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Abstract
We extend previous work and present a general approach for solving partial differential equations
in complex, stationary, or moving geometries with Dirichlet, Neumann, and Robin boundary
conditions. Using an implicit representation of the geometry through an auxilliary phase field
function, which replaces the sharp boundary of the domain with a diffuse layer (e.g. diffuse
domain), the equation is reformulated on a larger regular domain. The resulting partial differential
equation is of the same order as the original equation, with additional lower order terms to
approximate the boundary conditions. The reformulated equation can be solved by standard
numerical techniques. We use the method of matched asymptotic expansions to show that
solutions of the re-formulated equations converge to those of the original equations. We provide
numerical simulations which confirm this analysis. We also present applications of the method to
growing domains and complex three-dimensional structures and we discuss applications to cell
biology and heteroepitaxy.
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1. Introduction
Complex geometric shapes are ubiquitous in our natural environment which arise in
biological systems and man-made objects. A few illustrative examples include vein
networks in plant leaves, tumors in human bodies, microstructures in materials, or simply a
complicated engine in classical engineering applications. Here, we are interested in
numerically solving partial differential equations (PDEs) in such geometries. Using standard
discretization methods to solve these problems requires a triangulation of the complicated
domain and thus rules out coarse-scale discretizations and with it efficient multi-level
solutions. In addition the automatic generation of proper three-dimensional meshes for
complex geometries remains a challenge. Furthermore, in many applications the complex
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geometry might even evolve in time, which would require a new discretization at each time
step.

Various methods have been proposed to circumvent these problems. In one approach,
known as the fictitious domain method, non-body fitted meshes are used and the complex
geometry is embedded in a larger, simpler domain. This requires only a triangulation of the
simpler domain. The PDE to be solved is extended to the larger domain, although now that
the complex geometry is no longer resolved by the mesh one has to find a way to
incorporate the original boundary conditions. Different strategies have been developed for
doing this. One strategy, within a finite element context, is to build the necessary
modifications in the vicinity of the boundary into the basis functions to account for the
boundary conditions. Such an approach is known as the composite finite element method
which was introduced in [18]. Recent work on image based computing [28] demonstrates
the applicability of this approach in the case of zero flux boundary conditions. Extensions to
Dirichlet boundary conditions are discussed in [41]. Other approaches in this direction
enlarge the set of test functions to account for the boundary conditions. Such methods
include the extended finite element method (e.g., [7,34,36]), the immersed interface method
(e.g., [17,27]) and generalized nonconforming finite element methods, e.g., [42]. In a similar
approach it is also possible to only modify the quadrature in the assembly process for those
elements in the vicinity of the boundary; see for example [2] for a treatment of Robin-type
boundary conditions, and [45] for a general discussion. In the finite difference context
similar treatments typically require a local modification of the scheme near the boundary;
see the modified finite volume/embedded boundary/cut-cell methods (e.g.,
[20,21,22,32,33,43]), the immersed interface method (e.g., [24,26,44,49]) and the ghost fluid
method (e.g., [9,12,13,14,30,31]).

All methods discussed thus far require nonstandard tools and are therefore typically not
available in standard finite element or finite difference software packages. Alternative
methods for introducing the boundary conditions, e.g., using the penalty method [16] or
using Lagrange multipliers [15], are typically restricted to Dirichlet or Neumann boundary
conditions. Only recently have other boundary conditions been discussed; see for example
[39] where a penalty method is used.

In the approaches described above the complex geometry is either given explicitly through a
surface triangulation or implicitly as a level set function. Another approach, which we call
the diffuse domain method and which we follow here, is to represent the complex geometry
using a phase-field function. In this case, the phase-field function is an approximation of the
characteristic function of the domain such that the sharp boundary of the domain is replaced
by a narrow diffuse interface layer. In particular, the phase-field function is approximately
equal to one in the domain interior and to zero in the exterior of the domain, with a rapid
transition between the two. Thus, a diffuse domain is introduced. The phase-field function
may be constructed from a signed-distance function that describes the distance of a spatial
point to the domain boundary or the phase-field function may be constructed by solving an
auxilliary equation.

The PDE is then reformulated on a larger, regular domain with additional source terms that
approximate the boundary conditions. This diffuse domain approach does not require any
modification of standard finite element or finite difference software. The diffuse domain
method was introduced in [23] to study diffusion inside a cell with zero Neumann boundary
conditions (no-flux) at the cell-boundary. The diffuse domain approach has also been used
to simulate electrical waves in the heart [10]. In [25], this approach was extended to couple
bulk diffusion with an ordinary-differential equation description of reaction-kinetics on the
bounding surface of the domain to simulate membrane-bound Turing patterns. The coupling
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between the bulk and surface equations was through a flux condition for the bulk diffusion
and a corresponding source term in the surface equations that relates the normal derivative
of the bulk concentration to the bulk and surface concentrations at the boundary in a Robin-
type boundary condition. In [3,4], a similar diffuse domain approach was used for solving
PDEs in complex domains with zero Neumann boundary conditions using spectral methods.

Here we extend this previous work and present a general diffuse domain approach for
solving partial differential equations in complex, stationary, or moving geometries with
Dirichlet, Neumann, and Robin boundary conditions. We use the method of matched
asymptotic expansions to show that solutions of the reformulated equations converge to
those of the original equations. We provide numerical simulations using adaptive, multi-
level finite-difference, and finite-element methods, which confirm this analysis. We also
present applications of the method to growing domains and complex three-dimensional
structures and discuss applications to cell biology and heteroepitaxy.

The paper is organized as follows. In section 2 we review phase field methods, present the
diffuse domain approximation, and discuss its applicability as a numerical tool to solve
partial differential equations in complex geometries. In section 3 we give numerical
examples to demonstrate convergence for simple two-dimensional problems and in section 4
we show simulations on growing domains and complex three-dimensional geometries. In
section 5 we draw conclusions.

2. Diffuse domain approximation
Phase field models are typically used to describe complex evolution of patterns. An order
parameter is introduced which smoothly varies between the values 0 and 1 in the two phases
and has a rapid transition within a narrow diffuse interface layer between them. Phase field
methods were originally developed to describe solid-liquid phase transitions and the method
has since seen tremendous growth in use. It has been applied to a wide variety of physical
and biological phenomena; see for example [8] for a recent review. Besides its success in
modeling complex patterns, the phase field approach has also been recognized as a
numerical tool to solve partial differential equations on surfaces [5,29,40]. The underlying
idea is to describe the surface as the level set of the phase field function in a three-
dimensional domain and solve an extended partial differential equation, while restricting the
evolution to the diffuse interface. Using matched asymptotic expansions, it can be shown
that if the diffuse interface width tends to zero the solution of the extended partial
differential equation along the 1/2 level set of the phase field function approximates the
solution of the original partial differential equation on the surface.

Here, we follow this and previous work described above, and use a similar approach, termed
the diffuse domain method, to solve partial differential equations in complex geometries.
Letting the phase field function be a smeared-out version of the characteristic function of the
complex domain, the original PDE is reformulated and extended to a larger, regular domain.
The original domain with a sharp boundary is thus replaced by a domain with a diffuse
boundary. To be more precise we consider a time-dependent domain  (see
figure 2.1) implicitly described by a phase field function [40]

(2.1)

where r = r(x,t) denotes the signed distance function from the point x to the boundary ∂Ω1(t)
which is assumed to be negative in Ω1(t) and positive in ΩΩ1(t). The boundary ∂Ω1(t) is
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given by the level set ∂Ω1(t) = {x|ϕ(x,t) = 1/2}. In equation (2.1), ε is a small parameter that
sets the width of the diffuse interface layer that bounds the diffuse domain (the actual width
is 2ε). Note that different imaging tools for biological or medical structures today enable the
construction of signed distance functions to represent the geometry. The same is true for
modern construction tools such as computer aided design programs. In addition, there are
efficient algorithms for calculating signed distance functions (e.g., [38, 46]). Alternatively,
the phase-field function can be obtained by solving an auxilliary phase-field equation (e.g.,
[10, 29]).

We next reformulate partial differential equations in Ω1 with boundary conditions on ∂Ω1
into partial differential equations on Ω. The method of matched asymptotic expansions is
used to show that when ε → 0 we recover the original partial differential equation in Ω1 and
its boundary conditions.

2.1. Model problem in Ω1
Although the approach we take is general, we begin by describing the method for the
Poisson equation on a fixed domain. Later, in section 2.6, we describe the approach for a
general PDE. Consider the Poisson equation

(2.2)

for a right hand side function , with three different types of boundary conditions:

• Dirichlet boundary condition

(2.3)

for a function .

• Neumann boundary condition

(2.4)

for a function  and with n being the outward unit normal vector to ∂Ω1.
There is of course a compatibility condition for f ang g that must be satisfied.

• Robin boundary condition

(2.5)

for a function , and  with k < 0.

REMARK 2.1. For Neumann and Robin boundary conditions we can formally rewrite the
problem on Ω using the characteristic function χΩ1 (x) = 1 for x∈Ω1 and χΩ1 (x) = 0 for
x∈ΩΩ1 and the surface delta function δ∂Ω1 1 as

(2.6)

1i.e.,  hdS for any smooth function h.
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and

(2.7)

respectively. A derivation of these forms of the equations may be found in the appendix. The
diffuse domain approximation of these equations will result from approximations of χΩ1 and
δ∂Ω1 obtained from ϕ and its derivatives, as described below.

REMARK 2.2. For Dirichlet boundary conditions, the equations can also be formally rewritten as

(2.8)

where we have used that ∇χΩ = −δ∂Ω1 n, where n is the outward unit normal of ∂Ω1. A
derivation may be found in the appendix. A direct diffuse domain approximation of this
equation was found to be less robust than the other approximations described below.

2.2. Asymptotic analysis
In order to provide diffuse domain approximations for these boundary value problems, we
consider extensions of f and g to the domain Ω which we again denote by f and g. The
method of matched asymptotic expansions (e.g., see [37]) is used here to provide a formal
justification of the diffuse domain approximations presented below. In this approach, the
domain is separated into two regions — the regions far from ∂Ω1 (the outer region) and the
region near ∂Ω1 (the inner region). In each region, the variables are expanded in powers of
the diffuse interface thickness ε. In a region where both expansions are valid, the expansions
are matched.

We first introduce a local coordinate system. Define r = r(x;ε) to be the signed distance of x
from ∂Ω1. Furthermore let  be a parametric representation of ∂Ω1, where S is an
oriented manifold of dimension d–1. Let n = n(s;ε) denote the outward unit normal, and let s
be the arclength. Then we assume that for 0 < ρ << 1 there exists a neighborhood

of ∂Ω1 such that one can write x = X(s;ε)+r(x;ε)n(s;ε) for x ∈ Uε. Now one transforms u and
ϕ to the new coordinate system:

(2.9)

(2.10)

Here, we simply expand u and ϕ in non-negative powers of ε:

(2.11)

(2.12)
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To find the inner expansion, we introduce a stretched variable , and define

(2.13)

(2.14)

As in the outer expansion, we expand U and Φ in non-negative powers of ε:

(2.15)

(2.16)

By matching the inner and outer expansions in an overlapping region where both expansions
are valid, the following matching conditions hold (e.g., [6,37,11]):

(2.17)

(2.18)

(2.19)

(2.20)

We further assume that there are analogous expansions for f and g.

2.3. Dirichlet boundary condition
2.3.1. Formulation—Below, we present four diffuse domain approximations for the
Dirichlet problem:

(2.21)

(2.22)

(2.23)
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(2.24)

where B(ϕ) ~ ϕ2(1−ϕ)2 (i.e. B(ϕ) = 36ϕ2(1−ϕ)2) in equations (2.22) and (2.23), assuming
that ϕ is given by the hyperbolic tangent function in equation (2.1). In addition,
Approximations 3 and 4 assume g to be extended such that the extension is constant in the
normal direction off ∂Ω1. Note that Approximation 4 is the direct diffuse domain
approximation of equation (2.8). Numerical experimentation has shown that Approximation
4 is not as robust as Approximations 1–3. To justify these approximations, we use the
method of matched asymptotic expansions. We note that this list is by no means exhaustive;
there are many other possible diffuse domain approximations. If ϕ is not given by equation
(2.1), then another choice of B may be required.

2.3.2. Matched asymptotic expansion for Approximation 1—Outer expansion:. At

leading order , we obtain

Thus we recover the Poisson equation (2.2) at leading order.

Inner expansion:. At , we obtain

Since (1−Φ0) > 0 for all , we obtain

Taking limits and using the matching conditions, we obtain

Thus we also recover the boundary condition in equation (2.3) at leading order.

2.3.3. Matched asymptotic expansion for Approximation 2—Outer expansion:.
The outer expansion is the same as in section 2.3.2.

Inner expansion:. At , we obtain

Since B(Φ0) > 0 for all , we obtain

Arguing as above, we recover the boundary condition in equation (2.3) at leading order.
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2.3.4. Matched asymptotic expansion for Approximation 3—Outer expansion:.
The outer expansion is the same as in section 2.3.2.

Inner expansion:. At , we obtain

It follows from the matching conditions that

At the next order , we obtain:

Assuming that G0 is independent of z, integrating the above equation from −∞ to ∞, using
the matching conditions, and the fact that

and

(2.25)

we recover the boundary condition in equation (2.3) at leading order.

2.3.5. Matched asymptotic expansion for Approximation 4—Outer expansion:.
The outer expansion is the same as in section 2.3.2.

Inner expansion:. At , we obtain

(2.26)

Defining W0 = U0 − G0 and using that G0 is independent of z, we may rewrite equation
(2.26) as

Integrating from −∞ to ∞ and using the matching conditions, we conclude that

Since ∂zΦ0 < 0, we conclude that ∂zW0 must have at least one zero. Denote the zero point by
z = z*. An analysis of the equation shows that in fact W0 and all its derivatives vanish in a
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neighborhood of z*. Thus, assuming sufficient smoothness of the solution, we conclude that
W0 = 0 identically, hence

$BD$ U _{ 0 _} = G _{ 0 _} $ED$

and so we recover the boundary condition in equation (2.3) at leading order.

2.4. Neumann boundary condition
2.4.1. Formulation—We next present four diffuse domain approximations for the
Neumann problem:

(2.27)

(2.28)

(2.29)

(2.30)

where B(ϕ) = 36ϕ2(1−ϕ)2 in equation (2.30). