well defined

interfaces through ‘interaction sites’. Rules describe

how agents interact and may depend and change

the state of interaction sites of each of the agents.

A representation of a rule as a ‘contact’ map is

shown in Figure 1. The k-language is designed to

closely match the style of reasoning applied to

molecular interactions in cellular signalling. Simula-

tions of k models produce time course trajectories of

quantities of entities in the system.

One modelling work using the k-language that

highlights the usage of compositionality is the con-

struction of a model for the repair mechanism of

errors in DNA [17]. This work elucidates the sim-

plicity of combining the model from its parts by

considering agents, their sites, and possible interac-

tions between systems. This is done with very local

considerations that give rise to a global behaviour

that explains the DNA repair mechanism. In a dif-

ferent modelling work, existing ODE models of the

EGFR pathway [18, 19] are rewritten to take advan-

tage of compositionality. Specifically, the different

configurations of a substance that result in explosion

of variables in the ODE representation are shown to

be succinctly represented by using wisely the status of

interaction sites and the rules that govern their

changes [20]. Simple rules that relate to specific

sites replace the reasoning about complete com-

plexes. This highlights the power of compositionality

by the behaviour of large complexes arising from the

Figure 1: A contact map.One view of the rule set is
the contact map, which is akin to a protein^protein
interaction map.This is a graph where nodes with inter-
faces represent agents and edges between interface
sites represent possible bindings between sites. This
system has three agents: a kinase (K), a target (T)
with two phosphorylation sites (x and y), and a phos-
phatase (P). The Kinase K can bind to either the X or
theYsite of Tand changes their state to phosphorylated
(change of state on binding indicated by green).
Similarly, P can act on X and Yand changes their state
from phosphrylated to dephosphorylated [20]. Figure
reproduced with permission from Danos et al. [20].
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state of their interaction sites and the behaviour of

the entire model arising from the entire set of rules.

In a different line of work, it is shown how to take

advantage of compositionality to improve scalability

of simulations [21].

The main advantage of compositionality in the

context of k is that models can be constructed by

introduction of rules in a modular fashion. Smaller

models can be composed to larger models; and

changes to existing rules can be performed without

globally affecting the model. Models can be

extended by addition of rules with a similar local

effect.

A second line of work uses Statecharts [22] as

a modelling language for biology [5]. State-based

models define the behaviour of objects (elements

of the system under description) over time, based

on the various states that an object can be in over

its lifetime. In other words, states are abstract

situations in an object’s life cycle. Interacting state

machines can specify causal relationships between

state changes in different machines. These models

describe both how objects communicate and collab-

orate, and how they behave under different cir-

cumstances. Interacting state machine models are

particularly suitable for describing mechanistic

models of biological systems that are well understood

qualitatively. Such models do not require much

quantitative data relating to the number of mole-

cules and reaction rates. They allow the creation of

abstract high-level models and the application of

strong analysis tools such as model checking

(see Glossary).

Usually, the state of an object is determined partly

by the state of its sub-objects. For example, signifi-

cant portions of the state of a cell would be deter-

mined by the state of the various genes and proteins

comprising it. Each gene or protein would then have

its own reaction to the presence or absence of some

other molecules, and the change in the state of the

Figure 2: StateCharts model of an autonomous pancreatic cell. (A) The cell is composed of a nucleus and a
membrane and additional parts that control differentiation and proliferation. The Nucleus contains parts that
follow the expression state of a few genes (Exp. or Unexp.), and the Membrane contains parts that follow the state
of receptors and controls motion. (B) A histological cross-section of the pancreas (left), the emerging structure
in the model at approximately the same developmental day (middle), and the result of an in silico experiment,
in which the aorta was disabled, leading to a complete loss of structure (right) [8]. Figure reproduced with permis-
sion from Setty et al. [8].
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cell would be influenced greatly by the interdepen-

dent state changes of all parts (Figure 2A). Initial

work using this approach developed a model that

described the various stages in the life span of a T

cell, and the transitions between these stages [5].

