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Abstract
A primary focus of an increasing number of scientific studies is to determine whether two
exposures interact in the effect that they produce on an outcome of interest. Interaction is
commonly assessed by fitting regression models in which the linear predictor includes the product
between those exposures. When the main interest lies in the interaction, this approach is not
entirely satisfactory because it is prone to (possibly severe) bias when the main exposure effects or
the association between outcome and extraneous factors are misspecified. In this article, we
therefore consider conditional mean models with identity or log link which postulate the statistical
interaction in terms of a finite-dimensional parameter, but which are otherwise unspecified. We
show that estimation of the interaction parameter is often not feasible in this model because it
would require nonparametric estimation of auxiliary conditional expectations given high-
dimensional variables. We thus consider ‘multiply robust estimation’ under a union model that
assumes at least one of several working submodels holds. Our approach is novel in that it makes
use of information on the joint distribution of the exposures conditional on the extraneous factors
in making inferences about the interaction parameter of interest. In the special case of a
randomized trial or a family-based genetic study in which the joint exposure distribution is known
by design or by Mendelian inheritance, the resulting multiply robust procedure leads to
asymptotically distribution-free tests of the null hypothesis of no interaction on an additive scale.
We illustrate the methods via simulation and the analysis of a randomized follow-up study.
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1 Introduction
A primary focus of an increasing number of scientific studies is to determine whether two
given exposures interact to produce their effect, i.e. to determine whether the effect of one
exposure is modified by the second. For instance, in many longitudinal studies, the question
of whether the time evolution of the response differs for subjects with different baseline
characteristics/interventions is of primary interest. In genetic association studies of complex
disorders, the discovery of gene-enviroment and gene-gene interactions is of great interest,
because most complex disorders are thought to be caused by numerous genes and
environmental factors, a subset of which may act synergistically. The development of robust
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and powerful tests of gene-gene interaction is of special interest to geneticists, since, when
the effect of one locus is modified by alleles at another locus, the power to detect a
phenotypic association with the first locus can be greatly reduced unless the interaction is
explicitly modelled (Cordell, 2002).

When the outcome is continuous or positive-constrained and uncensored, the presence of
effect modification between exposures A1 and A2 is commonly assessed by fitting a linear or
loglinear conditional mean model for the outcome Y, in which the linear predictor includes
the product between these exposures. To be specific, let X be a vector of measured pre-
exposure variables such that conditioning on X suffices to control for confounding when
estimating the effects of A1 and A2 on outcome Y. Then the term β* in the conditional mean
model

(1)

with A = (A1, A2)’ and g (x) = x or g (x) = ex known, encodes the degree to which exposure
A2 modifies the effect of A1 on outcome (on the scale g), and vice versa. Specifically, the
choice β* = 0 expresses that the effect of exposure A1 on outcome is the same (on the scale
g), regardless of the other exposure A2. It thus encodes the absence of effect modification
(on scale g). More generally, one may fit a conditional mean model of the form

(2)

where

with g defined as before, with q3 (A, X; β) a known function smooth in β and satisfying q3
(A, X; β) = 0 when A1A2 = 0, with q2 (X, A2; γ2), q1 (X, A1; γ1) and h (X; γ0) known

functions smooth in  (and γ0, γ1 and γ2 variation independent parameters),
satisfying q1 (X, 0; γ1) = q2 (X, 0; γ2) = 0, with β* ∈ Rp and γ* ∈ Rq unknown parameters
and with the joint law of (A, X) unrestricted. In this model, the term q3 (A, X; β) encodes
the statistical interaction between exposures A1 and A2 (possibly as a function of X).
Without loss of generality, we can require q3 (A, X; β) to satisfy q3 (A, X; 0) = 0 so that β*
= 0 continues to encode the absence of statistical interaction. The functions q2 (X, A2; γ2)
and q1 (X, A1; γ1) encode the main effects (possibly as functions of X) of the exposures A2
and A1, respectively. Finally, h (X; γ0) encodes the main effect of the extraneous factors X.
For instance, model (1) is the special case in which q3 (A, X; β) = βA1A2, q2 (X, A2; γ2) =
γ2A2, q1 (X, A1; γ1) = γ1A1 and h(X; γ0) = γ0 + γ’3X.

In observational studies, X will typically be high-dimensional with a number of continuous
components. For instance, in genetic association studies, X might include a high-
dimensional collection of substructure-informative loci (Epstein, Allen and Satten, 2007).
This makes models for the main exposure effects q2 (X, A2; γ2), q1 (X, A1; γ1) and for the
association h(X; γ0) of extraneous factors X with outcome prone to misspecification. These
models are not in themselves of scientific interest when the primary goal is to test for
statistical interaction between the exposures A1 and A2. As such, standard tests of β* = 0 and
inference for statistical interaction under the above model is less than satisfactory. This is so
because standard tests for statistical interaction tend to be heavily sensitive to
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misspecification of the models for the main exposure effects (Greenland, 1993). In
particular, they may fail to attain the nominal significance level when these nuisance models
are misspecified. Similarly as demonstrated in the simulation study of Section 5, estimates
of statistical interaction may be severely biased under misspecification of these nuisance
models. As a consequence, in longitudinal studies, standard tests to determine whether the
change in outcome mean over time depends on a particular baseline exposure may be
compromised when the time evolution or main exposure effect is misspecified, or when
important interactions with extraneous variables X have been neglected or mismodelled. In
genetic association studies, tests for gene-gene or gene-environment interaction may be
biased when the main effect of the gene/environment is incorrectly modelled (e.g. when a
dominant genetic model was assumed but not appropriate) or interactions with extraneous
confounders have been inadvertently omitted.

