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Abstract

The relationship between phage and their microbial hosts is difficult to elucidate in complex natural ecosystems.
Engineered systems performing enhanced biological phosphorus removal (EBPR), offer stable, lower complexity
communities for studying phage-host interactions. Here, metagenomic data from an EBPR reactor dominated by
Candidatus Accumulibacter phosphatis (CAP), led to the recovery of three complete and six partial phage genomes. Heat-
stable nucleoid structuring (H-NS) protein, a global transcriptional repressor in bacteria, was identified in one of the
complete phage genomes (EPV1), and was most similar to a homolog in CAP. We infer that EPV1 is a CAP-specific phage and
has the potential to repress up to 6% of host genes based on the presence of putative H-NS binding sites in the CAP
genome. These genes include CRISPR associated proteins and a Type III restriction-modification system, which are key host
defense mechanisms against phage infection. Further, EPV1 was the only member of the phage community found in an
EBPR microbial metagenome collected seven months prior. We propose that EPV1 laterally acquired H-NS from CAP
providing it with a means to reduce bacterial defenses, a selective advantage over other phage in the EBPR system. Phage
encoded H-NS could constitute a previously unrecognized weapon in the phage-host arms race.
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Introduction

Phage, viruses that infect bacteria and archaea, play a

fundamental role in the environment through predation and

lateral gene transfer [1]. Uncultured environmental phage have

been most extensively studied in marine ecosystems where they

have been demonstrated to affect oceanic biogeochemistry [2].

The importance of phage has been recognized in other

environments including many engineered systems that are often

low diversity and susceptible to phage attack. For example in the

dairy industry, phage induced collapse of the fermentation process

cause significant economic loss [3]. Engineered systems also

provide an ideal environment for investigation of phage-host

dynamics in less complex communities under controlled condi-

tions. One such system, wastewater treatment, relies on a process

known as enhanced biological phosphorus removal (EBPR; [4]) to

remove dissolved organic carbon and phosphorus. However,

wastewater treatment plants performing EBPR can suffer from

unpredictable loss of performance, which can lead to large

discharges of phosphorus into waterways [5]. Recent culture-

independent studies of EBPR have mostly focused on the biology

of the dominant member of the community, Candidatus Accumu-

libacter phosphatis (CAP), including a complete genomic charac-

terization [6]. Due to their dominance, CAP populations are

susceptible to ‘kill-the-winner’ [7] predation by phage. However,

despite the potential involvement of phage in the loss of EBPR

performance [8], genomic characterization of EBPR phage

populations to help understand phage-host interactions is lacking.

Microorganisms have developed a number of methods to

defend against phage attack. Extracellular polysaccharides form a

first layer of defense by providing a physical barrier against phage

entry [9]. Phage can subvert this by using degradative enzymes to

reach host cell receptors. Once the phage genome has been

injected into the host cell, restriction modification systems can

target and degrade phage DNA [10]. Phage have been shown to

evade Type III restriction by corrupting recognition sequences in

their genome [11]. CRISPRs (clustered regularly interspersed

short palindromic repeats) are the most recently discovered phage

defense mechanism and act as a type of adaptive immune system.

Bacteria and archaea incorporate small fragments of phage

genomes into their CRISPR loci as spacers between repeats,

which are then used to direct degradative protein machinery

against future infecting phage [12]. A CRISPR spacer must be

identical to the phage genome sequence for resistance [13] and

can therefore be a potent driving force for phage evolution.

Recent reports have revealed that CRISPR expression can be

regulated by a histone-like nucleoid structuring (H-NS) protein in

Escherichia coli [14,15,16]. H-NS is a global bacterial repressor
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protein primarily found in the Proteobacteria [37] and has been

studied extensively due to its widespread effect on the transcrip-

tome [17,18]. Genome wide analysis has determined that H-NS

preferentially binds to regions of high AT-content and it has been

suggested that H-NS regulates the expression of variable elements

in the genome such as transposases or horizontally acquired genes

[19].