Later work includes extensive animated model of

T-cell differentiation in the thymus [6, 23]. The

analysis of this model revealed several interesting

emergent properties, which correspond well with

biological phenomena. For example, the concurrent

execution of T-cell development in the thymus led

to the emergence of competition between T cells for

sites of stimulation. This result suggest that such a

behaviour could be important in generating the

fine anatomy of the thymus, in selecting thymocytes

with a range of migration velocities, and in explain-

ing the paradox of CD4 to CD8 T-cell lineage ratios

[6, 23]. A third model describes pancreatic organo-

genesis in embryonic mouse [8], which consists of a

concurrent execution of pancreatic cells, leading to

the formation of the unique 3D structure of the

organ (Figure 2B).

Compositionality allows these models to scale to

simulations of thousands of cells portraying the beha-

viour of organs. The behaviour of an organ arises

from the behaviour of its parts and their interactions,

which are described through their sub-parts.

DETERMINISTIC AND
PROBABILISTIC SIMULATIONS
Another distinct advantage of the engineering

approach arises from the ability to represent models

in a high-level formalism that is detached from the

actual implementation of the model. The high-level

description can be then compiled (see Glossary) to

various implementations, each highlighting a differ-

ent aspect of the model. The most prominent exam-

ple of this approach is in models that describe

molecular interactions. Languages like Bio-Pepa

[24] and BlenX [25] describe the molecular model

through the interactions and rules that govern its

behaviour. Both languages are process calculi (see

Glossary), describing the entities that comprise the

model, the different states that an entity can be in,

the changes of state that an entity can undergo

(either independently or by communicating with

another entity), and the rates of such changes (see

tutorials on the usage of these languages [26, 27]).

These languages have two compilation paths—to

ODEs and CTMCs—each having its own

advantages (Figure 3). For example, well-established

ODE models can serve as a reference. ODE simula-

tions have fewer restrictions on the size of the models

that can be analyzed, and ODE models can undergo

analysis for steady state or other numerical solving

techniques. CTMCs produce more accurate simula-

tions; especially where stochastic behaviour arises

from small numbers, and they support analysis tech-

niques such as model checking and static analysis.

As a first example, Calder and colleagues [28]

constructed a model of the ERK signalling pathway,

which was then contrasted with the ODE model of

the same system. Analysis of the system, in the search

of situations from which the system cannot perform

any reactions, revealed a subtle problem with the

original ODE model from which this model was

derived. In a different work, a classical model of

the EGFR signalling was translated to Bio-Pepa

[29]. Simulations of the model, using the underlying

CTMC model, were used to fine-tune the numerical

analysis of the ODE model, and lead to the discovery

of an error in previous simulations of the ODE

model.

Another line of research builds automatic and

semi-automatic translations from one type of

model to the other. The existing large body of

ODE models could benefit from translation to sto-

chastic models. Models that are translated to rules

notation can be more easily modified and refined.

Additional types of analysis are available through

probabilistic simulation and analysis. In particular, it

is very simple to create mutated versions of models

and test them ‘in silico’. For example, Palmisano and

Figure 3: Dual compilation. A high-level description
through a set of rules can be compiled to a determinis-
tic ODE model or to a stochastic CTMC model.
Existing ODE models can be translated to rules and
CTMCs, facilitating further refinement and affording
additional analysis. Existing CTMCmodels can be trans-
lated to ODEs and compared to reference models.
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colleagues [30] have translated an ODE model

to BlenX, compared the simulations of the two

models, and created mutated versions of the model

where only stochastic simulations were able to pre-

dict the experimental results. Similar motivation

has lead to study direct translation from the

Systems Biology Modelling Language (SBML) to

BlenX [31] (and BlenX, as well as other formalisms,

supports output to SBML). Dually, the translation

from probabilistic models to ODE models serves to

validate the probabilistic models [32]. In future,

comparison of ODE models that arise from such

translations, and ODE models that were constructed

independently could serve to validate mechanistic

understanding of signalling pathways by showing

that similar models arise independently. Such com-

parisons could include both simulations of the two

models as well as structurally comparing the resulting

equations. Although such translations are currently

‘work in progress’, it is our view that translation

between different formalisms with the advantages

stated above will become more and more common.

Most efforts on dual compilation are currently in

the area of molecular models, where the two under-

lying approaches are very closely related. In general,

dual (or multiple) compilation could be very bene-

ficial in applying different analysis to different parts of

models. We believe that as the tools for Executable

Biology will improve, this option will become more

available for various types of models.

MODEL-CHECKINGAND
STATE-SPACE ANALYSIS
Executable models are also amenable to state-space

analysis techniques. These techniques enable to

explore all the possible states of the model or all its

possible executions. The goal of exploration is to

assert that all behaviours satisfy a given requirement.

One such analysis technique is called ‘model check-

ing’ (see Glossary), in which we try to assert that all

possible behaviours of the system satisfy a given

requirement [33]. If this assertion is false, we usually

get a counter example: an execution of the system

that does not satisfy the requirement. Model check-

ing can be used either to assert that indeed a model

behaves according to our expectations or to dig out

interesting behaviours. Technically, model checking

is enabled by efficient techniques to represent sets of

states of a model. These techniques can also be used

for other types of analysis as described below.

We have previously shown how model checking

can be used to assert that all possible behaviours sat-

isfy a given requirement through a state-based model

describing the process of cell fate specification during

Caenorhabditis elegans vulval development [34]. Our

C. elegans model is discrete and non-deterministic

(see Glossary). The fact that the model is

non-deterministic implies that it has many possible

executions for a given scenario (or mutation). In this

particular case, there are millions of possible runs

depending on the exact order in which cells in the

model progress. We have used model checking for

two purposes. First, to ascertain that our mechanistic

model reproduces the biological behaviour observed

in different mutant backgrounds. Second, we used

model checking to query the behaviour of the

model.

Model checking allowed us to test the consistency

of the mechanistic model with an extensive set of

observed behaviours and experimental perturbations

affecting vulval formation. We have formalized the

experimental results described in a set of papers

(Table 1 in [34]) and verified that all possible execu-

tions satisfy these behaviours. That is, regardless of

the order of interactions from a given set of initial

conditions, different executions always reproduced

the experimental observations. We found that 44

out of 48 perturbations affecting vulval development

lead to a stable fate pattern, despite the vast number

of possible executions of our model.

By phrasing queries such as ‘which mutations may

lead to a stable or an unstable fate pattern’, we ana-

lyze the behaviour of the model. Once an unstable

mutation was found, we determined what part of the

execution allows this kind of mutation by disallow-

ing different behavioural features of the model

and checking when the instability disappears. To

determine whether variations in the exact timing of

the lateral signalling operating between the vulval

precursor cells (VPCs) are the cause of this instability,

we asked, using model checking, whether it is pos-

sible to get an unstable fate pattern without allowing

variations in the timing of the lateral signal and found

this not to be the case. We discovered that in order

to adopt two different cell fates in two different exe-

cutions, a VPC has to send the lateral signal before its

neighbours in one execution, and after its neighbours

in another execution. Specifically, we found that in

the four cases containing the lin-15 knockout muta-

tion, perturbation of the intricate timing dependency

between the activation of the lateral signal and the
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inhibition of LIN-12 activity by the EGFR/RAS/

MAPK pathway allows VPCs to adopt different fates

in different executions of the model.

The analysis of this model predicted new genetic

interactions between the two signalling pathways

and provided new insights into the temporal aspects

of EGFR and LIN-12/Notch signalling crosstalk

during the process of cell fate determination. These

temporal constraints may further elucidate the mech-

anisms underlying precise pattern formation during

animal development (Figure 4). These predictions

were also validated experimentally [34].

A different line of work uses probabilistic model

checking to analyze molecular models. Here prob-

abilistic model checking is applied to CTMCs and

can compute exact quantitative measures. Using

model checking, one can answer questions such as:

‘What is the expected time until the occurrence of

an event? How many times is an event expected to

occur in a given time? What is the probability of a

certain event to occur in a given time?’ Heath,

Kwiatkowska and colleagues have used probabilistic

model checking to analyze a model of the FGF sig-

nalling pathway [35], looking at questions such as:

‘what is the probability that Grb2 is bound to FRS2

at a given time t? What is the expected number of

times that Grb2 binds to FRS2 before degradation?’

And several more queries. The analysis of these ques-

tions sheds light for example on the roles of Shp2,

Src, and Spry, in the FGF pathway. A similar study

Figure 4: Proposed sequence of events leading to a stable and unstable fate patterns as predicted by
model checking. Time flows from top to bottom. Two events that appear on the same vertical line are ordered
according to the time flow.The dashed lines synchronize the different vertical lines. All events that appear above a
synchronization line occur before all events that appear below the synchronization line. The time-order between
two events that appear on parallel vertical lines without a synchronization line is unknown. (A) Proposed sequence
of events leading to a stable pattern. The left time line starts with a high inductive signal (IS) and the right time
line with a medium IS. (B) Three diagrams that represent possible sequences of events leading to different fate pat-
terns in the absence of IS (the AC is absent). Execution 1 represents the case where two cells are strongly coupled
and they both reduce their lin-12 level simultaneously, send LS, which is ignored, and assume primary fates.
Execution 2 represents the case where the left cell sends the lateral signal slightly before its neighbour reduces
the level of lin-12, thus resulting in a 10^20 pattern. Execution 3 is the dual of execution 2 where the cell on the
right inhibits the cell on the left. Figure reproduced with permission from Fisher et al. [34].
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elucidates details of the MAPK cascade [36]. Results

of model checking from this work are given in

Figure 5 (see also review [37]).

Another line of work uses Pathway Logic and the

accompanying Assistant as a framework for the con-

struction and analysis of signalling pathways [38–40]

using Petri nets as the underlying formalism (see

Glossary). Pathway Logic concentrates on the

Boolean behaviour of signals. A model is constructed

by collecting components and rules about their inter-

action. An execution starts by choosing which sub-

stances are available and proceeds by the rules

activating or deactivating substances. Thus, a state

of the system is a snapshot of which substances are

active and states change by modifying the status of

substances. The Pathway Logic Assistant enables to

phrase general model checking queries but also has a

default query: one may ask to reach a goal activation,

while avoiding activation of other parts and hiding

(i.e. not using) certain rules in the signalling network.

The special feature of the Assistant is that after find-

ing such a path it also enables to see only the part of

the network that had actually participated in this

path. This easily leads to the understanding of nec-

essary and unnecessary reactions in order to achieve

certain effects. In many cases, multiple possible acti-

vation paths that satisfy the required ‘goal,-avoid-

or-hide’ requirement exist, and in this case the

Assistant presents one of them [41, 42]. How to fur-

ther combine the query with additional constraints

that choose other paths (and consequently

sub-networks) is in progress. One such attempt is

to give weights to the reactions and try to produce

the best such path according to these weights [43].

Overall, this additional analysis on top of model

checking provides another layer of information

along the winding path to decipher various signalling

pathways.

Finally, the work of Schaub et al. [44] uses the

techniques that underlie model checking for the anal-

ysis of large Boolean networks. Boolean networks

abstract the behaviour of pathways by considering

each substance as either active or inactive and

change the status of substances according to inhibi-

tion and activation relations between substances.

Analysis of Boolean networks tries to mimic the

steady-state analysis applied to ODE models and

checks which states of the Boolean network are

stable. As Boolean networks grow in size, it is no

longer possible to consider each of their states sepa-

rately. One possible solution is to take a sample of

the states. By taking advantage of state-space explo-

ration techniques and techniques to reason about

models composed from smaller parts, Schaub et al.
were able to compute the set of steady states of a

large Boolean network model. This work illustrates

the usefulness of this approach through a model of

the interaction between the Notch and the Wnt sig-

nalling pathways in mammalian skin. The analysis of

the model predicted a new mode of interaction

Figure 5: Results of model checking for the MAPK stochastic model. (A) The expected percentage of acti-
vated MAPK at time instant t, (B) the expected number of reactions between MAPK and MAPKK up until time t,
and (C) the expected time until all MAPK are activated at the same time according to the number of MAPK,
MAPKK, and MAPKKK that are initially available (N) [36]. These results demonstrate that, as the size of N
grows, the percentage of MAPK that is activated increases and the time until all MAPK are activated decreases.
They also show the expected dynamics that raising species quantities increases the number of reactions
that occur between them. Figure reproduced with permission from Kwiatkowska et al. [36].
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between the two pathways, which was also validated

experimentally.

One of the major constraints of model checking

is the size of the models that can be analyzed.

This is especially true in the context of probabilistic

model checking, where the capacity of the available

tools is far from scaling to the size of the models

constructed in practice. Still, this is a very useful

technique that gives back important information.

Extending the capacity of the tools is an open field

of research within Computer Science.

VISUALIZATIONAND
USER-FRIENDLINESS
Executable models create an opportunity to transfer

models from the hands of computational biologists to

the hands of experimental biologists. In order to

enable that, without requiring extensive training

and at the same time allowing easy access to

advanced analysis techniques, we need to establish

formalisms and tools that will make the construction

and analysis of models as transparent as possible. As

models grow in size, it becomes harder to analyze

them and to understand their simulations. Computer

programmers have extended executable models with

visualizations that enable to capture significant details

of enormous models. Adding the option of such

visualizations as another analysis technique adds a

layer of complexity to the planning of such tools.

Several attempts at making executable models

more accessible to non-experts are underway. The

narrative language [45] translates a description writ-

ten in high-level language to a molecular model.

The description of the model is through simple

rules (e.g. ‘if gp130 is not bound and gp130.typeI

is not a dimer, then LIF binds gp130 on LIF’) in a

restricted English structure. These rules then need to

be augmented with rate information in order to

create an executable model.

Another promising effort called Cellucidate [46]

provides an extensive graphical user interface (GUI)

for the construction, analysis, and simulation of

models in the k-language. In this tool the GUI

takes advantage of the simple structure of the lan-

guage, and enables to define entities, their sites, and

rules. It also supports review of the structure of the

model through many features such as zooming in on

specific proteins and checking the rules that affect

them (Figure 6). Cellucidate also aims to create an

online archive and user community that will share

and discuss models, leading to faster dissemination of

knowledge and its expansion.

The Cell Illustrator [47] follows a similar path and

builds a GUI on top of Hybrid Functional Petri Nets

(HFPNe) with extensions. Petri Nets combine enti-

ties and the rules that govern their changes in an

intuitive way. A unique feature of HPFNe is that

they allow combining discrete and continuous parts

in the same model [48]. The Cell Illustrator adds

various visualization options (Figure 7), as well as

the ability to animate simulations. Models written

for Cell Illustrator, as well as automatic translation

from SBML to the Cell Illustrator’s input language

(CSML) are available for users [49].

Animation is arising as a tool for overcoming the

complexity of models and simulations also in

‘Reactive Animation’ [50]. We have previously men-

tioned the models of T-cell differentiation in the

thymus [6, 23] and pancreatic development [8].

These models give rise to simulations of thousands

of cells, including their movement as well as

sub-cellular details. The amount of details in such

simulations requires special mechanisms for under-

standing the simulations. Efroni et al. developed an

animation engine that follows the execution of the

underlying model and uses events in the simulation to

drive a movie depicting this simulation (Figure 8).

Through the animation the user has the ability to

inject inputs, zoom-in and -out on specific sections

or cells, and change parts of the simulation. Recently,

the technique has been improved, resulting in a gen-

eric platform that enables interaction between various

tools as well as 3D animation [51]. However, while

the Statecharts language itself is relatively user-

friendly and easy to master for non-programmers,

visualizations as described here are intended to be

created by expert programmers.

User-friendly tools for creating executable models

hold the promise of bringing the modelling

work closer to the workbench; making it simpler

to create, share and analyze models. Finding the

right formalisms and building the appropriate tools

that will enable biologists to remain experts in biol-

ogy and not require them to become computing

experts, and at the same time create effective

models and analyze them, is a major task. All

together, such tools should allow ‘the extra mile’

for expert programmers to add analysis layers such

as complex visualization. We find this one of the

major challenges facing the new emerging field of

Executable Biology.
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SUMMARY
This review aims to summarize the major unique

features of executable models that make them espe-

cially adequate for reasoning about and analyzing

biological signalling networks. We highlighted

features that simplify the modelling work (composi-

tionality and user-friendliness) as well as the analysis

techniques that are available (multiple compilation,

model checking and visualizations). All these differ-

ent techniques can be aggregated and used in concert

to shed more light on models. For example, a model

can be written compositionally in a graphical and

user-friendly language, dually compiled to ODEs

and CTMCs, analyzed through model checking

and simulated with the assistance of an animated

graphical user interface. Obviously, the applicability

of methods depends on the exact formalism chosen

with respect to the biological question in mind, the

size of the model, the expertise of the modeller and

the amount of effort invested in the model construc-

tion. We have summarized numerous successes that

highlight the potential power of the techniques we

advocate here.

One of the major challenges facing the field of

Executable Biology is to make such tools available to

experimental biologists without requiring them to

become expert programmers. The accessibility of

these tools for biologists will further facilitate

the incorporation of dynamic data into models,

allowing faster dissemination and sharing of data.

We look forward to the next 10 years, as these

tools become more widely accepted and are

developed to take an active mainstream role in

Experimental Biology.

Figure 6: Modelling with Cellucidate. (A) A model representing part of the EGFR cascade. Proteins and their
interaction sites are the nodes with edges connecting interaction sites. (B) A zoom-in on MEKwith its interaction
sites and their connections. (C) A different view of Raf and its interactions, where activating relations are in green
and inhibiting relations are in red. (D) A zoom-in into a rule: if sites Y and T of ERK are phosphorylated and may
or may not be bound, and site S of SoS is ubiquitinated then site s of ERK and site S of SoS can bind, which changes
their state from unbound (left) to bound (right). (E) A simulation of the model showing the change in number of
molecules over time. Figure reproduced with permission from Plectix [46].
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Boolean Networks
These models provide an abstraction of ODE models

through measuring the state of each species as one in

a small range of values (on and off in Boolean

Networks and, for example, off, low, medium, and

high, in Qualitative Networks). Interactions between

species are abstracted to simple functions like activa-
tion and inhibition. A state of the system is a value

assignment to each of the components and an execu-

tion proceeds by changing the state of all species

simultaneously according to the rules implied by

the simplified interactions, thus approximating the

deterministic behavior of ODEs. These models

Figure 7: Hybrid Functional Petri Netsmodel of EGFR pathway in Cell Illustrator. (A) Sets of entities and
processes are classified into discrete, continuous, and generic types, and entities and processes can be replaced
with pictures reflecting the biological images. This replacement makes the hybrid functional Petri nets (HFPNe)
model of a biological pathway more comprehensible for biologists. (B) For entities and processes, pictures reflecting
the biological images may be used [52]. Figure reproduced with permission fromTasaki et al. [52].

Key Points
� We review themajor unique features of executablemodels that

make them especially adequate for reasoning and analyzing bio-
logical signalling networks.

� We highlight features that make the life of modellers simpler
(compositionality and user-friendliness) and the analysis tech-
niques that are available (multiple compilation, model checking
and visualizations).

� One of the major challenges is to make such tools available to
experimental biologists without requiring them to become pro-
grammers.The accessibility of these tools for biologists will fur-
ther facilitate the incorporation of dynamic data into models
allowing faster dissemination and sharing of data.

� Early successes have highlighted thepotential power of the tech-
niques, we advocate here. We look forward to the next 10
years, as these tools become more widely accepted and are
developed to take an active mainstream role in Experimental
Biology.
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usually compute the steady states of the modeled

system.

Compilation
The translation of a high-level programming lan-

guage to a low-level machine language. In the con-

text of software, high-level languages such as Cþþ,

or Java are translated to a low-level language com-

posed of sequences of instructions that can be under-

stood by the computer processor.

ContinuousTime Markov Chains
A model used to describe systems with discrete states

that change stochastically in real time. In a given

state, a continuous time Markov chains (CTMC)

defines a distribution over the possible next states

and the time it takes to move to those states. In

the context of biological networks a state of a

CTMC relates to the numbers of all the different

species in the model, and changes in states depict

changes in these numbers. CTMCs can be simulated

to produce possible trajectories, or model checked to

analyze expectations and bounds on probabilities of

certain events.

Non-deterministic Models
These are models that may have several possible

reactions to the same stimulus. In biological systems,

for example, we can observe various patterns of cell

fate under the same genotype. Hence, non-determi-

nistic models capture the diverse behavior often

observed in biological systems by allowing different

choices of execution, without assigning priorities or

probabilities to each choice. Even small degrees of

Figure 8: A snapshot of the simulation during run time of the StateCharts Thymus model. This is a
high-level front-end view of a lobule during execution. The buttons in the bottom left control the statistical repre-
sentation of the data; pause the simulation; chemokine representation; different zooming in-and-out abilities; con-
nection between the animation and simulation. The other buttons give different colour codes relevant to the
display, enable the user to trace the motion of specific cells, control the connection between the simulation and spe-
cific statistical tool (such as Matlab), give the user the ability to avoid clutter made by overlapping cells, give the
user the ability to receive visual indication to interactions, and more.The small circles are the visual representation
of thymocytes [6]. Figure reproduced with permission from Efroni et al. [6].
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non-determinism can lead to a huge number of pos-

sible executions.

Model Checking
In non-deterministic models, simple simulations (i.e.

testing) are not sufficient to verify the model’s con-

sistency with the experimental data. The reason is

that in non-deterministic models the number of pos-

sible behaviors resulting from the same initial condi-

tion could be enormous. Therefore, to test a non-

deterministic model, one would have to run many

simulations (one for each scenario). Another way to

test non-deterministic models is to use model check-

ing, which allows to formally check different execu-

tions of the system against a formal specification.

By exploring all the possible states and transitions

of a system, we can determine whether some prop-

erty holds true for the system. In the case that the

property does not hold, the model-checking algo-

rithm supplies a ‘counterexample’, which is an

execution of the system that does not satisfy the

given requirement.

Petri Nets
A Petri net is a graph with two types of nodes: places,

which represent the components of the system, and

transitions, which correspond to events that can

change the state of the components. The edges of

the graph connect places to transitions and transitions

to places. The state of the system is represented by

places holding so-called tokens; one place may hold

multiple tokens. Thus, different assignments of

tokens to places induce different states of the

system. Transitions change the state of the system

by moving tokens along edges. In a given state of

the system, there may be more than one transition

that can move a token, leading to non-determinism.

Petri nets are well-suited for modeling the concur-

rent behavior of biochemical networks and have

been used to represent metabolic pathways and pro-

tein synthesis.

Process Calculi
Process calculi are an approach to describe concur-

rent systems—systems consisting of many compo-

nents that interact with each other. The behaviour

of the system is given through the description of its

components. Each component has a state and it can

change its state according to a given set of rules.

Rules are conditioned upon the current state of

the component and may include communication

between two components. In case of such commu-

nication, both components change their states

according to two rules that describe two sides of

the communication. Modern process calculi include

many features that make it very simple to describe

many possible systems. A given state of the entire

system includes the state of all the components com-

prising the system and their multiplicities. A change

in the state of the system occurs by applying one of

the rules that are applicable in a state to one or two

of the components. The process calculi that are used

in the context of biological modelling are usually

stochastic, i.e. rules also have reaction rates and the

next rule to change the state of the system is chosen

according to some measure of probability that is

defined by the reaction rates.

Steady States
Equilibrium points of the model. In the context

of ODEs these are points where the model stays

stable as time progress. In the context of Boolean

Networks and Qualitative Networks these are

cycles of states to which executions are drawn and

keep cycling in as time evolves. Size of cycles indi-

cates the network’s stability, with a cycle of size 1

relating to a classical stable point.
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