Our concern about the consequence of misspecifying the main exposure effects or the
association between outcome and extraneous factors in statistical interaction tests is
additionally motivated by a problem arising in the Sufficient-component cause framework
(Rothman, 1976). It is well known that whether two variables statistically interact may
depend on the particular model being used (e.g. on the chosen scale g in model (1)) (Mantel
et al., 1977, Greenland, 1993). Specifically, two variables that have an interaction under one
statistical model, may not have an interaction under a different model (e.g. with a different
link function). When the outcome and exposures are dichotomous, it has been argued
(Rothman, 1976; Koopman, 1981) that there is a natural, scale-independent way in which to
assess the presence of interactions between two exposures, based on the Sufficient-
component cause framework. This framework makes reference to the actual causal
mechanisms involved in bringing about the outcome: when two or more binary causes
participate in the same causal mechanism, it becomes proper to speak of Sufficient cause
interactions. In recent work, VanderWeele and Robins (2007, 2008) derived various
conditions which necessarily entail the presence of Sufficient cause interactions. When the
exposure effects are assumed to be monotone (Greenland, 1993; VanderWeele and Robins,
2007), these conditions involve testing for effect modification on the risk difference scale.
This scale suggests a Bernoulli regression model with linear link as the natural choice to test
for sufficient cause interactions. Our interest in semiparametric tests now stems from the
fact that such models are likely misspecified because for dichotomous outcomes they may
not yield expected outcomes between 0 and 1. See the supplemental material (Vansteelandt
et al., 2008) for further discussion of the relation between the estimators we derive below
and interactions in the Sufficient cause framework (see also VanderWeele (2008)).

A number of approaches have been developed which avoid modelling the effects of
extraneous factors and/or main exposure effects. Robins, Mark and Newey (1992) propose
G-estimation which avoids modelling the effects of extraneous factors when a model is
specified for the conditional mean exposure given these extraneous factors. Correlated data
methods, such as conditional likelihood estimation (Verbeke, Spiessens and Lesaffre, 2001),
regression of changes (Louis, 1988) and regression on within- and between-cluster effects
(Neuhaus and Kalbfleisch, 1998) can be viewed as variants of this approach in the case of
the linear link (Goetgeluk and Vansteelandt, 2007). However, all these approaches require a
correct model for the main exposure effects.

In the context of longitudinal studies, Zeger and Diggle (1994) avoid modelling a main
exposure effect (i.e. the time effect) via a backfitting algorithm which iterates between
kernel estimation of the main time effect and generalized least squares estimation of the
remaining parameters. When measurements are collected at discrete time points, Lin and
Ying (2001) avoid nonparametric smoothing via a weighted least squares approach that is
equivalent to G-estimation. Fan and Li (2004) relax these authors’ restriction of
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measurements being taken at discrete time points via an approximate regression of changes
and profile least squares estimation. These approaches were specifically designed for
longitudinal data and, with exception of the approximate regression of changes (Fan and Li,
2004), they require modelling the effects of extraneous factors X. Multivariate adaptive
regression splines (MARS) (Friedman, 1991) and interaction spline models (Chen, 1994)
avoid parametric modelling assumptions on all exposures and extraneous factors. Although
well suited for high-dimensional problems, they still suffer from the curse of dimensionality
when the predictor space is large.

In this article, we develop a novel semiparametric approach that can perform well in
moderate sized samples even when X is high dimensional. In contrast to previous
approaches, the performance guarantees offered by our new approach depend on the extent
of prior knowledge concerning the joint exposure distribution f (A1, A2|X) conditional on the
covariates. Previous approaches do not make use of information concerning this law; as
described below, by incorporating such information our estimators have certain multiple
robustness properties described in detail in the next section. By incorporating information on
the joint conditional exposure distribution f(A1, A2|X), the class of estimators derived below
also essentially encompasses a ‘propensity score’ approach to the estimation of interaction
parameters.

Specifically suppose first that the joint law of A1 and A2 is known, as could be the case in
either a clinical trial with A1 and A2 both randomly assigned or in a family-based gene-gene
interaction study where the law of the genetic markers A1 and A2 is determined by
Mendelian inheritance. In this setting, when g is the identity link, our approach delivers
consistent and asymptotically normal (CAN) estimators of the interaction β* and an
asymptotically distribution free (ADF) test of the hypothesis β* = 0 of no interaction, even
when the models q2 (X, A2; γ2), q1 (X, A1; γ1), h(X; γ0) are all misspecified. In contrast, we
prove that, even with f (A1, A2|X) known, if the vector X has a continuously distributed
component and none of the models q2 (X, A2; γ2), q1 (X, A1; γ1), h(X; γ0) is guaranteed to be
correct, it is impossible to obtain either a CAN estimator of β* or an ADF test of no
interaction when g is the exponential function.

Suppose next A1 and A2 are correctly assumed to be conditionally independent given X so f
(A1, A2|X)=f (A1|X) f (A2|X), but neither the models q2 (X, A2; γ2), q1 (X, A1; γ1), h(X; γ0)
nor models f (A1|X; α1) and f (A2|X; α2) (with α1 and α2 variation independent parameters)
for f (A1|X) and f (A2|X) are guaranteed correct. This would often be the case in population-
based gene-environment interaction studies of a genetic marker score A1 and an
environmental exposure A2 or in a population-based gene-gene interaction study where the
two genetic markers A1 and A2 are unlinked, provided Sufficient information on ethnicity
and geographic origin, or on parental genetic markers are recorded in X to remove the
effects of population stratification. In this setting, with g the identity link, we construct a
CAN estimator of β* under a union model that assumes at least one of the following four
statements is true: (i) the models f (A1|X; α1) and f (A2|X; α2) are both correct, (ii) the
models q2 (X, A2; γ2), q1 (X, A1; γ1), h(X; γ0) are all correct, (iii) the models f (A1|X; α1) and
q1 (X, A1; γ1) are both correct, or (iv) the models f (A2|X; α2) and q2 (X, A2; γ2) are both
correct. We refer to our estimation approach as quadruply robust as only one of (i)−(iv) need
to hold to obtain a CAN estimator of β*. For g the exponential link, it is only triply robust,
delivering CAN estimators of β* if at least one of (ii), (iii), or (iv) holds.

Finally suppose A1 and A2 are not known to be conditionally independent, given X, and we
therefore specify a model f (A1, A2|X; α) = f (A1|A2, X; α1) × f (A2| X; α2) that allows for
conditional dependence. None of the models q2 (X, A2; γ2), q1 (X, A1; γ1), h(X; γ0), f (A1|A2,
X; α1), f (A2| X; α2) is guaranteed correct. Then we shall see that, even for the identity link,
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quadruply robust estimators are not possible, because there do not exist compatible models f
(A1|A2, X; α1) and f (A2|A1, X; α2) with variation independent parameters. Specifically in
this setting, with g the identity link, we construct a CAN estimator of β* which we refer to
as triply robust because it is CAN under a union model that assumes at least one of the
following three statements is true: (i) the models f (A1|A2, X; α1) and f (A2|X; α2) are both
correct, (ii) the models q2 (X, A2; γ2), q1 (X, A1; γ1), h(X; γ0) are all correct, (iii) the models
f (A1|A2, X; α1) and q1 (X, A1; γ1) are both correct. For g the exponential link, our approach
is also triply robust when (i) just above is replaced by the more restrictive condition that the
models f (A1|A2, X; α1), f (A2|X; α2) and q2 (X, A1; γ2) are all correct.

In summary, because of the multiple robustness property enjoyed by our approach, we
would recommend that, when X is high dimensional, it be used quite generally because an
inference concerning an interaction e ect under our approach, unlike under previous
approaches, has multiple chances, rather than only one chance, to be correct or nearly
correct.

The paper is organized as follows. In Section 2 we introduce semiparametric statistical
interaction models. These parameterize the statistical interaction between exposures A1 and
A2 (on the chosen scale g) as a function of exposures and extraneous variables X in terms of
a finite number of parameters, but leave the observed data law otherwise unrestricted. In
particular, the proposed models leave the main effects of both exposures on the outcome
unspecified, along with their interactions with extraneous variables. We examine properties
of these models. We show that, due to the curse of dimensionality, no general ADF test for
statistical interaction exists that is guaranteed to perform well in realisitic-sized samples
because estimation of the interaction parameters requires the auxiliary estimation of
conditional expectations given high-dimensional variables. We therefore introduce
parametric models that we characterize as ‘working’ models because they are not guaranteed
to be correct. In Sections 3 and 4, we show how to construct the multiply robust estimators
described above. In Section 3, we do so under the assumption that A1 and A2 are
conditionally independent given X. In Section 4 we allow for conditional dependence. We
illustrate the performance of our methods via simulation studies in Section 5 and the
analysis of a randomized follow-up study in Section 6.

2 Model and inference
Consider a study whose design calls for measurements on a vector of variables (Yi, Ai, Xi) to
be recorded for each of i = 1, …, n independent subjects. Here, Yi is the outcome of interest,
Ai = (Ai1, Ai2)’ is a vector of exposure variables Ai1 and Ai2, and Xi is a vector of extraneous
variables, such as confounders for the association between exposure Ai and outcome Yi. The
goal of the study is to assess whether the association between the exposure A1 and the
outcome Y is modified by A2 on either an additive or multiplicative scale.

To investigate whether there exist ADF tests of the null hypothesis that the interaction
parameter β* = 0, we consider the semiparametric interaction model  which relaxes some
of the parametric restrictions of model (2). Specifically, model  is defined by the
conditional mean model

(3)

where
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with q3 (A, X; β) defined as before, q2 (X, A2), q1 (X, A1) and h(X) being unknown
functions satisfying q1 (X, 0) = q2 (X, 0) = 0, with the joint law of (A, X) unrestricted, with
g(.) known and either the identity or exponential function, and with β* ∈ Rp an unknown
parameter vector. For instance, we may postulate that

(4)

for unknown functions q2 (X, A2), q1 (X, A1) and h(X).

Theorem 1 gives the influence functions of regular asymptotically linear (RAL) estimators
of β* in model  and will form the basis of our argument as to why estimation of β* in
model  is infeasible when X is high dimensional. The proof of this and other results are
given in the supplemental material (Vansteelandt et al., 2008).

Theorem 1. If  is a regular asymptotically linear (RAL) estimator of β* in model , then
there exists a p × 1 function d(A, X) in the set D of all p × 1 functions of (A, X) satisfying

(5)

such that  has influence function d(A,X)∊(β), where ∊(β) = Y − m(A,X; β) when g (x) = x
and ∊(β) = Y exp {−m(A,X; β)} − 1 when g (x) = ex. That is,

.

By standard results from semiparametric theory in Bickel et al. (1993), Theorem 1 implies
that all regular and asymptotically linear (RAL) estimators of β* in model  can be
obtained (up to asymptotic equivalence) as the solution  to the equation

(6)

for some d ∈ D. The solution  to this equation is an infeasible estimator as the set of
functions D satisfying (5) depends on the unknown conditional law f(Ai|Xi) of exposure Ai,
given Xi, and ∊i(β) depends on the unknown functions q2 (Xi, Ai2), q1 (Xi, Ai1) and h(Xi). A
feasible RAL estimator is not possible unless some of the unknowns q2 (Xi, Ai2), q1 (Xi,
Ai1), h(Xi), and f(Ai|Xi) can be consistently estimated. While smoothing methods could in
principle be used, with the sample sizes found in practice, the data available to estimate the
density f(Ai|Xi) and the main effects q2 (Xi, Ai2), q1 (Xi, Ai1) and h(Xi) will be sparse when
Xi is a vector with at least several continuous components. As a consequence any feasible
estimator of β* under model  will exhibit poor finite sample performance when the
predictor space is large. It follows that in general inference about β* in model  is
infeasible due to the curse of dimensionality and that dimension-reducing (e.g. parametric)
working models must be used to estimate the unknowns q2 (Xi, Ai2), q1 (Xi, Ai1), h(Xi) and
f(Ai|Xi). In the following 2 sections, we demonstrate that multiply robust estimators of β*
are obtained when the parameters of these models are estimated in an appropriate fashion. In
Section 3, we assume that A1 and A2 are conditionally independent given X. This
assumption is dropped in Section 4.
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3 Conditionally independent exposures
As discussed in the introduction, there are important settings in which A1 and A2 are known
to be conditionally independent given X. Therefore define  like model , but with the
additional assumption that A1 ∐ A2|X. Under this model, the set of estimating equations (6)
with d ∈ D can equivalently be rewritten as

(7)

where d = d(Ai, Xi) is a member of the set of p × 1 functions of (Ai, Xi). The solution 
to this equation is still an infeasible estimator for the reasons discussed previously.

We consider 4 possible dimension-reducing strategies based on working models. The first
strategy is to postulate the parametric model (2), i.e., to postulate a parametric model  for

,  and  with

 unknown finite dimensional parameters, and with γ0, γ1 and γ2 variation
independent. The second strategy is to postulate a parametric model  for the conditional
densities of Aj, given X for j = 1, 2, i.e.

where f(A1|X; α1) and f(A2|X; α2) are known densities smooth in variation independent

parameters α1 and α2, ,  are unknown finite-dimensional parameters and .
The third (fourth) strategy is to postulate the model , j = 1 (j = 2) that assumes

 and .

Since we cannot be certain that any of these 4 models are correct, we aim to find an
estimator  of β* that is guaranteed to be CAN when any one of them (but not necessarily
more than 1 of them) is correct. That is, we wish to find estimators  that are CAN in the

union submodel  of model  that assumes that at
least one of , ,  and  is true. In line with Robins, Rotnitzky and van der Laan
(2000), Robins and Rotnitzky (2001) and van der Laan and Robins (2003), we will refer to
such estimators as quadruply robust and, more generally, as multiply robust estimators
(Vansteelandt, Rotnitzky and Robins, 2007). Part (i) of Theorem 2 below shows that, under

mild regularity conditions, when g(.) is the identity link, the estimators  are

multiply robust (in the sense of being CAN for β* under model ) for  the solution
to

(8)
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with ∊i(β, γ) = Yi − m(Ai, Xi; β, γ), d(Ai, Xi) an arbitrary p × 1 function of (Ai, Xi),

, with  satisfying

for j = 1, 2, and  solving the system of equations

(9)

(10)

(11)

for arbitrary vector functions c0(Ai, Xi), c1(Ai, Xi) and c2(Ai, Xi) of bthe dimension of γ0, γ1
and γ2, respectively. The arguments of Robins and Rotnitzky (2001) imply that a necessary
condition for the existence of such quadruply robust estimator of β* in model

 is that there exists an unbiased estimating equation for β*
(with non-trivial power against local alternatives) were any of the following four statements
to hold: (1) q2 (X, A2), q1 (X, A1) and h (X) are all known, (1) f(A2|X) and f(A1|X) are both
known, (3) q1 (X, A1) and f(A1|X) are both known, (4) q2 (X, A2) and f(A2|X) are both
known. The main step in the proof of Theorem 2 is showing that, for j = 1, 2, 3, 4, (8) is an
unbiased estimating equation for β* when statement j holds and the known values of the
functions specified in statement j are substituted for their estimated values in (8). The proof

is then completed by showing that all of the following are true:  is a CAN

estimator of f(Aij|Xi) in models  and , j = 1, 2,  is a CAN estimator
of qj (X, Aj) in models  and , j = 1, 2, and  is a CAN estimator of h (X)
in model .

Part (i) of Theorem 2 further shows that when g(.) is the exponential link, all estimators

 obtained by solving (8) with ∈i(β, γ) = Yi exp {—m(Ai, Xi; β, γ)} — 1 are
multiply robust in the sense of being CAN in the union model

 when the above conditions hold. As discussed in the

introduction, unlike under the identity link, the estimators  are not CAN in model
. In fact, as mentioned above, a necessary condition for any estimator to be CAN

in model , and thus in model , is that an
unbiased estimating equation for β* (with non-trivial power against local alternatives) exists
when f(A2|X) and f(A1|X) are known. But in Lemmas 1-3 of the supplemental materials
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(Vansteelandt et al., 2008) we show that no such unbiased estimating equation need exist
when g is the exponential function and X has continuous components. The lack of an
unbiased estimating equation in this setting is connected with the following non-
collapsibility property of multiplicative interactions.

Remark
Non-Collapsibility of Multiplicative Interactions: Consider again model (4) and suppose A

and X are independent. The model  is derived from
model (4) by collapsing over X. Note that this model is saturated when A1 and A2 are
dichotomous. If g(x) = x, then β* = κ*, so additive interactions are collapsible over X.
However, a trivial calculation shows that if g(x) = exp(x), even β* = 0 fails to imply κ* = 0.

Theorem 2
Suppose that the regularity conditions stated in the supplemental materials (Vansteelandt et
al., 2008) hold and that β, γ1, γ2, α1 and α2 are variation independent.

(i) Then, when g(x) = x (g(x) = exp(x)),  is RAL under model  with
influence function

and thus converges in distribution to a N (0,γ), where

with  and  denoting the probability limits of the estimators  and  respectively,
and

(12)

with  and .

(ii) Furthermore, let  and  be 2 estimators of β* under model

 corresponding to the same index functions d, but different unbiased estimating
functions G(1) and G(2) for γ under model  and H(1) and H(2) for α* under model .

Then,  at the intersection submodel
.

Part (i) of Theorem 2 suggests that multiply robust estimators of β* in model  can
be obtained by solving an equation of the form (8). General results on doubly robust
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estimation in Robins and Rotnitzky (2001) further imply that any regular CAN estimator of

β* in model  has the same asymptotic distribution as  can be obtained in
this way. Part (ii) of Theorem 2 suggests that the choice of estimators for α* and γ* has no

impact on the efficiency of  when the models  and  are correctly specified.
Thus the fact that  and  are estimated by G-estimators solving (10) and (11),
respectively, rather than by their more effcient maximum likelihood estimators under model

 has no effect on the asymptotic variance of  when the law of the data lies in
. Nonetheless, the use of such G-estimators is critical to control bias.

Indeed, while the solution to (8) is a CAN estimator under model  with γ*
is replaced by an arbitrary CAN estimator under model , it is not CAN under the

less restrictive model  (or ).

It follows as a corollary of Theorem 4 in Section 4 that, when the residual outcome variance
is constant in A, i.e.  for some function σ2(X), the efficient
estimating equation at β in model  is obtained by replacing d (Ai, Xi) in equation (8)
with

For example, when q3(Ai, Xi;β) = q3(Xi;β)Ai1Ai2, we obtain

(13)

It can be deduced from Robins and Rotnitzky (2001) that the semiparametric variance bound

in models  and  are identical whenever the model  is true, and thus

that solving (13) then yields a semiparametric efficient estimator under model  at
the intersection model . Note that (13) merely requires specifying the conditional
means of A1 and A2, given X, and not the entire conditional distribution. In practice, unless
the variance function σ2(X) is further assumed not to depend on X, the unknown function
σ2(X) in (13) must be replaced by an estimator.