Here, we present the first analysis of a phage metagenome from

an EPBR environment. One of the dominant phage genomes

assembled from the metagenomic sequence data encodes H-NS,

the first discovery of this repressor on a phage genome. The

presence of H-NS suggests a previously unrecognized mechanism

for evasion of host defense mechanisms, including CRISPRs.

Results and Discussion

Phage metagenome assembly and community
composition

A conventionally operated enhanced biological phosphorus

removal (EBPR) bioreactor was sampled by random shotgun

sequencing on two occasions seven months apart [20]. At the first

sampling time (t0), total microbial biomass (bacteria, archaea and

phage) was sequenced and analyzed as previously reported [6],

and at the second time point (t7) purified phage virions were

sequenced. While the t0 microbial metagenome was extensively

analyzed [6], the t7 phage metagenome was only screened for

molecular links between the phage and host populations [20].

Here we assembled the t7 dataset (16 Mbp of Sanger sequence)

using two assembly methods (Table S1) and a consensus was built

using overlapping contigs from each assembly. Despite the small

size of the t7 dataset, two thirds of the data assembled into only 13

contigs, comprising three complete and six partial phage genomes

(Table 1; Figure S1) out of ,130 genotypes estimated by

PHACCS [21]. This indicates the presence of a small number of

dominant EBPR phage types consistent with the microbial

community structure which is dominated by a single uncultured

bacterial population, Candidatus Accumulibacter phosphatis (CAP)

[6].

Sequence similarity to reference phage genomes was used to classify

the assembled EBPR phage, as three Podoviridae (EPV1–3) and six

Siphoviridae (ESV1–6). EPV1 and EPV2 were inferred to be lysogenic,

as they contain integrase proteins (Figure 1). Only EPV3 had

detectable synteny to any previously sequenced phage (Pseudomonas

phage 119X) (Figure S2). Further, only 30% of the t7 metagenome had

a significant match (e-value#1024) in the NCBI viral refseq database,

reflecting the general undersampling of environmental phage.

We investigated the presence of t7 phage in the t0 microbial

metagenome and found that EPV1 was the only phage genome

sampled at both time points. However, GAAS community analysis

of the t7 metagenome showed that EPV1 was not the most

abundant phage (Table 1). The high frequency of turnover in CAP

populations and the high specificity of phage host range could

account for such a large change in viral community composition

over a relatively short time period [22]. Alternatively, this may be

due to sampling bias in the microbial metagenome as phage were

not specifically enriched at t0, contrary to the t7 sample. However,

phage sequences have been detected in high numbers in bulk

metagenomes not specifically enriched for virions [23,24].

Selective pressures on EBPR phage populations
We investigated nucleotide variation within each t7 phage

population to assess possible evolutionary pressures. Most

populations were homogeneous with the exception of ESV1,

which could be resolved into two distinct genotypes based on

single nucleotide polymorphisms (SNP) patterns (Table 1;

Figure 2). By reassembling reads from the t0 metagenome that

mapped to EPV1, we identified a second genotype for this

population only present at t0. The two EPV1 genotypes were

significantly different in the region between the coat and

stabilization genes where it appears that two hypothetical genes

were replaced by three different hypothetical genes (Figure 2).

Comparison of the ESV1 and EPV1 genotypes suggest similar

Table 1. Characteristics of assembled EBPR phage phage metagenome from sampling time t7.

Phage
ID

Total
contig
length
(bp)

Estimated
genome
completeness3 % GC

Coverage±
standard
deviation4

Relative
abundance5

Number
of ORFs
(percentage
annotated)

Putatative
host Viral family Accession Temperate

Number of
genotypes

EPV11 36,119 Complete 59.5 11.764.1 8.5 55 (27) CAP6 Podoviridae JF412294 Yes 1(+1)8

EPV2 40,628 Complete 63.9 12.865.3 9.2 68 (25) Unknown Podoviridae JF412295 Yes 1

EPV3 38,9912 Partial 41.8 7.363.7 5.3 53 (5) Unknown Podoviridae JF412296 No N.D.9

ESV1 54,511 Complete 55.1 10.063.9 7.4 82 (12) Unknown Siphoviridae JF412297 No 2

ESV2 48,954 Partial 62.9 29.469.2 21 77 (24) CAP7 Siphoviridae JF412298 No 1

ESV3 13,588 Partial 61.7 30.9610.0 22.1 13 (23) Unknown Siphoviridae JF412299 No 1

ESV4 10,050 Partial 65.4 6.462.6 4.6 17 (41) Unknown Siphoviridae JF412300 No N.D.9

ESV5 13,119 Partial 63.0 21.468.1 15.6 26 (11) Unknown Siphoviridae JF412301 No 1

ESV6 11,444 Partial 66.8 5.862.4 4.2 16 (6) Unknown Siphoviridae JF412302 No N.D.9

1Present in t0 and t7.
2Represented by four contigs.
3Estimated completeness was based on an inventory of required structural genes present in the contig.
4Figure given is the average read depth at each position 6 standard deviation.
5Relative abundance in the t7 phage metagenome is estimated based on GAAS output.
6Host based on the presence of H-NS in the genome.
7Host based on the presence of a CAP CRISPR spacer match in the genome.
8One genotype found in t7 plus another genotype found in t0.
9Not determined due to low coverage.
doi:10.1371/journal.pone.0020095.t001
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selective pressures on these EBPR phage populations as the

regions of highest variation in both populations were found in

structural proteins such as tail or portal proteins (Figure 2). This is

consistent with previous observations that phage structural

proteins and their corresponding host receptors are in a constant

state of co-evolution, an arms race, which can result in numerous

new variants with altered outer membranes or coat proteins

[25,26]. The dN/dS ratios for ESV1 and EPV1 show that the great

majority of their genes were under purifying selection (dN/dS,1,

Table S2). Purifying selection has been observed in many viruses

where there is strong selective pressure to maintain small genome

sizes and resist random changes [27].

Discovery of a bacterial regulatory gene in EPV1
A gene encoding a homolog of the global transcriptional

regulator, heat-stable nucleoid structuring (H-NS) protein, was

detected in the EPV1 population (both genotypes, Figure 2).

Transcriptomic studies in enteric bacteria have shown that host-

Figure 1. Genomic maps of the five largest genomes assembled from the phage metagenome (t7). Annotated open reading frames
(ORFs) are colored based on the taxonomy of the top BLAST hit. ORFs labeled as bacterial/host acquired matched only to bacterial genes in the NCBI
nr database, these genes may represent genes of prophage present in bacteria that have not been sampled in the viral refseq database.
doi:10.1371/journal.pone.0020095.g001

Figure 2. SNP frequencies between (A) ESV1 and (B) EPV1 genotypes. Frequencies were calculated using a sliding window and are
expressed as a percentage of mismatching bases. The EPV1 genome is marked with a grey box showing the dominant genotype at each sampling
point and the position of the H-NS gene is marked in bold. The position of the three H-NS binding sites in the EPV1 genome are marked with a black
arrow underneath ORFs gp33, gp40 and gp48. The region of major divergence between the two EPV1 genotypes (shaded in grey) was not used in
the calculation. Proposed transcriptional phases for each genome are labeled below as early, middle or late based on the presence of marker genes
typically associated with the temporal classification of transcripts [55,56]. A question mark indicates that the transcriptional phase was uncertain.
doi:10.1371/journal.pone.0020095.g002
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encoded H-NS down regulates expression of up to 5% of host

genes [17]. Although H-NS has been found on plasmids [28], this

is the first report of a H-NS gene in a phage genome. A search of

public phage metagenomes from MG-RAST [29] CAMERA [30]

and IMG-M [31] only identified H-NS in a small number of

wastewater phage sequences. A functional H-NS requires two

domains, a C-terminal DNA binding domain and an N-terminal

oligomerization domain [32,33]. Some phage carry the H-NS

oligomerization domain that de-represses genes under host H-NS

transcriptional control required for infection [34]. However, it is

likely that the H-NS of EPV1 increases the repression of H-NS

controlled genes as it contains both the oligomerization and DNA

binding domains (Figure S3). When compared against the NCBI

nr database, the EPV1 H-NS was most similar to a H-NS gene in

the CAP genome (47% amino acid identity; Figure S3). This

suggests that EPV1 laterally acquired its full length H-NS gene

from CAP and that CAP is a host of this phage.

H-NS is a generic means for many bacterial species to down

regulate newly acquired genes in hyper-variable regions of their

genomes (e.g. transposons) [10]. H-NS binds preferentially to AT-

rich sequences which are often characteristic of these dynamic

regions [35]. To predict which genes are under H-NS control in

CAP, putative binding sites were identified by comparative

analysis with characterized H-NS binding profiles in related

model proteobacteria (see methods). The predicted H-NS binding

profile of CAP suggests that it too is able to repress hypervariable

regions including polysaccharide biosynthesis gene cassettes, a

Type III restriction-modification system and a CRISPR locus

(Figure 3, Table S3). Notably, these are all key phage defense

mechanisms.

Although the host-encoded H-NS in CAP has not been shown

to repress CRISPR expression, this functionality has been

demonstrated in Enterobacteriaceae [14,15,16,36]. We propose that

the H-NS of EPV1 can repress the CAP CRISPR and other key

Figure 3. Location of putative H-NS regulated genes in the CAP genome. The GC-content of the CAP genome is represented by the
outermost ring. Regions with less than 55% GC are highlighted in red. The genes on the posistive and negative strand of the CAP genome are
represented by blue and orange rings, respectively. The innermost green ring marks the position of all the H-NS affected genes. The approximate
positions of genes that may affect phage infection are highlighted by arrows in the inner most layer.
doi:10.1371/journal.pone.0020095.g003
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phage defense mechanisms, giving EPV1 a selective advantage

over other phage when infecting CAP. Phage repression of host

genes under H-NS regulation could only occur after infection and

would therefore only be effective against intracellular defense

mechanisms. Moreover, the phage H-NS would need to be

expressed quickly in order to be effective. The location of the H-

NS gene in the early expressed cohort of phage genes (Figure 2) is

consistent with this hypothesis. Repression of CRISPR and

restriction-modification systems would be highly beneficial to

phage as they would not have to go through repeated rounds of

evolution every time a new CRISPR spacer is introduced in the

host genome. More generally, repression of up to 6% of CAP

genes (Table S3) would be favorable to a phage by making

available more resources (e.g. nucleotides, ATP) for virion

synthesis. The potential for EPV1 to dramatically alter its host’s

gene expression to favor its own infection may help to explain the

persistence of EPV1 in the EBPR bioreactor between t0 and t7
sampling. Three putative H-NS binding sites were also identified

in the EPV1 genome adjacent to genes gp33, gp40, and gp48, the

first of which falls in the variable region between the two EPV1

strains (Figure 2). These may play a role in controlling the

expression of phage genes and associated virion production.

Phage are increasingly being recognized for their ability to

manipulate their hosts using host-acquired genes. This has mostly

been via up-regulation of key metabolic genes such as photosystem

(psbA) and phosphate metabolic (phoH) genes in cyanobacteria

[37]. By comparison, the interaction mediated by a phage-

encoded H-NS would manipulate the host genome via down-

regulation of many genes. H-NS is widely distributed in the

Proteobacteria, particularly the Beta- and Gammaproteobacteria

[38] (Figure S4). We speculate that ecosystems dominated by

members of these groups, such as EBPR, will harbor and be

susceptible to phage that carry host-derived H-NS. This previously

unrecognized Achilles heel in bacterial defense systems may have

significant implications in the phage-host arms race and warrants

further investigation.

Methods

Microbial and phage metagenomic datasets
Two previously published metagenomic datasets obtained from

the same lab-scale EBPR reactor operated in Madison, WI, USA,

were used in the present study. The first (herein, t0) was a bulk

microbial metagenome (acc. no. AATO00000000) leading to the

reconstruction of the dominant bacterial population in the

bioreactor, Candidatus Accumulibacter phosphatis, Type IIA [6].

The second dataset, sampled seven months later (herein t7), was

obtained from phage as previously described [20]. Briefly, phage

virions were purified using density gradient cesium chloride

ultracentrifugation, and a linker-amplified shotgun library was

constructed [20]. Sanger sequencing of 16,807 clones from a single

end using the AmpL1 primer produced ,16 Mb of sequence data.

Phage metagenome assembly
The t7 phage metagenomic data was quality trimmed using a

Phred [39,40] Q20 score and the reads were assembled using

Velvet 1.0.05 [41] with a K-mer length of 37, expected coverage of

25 and a coverage cutoff of 2, which produced assemblies

containing the longest contigs. CAP3 [42] was used to comple-

ment and confirm this assembly using an overlap of 35 bp with

85% identity. The Velvet and CAP3 assemblies were validated by

tetranucleotide clustering [43], BLASTn [44] comparisons and

manual inspection of contigs using Geneious 5.0.4 [45]. The

largest contigs from each assembly were compared against each

other with BLASTn to determine if one assembler had broken a

contig into smaller parts. These breaks or inconsistencies were

checked manually to determine whether this was due to

misassembly. Tetranucleotide frequencies were generated for

individual contigs and all contigs over 2 kb in size were subjected

to tetranucleotide clustering using a k-means algorithm with a max

of 20 iterations. Contig clustering allowed for multiple contigs to

be assigned to a single phage genome. Assembled contigs

belonging to the nine dominant phage have been deposited to

the public databases under accession numbers JF412294-

JF412302.

Annotation of phage contigs
Open Reading Frames (ORFs) were predicted using FGENESB

(www.softberry.com) to call the position of the ORFs. Each ORF

was extracted and compared against the NCBI non-redundant

protein database (nr) using BLASTp. Each ORF that returned a

match with e-value,1023 was manually examined for potential

function through homology to the most significant BLASTp

similarity. The phylogeny of each annotated gene was determined

by comparing them to all other virus genomes with BLASTx and

assigning the phylogeny based on the highest similarity match with

an e-value cutoff of 1023. Contigs were then assigned an overall

phylogeny by comparing the number of genes that fell into each

recognized family of phage.

Analysis of phage contigs
Phage contigs were compared to the published EBPR microbial

metagenome (acc. AATO00000000) [6] using BLASTn to

determine whether any phage were also sampled at that time

point. Contigs with alignment lengths greater than 5 kb were

compared against each other using both Dotmatcher (http://

emboss.sourceforge.net) (sliding window and probabilistic scoring

matrix window size: 100, threshold: 75 and tile size: 10000) and

the Mauve genome aligner [46] (mauveAligner algorithm, match

seed weight: 15, minimum LCB score: 69, using MUSCLE3.6 for

the gapped alignment algorithm). Strain determination was

performed using Strainer 1.0 [47]. MEGA 5 [48] was used to

calculate dN/dS ratios and the SNP frequency between strains was

calculated for 250 bp windows across genotypes. Phage contigs

from the t0 metagenome were reassembled by mapping the entire

t0 metagenome onto the contigs of the t7 phage genomes. The

subset of reads that mapped to each contig were independently

reassembled using CAP3.

Community structure and diversity analysis
The community structure of the t7 metagenome was analysed

using PHACCS [21] and GAAS 0.15 [49] to generate estimates of

the community composition. PHACCS estimates of richness the

average genome size calculated by GAAS 0.15 and a contig

spectrum generated by Circonspect 0.2.4 (106 coverage), using

the Minimo assembler and default parameters. Furthermore

GAAS was used to generate estimates of the community

composition using parameters of 50% identity, 50% read

coverage, minimum 10e26 e-value, weighing all hits and

normalizing for genome length. When t7 was compared solely to

the NCBI refseq database only 1.5% of the metagenomic reads

had similarities. However, by adding in the nine phage genomes

from the assembly over 66% of the reads matched.

Heat-stable Nucleoid-Structuring (H-NS) gene analysis
A homolog of the H-NS gene found in the genome of EPV1 was

aligned with H-NS homologs from the alpha-, beta- and gamma-

Phage H-NS Can Inhibit Host Defence Mechanisms
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subdivisions of the proteobacteria using ClustalW 2.0.11 [50]. A

phylogenetic tree was made with ARB [51] using the maximum

likelihood method RAxML and the Dayhoff substitution model. A

genome wide scan of CAP for H-NS binding sites was performed

by a pattern search, using the high affinity site of E. coli K12 [52],

with a maximum of two mismatches. Over 1,000 sites were found

and these were analyzed using Weblogo (http://weblogo.berkeley.

edu/logo.cgi) to generate the CAP high affinity site. This new

pattern, TCGANNAATT, was used to search for CAP and EBPR

phage genes and operons that may be affected by H-NS. Since H-

NS is strongly associated with regions of low GC-content [53,54],

operons associated with 1 kb regions that had a GC-content of less

than 55% were combined with those found by the pattern

matching.

Supporting Information

Figure S1 Tetranucleotide clustering of contigs from
the nine phage genomes. (A) Clustering of all contigs over 2 kb

using tetranucleotide binning using a window size of 2 kb. The k-

mer frequencies for each 2 kb window (rows) were calculated and

grouped using k-means clustering and displayed in a heatmap of

low frequency (black) to high frequency (white) for each individual

tetranucleotide combination (columns). The metagenome can be

grouped into three clusters: cluster 1, which has mid-range

frequencies for both AT and GC rich tetranucleotides; cluster 2,

which favors GC rich tetranucleotides; and cluster 3, which favors

AT rich tetranucleotides. (B) Tetranucleotide signatures of the

nine phage genomes. ESV1 was grouped into cluster 1; EPV1,

EPV2, ESV2 – ESV6 were grouped into cluster 2; EPV3 was

grouped into cluster 3.

(TIF)

Figure S2 Synteny between the genomes of 119X and
EPV3. Orthologous genes between EPV3 and 119X are linked

using colored quadrangles to indicate the BLASTx e-value and

labeled with amino acid percent identity.

(TIF)

Figure S3 Amino acid alignment of H-NS genes from
EPV1 and 18 beta-proteobacteia. Colored residues are

conserved in greater than 50% of the sequences. Residues

identified in E. coli K12 as being important to H-NS function

are marked with a star (*).

(TIF)

Figure S4 Phylogenetic relationship between H-NS
homologs. H-NS of EPV1 was aligned to homologs from the

Alpha-, Beta-, and Gammaproteobacteria using maximum

likelihood. The H-NS family member MvaT from Pseudomonas

fluorescens was used as an outgroup.

(TIF)

Table S1 Assembly statistics for Velvet and CAP3.

(DOC)

Table S2 Genetic position and dN/dS ratio of genes
from the ESV1 and EPV1 phage genomes. Only ORFs

where the entire coding length feel inside regions of genetic

variation. The ESV1 calculations are based on the two genotypes

found in t7; EPV1 calculations are for the two genotypes found in

t0
(DOC)

Table S3 CAP genes that were identified as being under
potential H-NS regulation.

(DOC)
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