The homoscedasticity assumption that  does not depend on A, may often be
implausible and is logically impossible for count data with g(x) = exp(x). When this
assumption fails, the efficient estimating equation at β* in model  can be obtained
following the methods developed in the next section.

4 Conditionally dependent exposures
In this section, we relax the previous assumptions by allowing for the exposures A1 and A2
to be conditionally dependent given X.

4.1 Estimation
We first consider the special case of binary exposures. When A1 and A2 are dichotomous, as
when testing for gene-gene interaction between 2 possibly linked bi-allelic markers each
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with dominant or recessive mode of inheritance, then an arbitrary function d(Ai, Xi) can be
written as Ai2Ai1d11 (Xi) + Ai2(1 − Ai1)d01 (Xi) + (1 − Ai2)Ai1d10 (Xi) + (1 − Ai2)(1 −
Ai1)d00 (Xi) for given functions dkl(Xi), k, l = 0, 1. It follows that the set D of functions (A,
X) satisfying (5) is the set D = {d‡(X)Δ(A, X);d†(X) ∈ Rp} where

(14)

(15)

Hence the estimating equations (6) with d ∈ D can equivalently be written as

(16)

where d† is a member of the set of all p × 1 functions of X.

When the exposures Ai1 and Ai2 are not both dichotomous and dependent conditional on Xi,
we can use the following characterization of the set D of functions (A, X) satisfying (5).

Lemma (Tchetgen and Robins, 2008)—Let f* (A|X) = f* (A1|X) f* (A2|X) be any fixed
density for A|X with A1 and A2 conditionally independent given X that is absolutely
continuous with respect to the true density f (A|X). Then the set of functions D satisfying (5)
is the set {d‡(A, X, r); r = r(A,X) ∈ Rp} where

(17)

and where the expectations E*(.) are taken w.r.t. f* (A|X).

When A1 and A2 are dichotomous and we choose f* (A|X) ≡ 1/4 w.p.1 and r (A, X) =
4d†(Xi) [I {A1 = A2} - I {A1 ≠ A2}], we obtain d‡(A, X, r) = d†(Xi)Δ(Ai, Xi), thus
establishing equation (16) as a special case of equation (17). For non-dichotomous A1 and
A2, given any (user-supplied) density f* (A|X) = f* (A1|X) f* (A2|X) satisfying the conditions
of the lemma, we can apply equation (17) to an arbitrary (user-supplied) function, say
d(1)(A, X), to obtain a function d‡(Ai, Xi, d(1)) that satisfies equation (5).

An alternative way to map an arbitrary function d(1)(A, X) to an element of D is to apply the
alternating conditional expectations (ACE) algorithm (Breiman and Friedman, 1985; Bickel
et al., 1993). This is an iterative algorithm which, starting from d(1)(Ai, Xi), computes the
repeating conditional expectations

(18)
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(19)

for m = 1, 2, … until convergence at d(Ai, Xi, d(1)) = limm→∞ d(2m+1) (Ai, Xi). The function
d(Ai, Xi, d(1)) then satisfies equation (5). Although both in D, d(Ai, Xi, d(1)) and d‡(Ai, Xi,
d(1)) will generally differ. The function d‡(Ai, Xi, d(1)) exists in closed form and is easy to
compute. In contrast, the function d(Ai, Xi, d(1)) cannot be expressed in closed form when
A1 and A2 are both continuous, unlike when A1 and/or A2 is discrete (Bickel et al., 1993);
even so, in general, d(Ai, Xi, d(1)) remains more difficult to compute than d‡(Ai, Xi, d(1)).
Furthermore, we shall see below that (a weighted version) of d(Ai, Xi, d(1)) is needed to
obtain a locally semiparametric efficient estimator.

Unlike in the previous section, there do not exist compatible models f (A1|A2, X; α1) and f
(A2|A1, X; α2) with variation independent parameters when conditional dependence between
both exposures is allowed for. Inference for β* therefore cannot be made robust to
misspecification of either one of these conditional densities, and thus no consistent

estimators can be obtained under model .

Remark—More precisely, it can be shown that we could construct compatible models for f
(A1|A2, X) and f (A2|A1, X) with variation independent parameters α1 and α2 if we assume
that, for chosen values a10, a20, the generalized odds ratio function ρ (A1, A2, X) = f(A1|A2,
X)f(A1 = α10|A2 = α20, X)/{f(A1 = α10|A2, X)f(A1|A2 = α20, X)} is a known function, simply
by specifying models f(A1|A2 = α20, X; α1) and f (A2|A1 = α10, X; β2) for f (A1|A2 = α20, X)
and f (A2|A1 = α10, X). However, in practice, the assumption that ρ (A1, A2, X) is known
would never be reasonable, except in the special case that the generalized odds ratio function
is the constant function 1, which is equivalent to again assuming A1 and A2 are conditionally
independent given X. However, if we did not restrict attention to variation independent
models, it is possible to drop the assumption that ρ (A1, A2, X) is known and specify a model
ρ (A1, A2, X; ς) for ρ (A1, A2, X) depending on a parameter vector ς. Then the model ρ (A1,
A2, X; ς) together with the aforementioned models f (A1|A2 = α20, X; α1) and f (A2|A1 = α10,
X; α2) induce compatible models for f (A1|A2, X) and f (A2|A1, X) with the parameter ς
occurring in both. We could then construct consistent estimators of β* when either the
model for f (A1|A2, X) or the model for f (A2|A1, X) is correct, because, using methods
described in Chen (2007) and Tchetgen and Robins (2008), the common parameter ς can be
consistently estimated if either the model f (A1|A2 = α20, X; α1) or the model f (A2|A1 = α10,
X; α2) is correct.

We will therefore conduct inference for β* under model , where
we redefine  to be a parametric model for the conditional density of A, given X, of the
form

Here, f(A1|X, A2; α1) and f(A2|X; α2) are known densities smooth in α1 and α2, and

 is an unknown finite-dimensional parameter. Further, we define

. Let  satisfy
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(20)

(21)

Hence  is the MLE of  under model , while  is the MLE of  under both models
 and .

Let ,  and  be Δ(Ai, Xi), d‡(Ai, Xi, d(1)), and
d(Ai,Xi, d(1)), except with the expectations now evaluated under . Given d†(Xi)
and d(1)(Ai, Xi), let  be  when Ai1 and Ai2 are binary and let

 be either  or  otherwise, where the dependence
of  on d† or d(1) is suppressed. In all cases, the function  is an
element of , where the set  is defined like the set D but with  replacing
f (Ai|Xi) in equation (5).

Theorem 3 below shows that when g(.) is the identity link, the estimators  for a
given  are multiply robust (in the sense of being CAN for β* under model

), where  solves

(22)

with  still defined as in Section 3. Theorem 3 further shows that when g(.) is the
exponential link, the estimators  obtained by solving (22) with ∊i(β, γ) = Yi exp
{−m(Ai, Xi,; β, γ)} − 1 are multiply robust in the sense of being CAN in the union model

.

Theorem 3—Suppose that the regularity conditions stated in the supplemental materials
(Vansteelandt et al., 2008) hold and that, β1, γ2, γ1 and α2 are variation independent.
Suppose . Then Parts 1 and 2 of Theorem 2 continue to hold with 

replacing  and model  replacing , with  and  now
defined as in (20) and (21).

We propose two practical strategies for implementing the ACE algorithm when when A1 and
A2 are both continuous. The first strategy is a numerical integration approach whereby the
integrals
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for j, j’ = 1, 2, j ≠ j’ in the ACE algorithm are approximated via numerical integration
methods, such as the composite Simpson’s rule (with α replaced by ). This requires that we
can evaluate the function d(2m)(Ai, Xi; α) (and thus that we run the ACE algorithm) at a
Sufficient number M of points (ai11, ai21), …, (ai1M, ai2M ), spread across the support of (A1,
A2). These may be chosen for each given Xi separately by drawing a random sample from
the joint distribution of (Ai1, Ai2), given Xi, and should additionally include the observed
data points at the given Xi. Note that we opt for the composite Simpson’s rule because this
merely requires knowing the function values of d(2m)(Ai, Xi; α) at the selected M points.

The second strategy is an ad-hoc approach which involves postulating separate high-
dimensional models for the conditional expectations in (18) and (19) and fitting these each
time using standard regression techniques (thus without postulating a model for f(A|X)), as
in Breiman and Friedman (1985). A drawback of this approach is that it does not guarantee
congenial models for the conditional expectations in (18) and (19) (i.e. there may be no joint
law f(A|X) for which the postulated conditional expectations (18) and (19) hold for m = 1, 2,
…). Nevertheless, we recommend this approach for data analysis because the numerical
integration approach is computer intensive, generally does not lead to improved results in
simulation studies (see Section 5) and, to the best of our knowledge, its convergence
properties have not been studied, unlike those of the ad-hoc approach (Breiman and
Friedman, 1985). Furthermore, while there may be concerns over using automatic model
fitting for the conditional expectations in (18) and (19) in the sense that these may be more
likely misspecified, these concerns are mitigated to some extent by the robustness property
of our estimators.

Remark—Using (12) to estimate the asymptotic variance of  requires knowing the
derivative E{∂Ui(β, γ, α)/∂α}. This is difficult when d(Ai, Xi; α) is obtained via the ACE
algorithm because it then has no closed-form expression. However, a variance estimate can
still be obtained by noting that, as shown in the supplemental materials (Vansteelandt et al.,
2008), under models Bid (Bexp),

(23)

where  is the score for under model , evaluated at .

Expression (23) is not useful under the ad-hoc implementation of the ACE algorithm
because the score Si(α) is then unknown. In that case, one might for simplicity choose to
ignore estimation of α* when calculating the standard error of . Indeed, Theorem 2.3 in
van der Laan and Robins (2003) assures that, if model  holds, ignoring efficient
estimation of α* leads to conservative inferences for β* under model Bid (Bexp).

Furthermore, because  and  when
model  is correctly specified, estimation of α* does not affect the distribution of our
estimator for β* at model  (see expression (12)). This approach is not attractive, however,
because simulation studies in Section 5 show that ignoring estimation of α* in constructing
our variance estimator may imply a serious loss of power when model  is misspecified.
We therefore recommend the nonparametric bootstrap for inference under ad-hoc
implementations of the ACE algorithm, as the bootstrap always provides a consistent
estimator of the asymptotic variance under our assumptions.
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4.2 Local semiparametric efficiency
We now consider how to obtain locally semiparametric efficient estimators. The key to
doing so is the following characterization of the efficient score in model A. Let σ2(A, X) ≡
Var {∊(β*)|A, X}. In Theorem 4, we show that when Ai1 and Ai2 are binary, the efficient

score for β* is Seff = dopt(Ai, Xi)∊i(β*) in model A with  and

When A1i and A2i are both continuous, the efficient score Seff = dopt(Ai,Xi)∊i(β*) does not
exist in closed form. However, regardless of the sample spaces of A1 and A2, we show in
Theorem 4 that dopt(Ai,Xi) = limm→∞ d(2m+1)(Ai,Xi) is always the function to which the ν—
weighted ACE algorithm defined by

(24)

(25)

for m = 1, 2, …, converges for the choices ν (Ai,Xi) = σ−2(Ai,Xi) and d(1)(Ai,Xi) =
σ−2(Ai,Xi)∂q3(Ai,Xi; β)β=β*/∂β. The unweighted ACE algorithm defined by equations (18)
and (19) is the special case of the ν—weighted ACE algorithm with ν (Ai,Xi) = ν* (Xi) only
a function of Xi. For any d(1)(Ai,Xi) ∊ Rp and any always-positive function ν (Ai,Xi), the ν—
weighted algorithm, like the unweighted algorithm converges to a function dν(Ai,Xi; d(1)),
that satisfies equation (5). This last statement follows from the following arguments. First,

 for j ∊ {1, 2}, is the orthogonal projection of the univariate
function d(Ai, Xi) on the closed linear subspace Λj = {d(Ai, Xi); E {d(Ai, Xi)|Aij, Xi} = 0} in
the Hilbert space of functions of (Ai, Xi) with inner product ⟨d1, d2⟩ ≡ E [{ν (Ai,
Xi)}−1 d1(Ai, Xi)d2(Ai, Xi)]. It then follows from a theorem of Von Neumann (Bickel et al.,
1993, p.436) that dν(Ai, Xi; d(1)) is the projection of d(1)(Ai, Xi) on the linear space Λ = Λ1
⋂ Λ2, which is precisely the subspace satisfying equation (5).

We now explain how to obtain a locally efficient estimator of β*. Consider the model

(26)

where σ2(A, X; η) is a known function, smooth in η, and η* is an unknown parameter
vector. Let  satisfy
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where s(Ai, Xi) is a vector of user-supplied functions of the dimension of η, and 
for a given . Note that, with any positive ν (Ai, Xi) and any
d(1)(Ai, Xi) as input, the ν—weighted ACE algorithm, based on  rather than on f
(Ai|Xi), outputs a function .

Theorem 4—(i)The efficient score for β* in model  is dopt(Ai,Xi)∊i(β*)

1. with  for binary Ai1 and Ai2;

2. with dopt(Ai,Xi) = limm→∞ d(2m+1)(Ai,Xi) in the ν—weighted ACE algorithm with
ν (Ai, Xi) = σ−2(Ai, Xi) and d(1) (Ai, Xi) = σ−2(Ai, Xi) ×∂q3(Ai, Xi; β)|β=β*|/∂β in
general.

(ii) Let  and  solve (22) where  and
 is the function to which the ν—weighted ACE algorithm

based on  converges for  and

. Then,  and  are RAL
estimators in models  or . If, in addition, the true distribution of the data lies in the
intersection submodel  and model (26) holds, then the difference between the

asymptotic variance matrices of  and  is non-negative definite, with the

asymptotic variance of  equalling {Var (Seff)}−1 = [Var {dopt(Ai,Xi)∊i(β*)}]−1.

It follows from Part (ii) of Theorem 4 that  is a locally semiparametric efficient
of β* in model A (and following the general results in Robins and Rotnitzky (2001) then also
in models Bid or Bexp) at the intersection submodel in which model (26) and models  and

 all hold.

5 Simulation study
We conducted a simulation experiment to evaluate the behaviour in finite samples of the
multiply robust estimators for statistical interaction parameters. Each experiment was based
on 1000 replications of random samples of size 500 generated as follows. Exposures were
generated as A1 = 1 + X + δU + ∊1 and A2 = 1 — X + δU + ∊2, where X, U, ∊1 and ∊2 are
four independent standard normal variates and where δ was set to 0 or 1 to represent settings
without and with conditionally independent exposures, given X, respectively. The outcome
was generated as Y = −1 + A1 + A2 — A1A2 + X + λ(A1 — A2)X + ∊, where ∊ is a standard
normal variate and λ was set to 0 and −2.

In each simulation experiment, 4 estimators were calculated under model A with q3(A, X; β)
= βA1A2. The first is an ordinary least squares (OLS) estimate under working model ,

which is defined by ,  and . The
second is an efficient G-estimate (G) (Robins, Mark and Newey, 1992), assuming that

 and  and that, in addition, model  holds or model
M2G holds, which is defined by (correctly specified) second-order linear regression models
for E(Aj|X), j = 1, 2 and a (correctly specified) third-order linear regression model for
E(A1A2|X). The third (CI) is obtained by solving (7) assuming that either model  holds, or
model M2CI holds, which is defined by second-order linear regression models for E(Aj|X), j
= 1, 2 and the assumption that A1 ∐ A2|X. The fourth (ACE) is obtained by solving (22)
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under working model , having first applied the ACE algorithm under the ad-hoc strategy
of Section 4, using linear regression models for the conditional expectations in (18) and (19)
which involve third-order poly-nomials in Aj (j = 1 and 2, respectively) along with
interactions with X, and third-order polynomials in X, and assuming a constant residual
variance.

The results of the simulation study are summarized in Table 1 and Figure 1. Variance
estimates were obtained via the ordinary nonparametric bootstrap based on 500 resamples
for the ACE- and CI-estimate, using sandwich estimators for the G-estimator and using the
Fisher information matrix for the OLS estimator. Reported coverage for the ACE and CI-
estimates is based on 95% basic bootstrap intervals.

The results indicate that the ad-hoc implementation of the ACE algorithm yields unbiased
estimators for the statistical interaction parameter under each of the four data-generating
models. This is because the chosen conditional mean models for (18) and (19) in the ACE
algorithm were Sufficiently flexible to yield approximately correctly specified models. None
of the other estimators shares this property: the OLS and G-estimates are biased whenever
the main effects of A1 and A2 are misspecified (i.e. λ ≠ 0), although the OLS estimates are
more severely biased. Estimate CI is biased when, in addition, A1 and A2 are conditionally
dependent, given X (i.e. λ ≠ 0 and δ ≠ 0). The price to pay for the increased robustness of
our estimators is a loss of efficiency. This loss can be important when the conditional mean
model for the outcome is correctly specified, but overall, reasonable efficiency was obtained
with the semiparametric approach. Estimates obtained via the ACE algorithm were
substantially more precise than those obtained under the conditional independence
assumption (CI) when the conditional mean model  was incorrectly specified, even when
the exposures were conditionally independent given X. This is in conformity with the fact
that, whenever model  is incorrectly specified, one may gain efficiency by estimating the
exposure distribution under a model that fails to impose a priori known restrictions such as
the conditional independence of the exposures (van der Laan and Robins, 2003). Curiously,
the CI estimate is much more precise than the estimate obtained using the ACE algorithm
when the conditional independence assumption fails and the conditional mean model  is
correctly specified. This is because the index function d(Ai, Xi) of the CI estimate is much
more variable than the corresponding function obtained via the ACE algorithm when the
exposures are conditionally dependent, given X. For example, in the extreme case that A1 =
A2 w.p.1, d(Ai, Xi) = 0 is the only solution to (5) and hence no multiply robust root-n
estimators for β* exist under laws at which A1 = A2 w.p.1, whilst the estimating functions in
(7) yield root-n estimators of β* under such laws (however, only when the conditional mean
model  is correctly specified). We also evaluated doubly robust estimators obtained by
replacing γ* by an ordinary least squares estimate (instead of a G-estimate). This had no
impact on the bias and variance of the doubly robust estimators obtained by the ACE
algorithm because these are based on correctly specified models for the exposure
distribution f(A|X). However, it did impact the bias and variance of the CI estimators under
the simulation experiments with conditional dependence: (δ, λ) = (1, 0) (bias −3 10−4,
bootstrap variance 0.00034, empirical variance 0.00035, Type I error rate 0.063) and (δ, λ) =
(1, −2) (bias 0.23, bootstrap variance 0.017, empirical variance 0.019, Type I error rate
0.48).

Table 1 further shows results for the numerical integration approach of Section 4 with m =
100 and using (correctly specified) third-order linear regression models with constant
variance and normal errors for the conditional distributions of A1, given (A2, X), and of A2,
given (A1, X). The complexity of these models warrants use of the bootstrap for inference.
However, no bootstrap-based variance estimates are reported because the numerical
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integration approach was extremely time-consuming. Table 1 shows that the obtained
estimates (NI) are more efficient than those obtained under the ad-hoc strategy when the
conditional mean model for the outcome is correctly specified, but they are biased and have
greater imprecision otherwise. This is due to numerical approximation error and the fact
that, when the conditional mean model for the outcome is incorrectly specified, the
estimation procedure relies more heavily on restriction (5), and thus on the numerical
integration. Indeed, the bias of the estimates diminished noticeably upon repeating the
numerical integration approach for m = 200, at the expense of a serious increase in
computation time.

6 Data analysis
To illustrate the methods, we re-analyze data from a placebo-controlled randomized trial
conducted in 1989-1990 in the UK to study blood pressure reduction, as described in
Goetghebeur and Lapp (1997). The trial started with a run-in period of 4 weeks whereby all
patients received placebo tablets and after which they were randomized to 4 weeks of one of
two active treatments (A or B) or placebo. Diastolic blood pressure measurements were
taken every 2 weeks. For illustration, we analyze the subset of 105 patients randomized to
treatment A or placebo, ignoring 2 patients with missing outcome data. Figure 2 shows a
profile plot of the data.

Let Y denote diastolic blood pressure, A1 be a binary variable taking the value 1 for patients
randomized to the experimental treatment A during the active study period and 0 otherwise,
A2 denote time in days since enrollment into the study and X measure centered body weight
(in kg). Fitting the following model

using generalized estimating equations with exchangeable working correlation, yields
 (SE 0.029) and  (SE 0.0044). This suggests that the average change in

diastolic blood pressure per day is 0.12 (95% CI 0.067 - 0.18) higher in the experimental
treatment arm than in the placebo arm among patients of average body weight. This
difference reduces with 0.0089 (95% CI 0.00027 - 0.017) per kg increase in body weight.

To examine whether these results continue to hold, even under possible misspecification of
the time evolution and possible interactions of time with body weight, we use the methods
developed in this article. These methods, including the efficient score expressions, continue
to hold for correlated data provided that scalar outcomes Yi are replaced by vectors that
contain all outcome measurements for the ith cluster, and likewise for the remaining data Ai,
Xi, etc. In the analyses below, we let σ2(Xi; β, γ) in (26) be the working covariance matrix
obtained via generalized estimating equations and use the bootstrap for inference. Under the
valid assumption that the observation times are independent of assigned treatment, given
body weight, we now estimate that the average change in diastolic blood pressure per day is
0.14 (95% CI 0.075 - 0.18) higher in the experimental treatment arm than in the placebo arm
among patients with average body weight. This difference reduces with 0.014 (95% CI
−0.0044 - 0.023) per kg increase in body weight. These estimates are distribution-free
because E(A1|X) = E(A1) by the fact that randomization happened independently of body
weight, and likewise, because E(A2|X) = E(A2) by the fact that the study design was
completely balanced in time. In particular, the obtained estimates will be valid, even if the
main effects of time and body weight (and possible interactions between both) have been
incorrectly specified. Using the ACE algorithm we obtain similar, but slightly less efficient
estimates of 0.13 (95% CI 0.075 - 0.18) for the main effect and 0.017 (95% CI −0.0078 -
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0.028) for the interaction. All results confirm that the reduction in blood pressure over time
is significantly different in both treatment arms. Given that standard estimates for statistical
interactions can be very sensitive to the model for the main effects, these new results are
more trustworthy, at the expense of a relatively limited degree of precision loss.

Alternatively we could have used randomization inference (Rosenbaum, 2002) for
estimating the 2 considered interactions. This would also yield distribution-free inference by
the fact that the ‘main’ effect of A1 can be assumed to be zero and thus its misspecification
is not at issue. Even so, the proposed multiply robust estimators enjoy a greater attraction
than estimators obtained from a computationally more involved randomization inference,
because they are available in closed-form. Furthermore, it is unclear how randomization
inference could protect against misspecification of both main exposure effects. For further
discussions on randomization inference versus semiparametric inference, see Robins (2002).

7 Conclusion
In this article, we have developed multiply robust estimators for statistical interaction
parameters indexing additive or multiplicative conditional mean models. The estimators in
the additive model are especially attractive in settings where the distribution of exposure
given the extraneous covariates X is known, as is generally the case in randomized follow-
up studies and family-based genetic association studies, because they can be used to
construct asymptotically distribution-free tests of the no-interaction hypothesis, even when
the vector X is high dimensional with continuous components. This makes our approach
distinct from existing approaches, which ignore prior information on the exposure
distribution. Our proposed approach can be used quite generally, even when, as in most
observational studies, no such prior information is available, because an inference
concerning an interaction effect under our approach has multiple chances, rather than only
one chance, to be correct or nearly correct. In future work, we will apply the proposed
estimators to develop scale-invariant interaction tests based on the Sufficient-component
cause framework. In addition, we will extend the proposed methods to allow for
ascertainment conditions, such as frequently encountered in genetic association studies,
whereby data are sampled conditional on the outcome.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Power of 4 statistical interaction tests of the null hypothesis that β* = −1: OLS (long-short
dashed), G (long dashed), CI (dotted), ACE (solid).
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Figure 2.
Profile plot of diastolic blood pressure in 2 treatment arms.
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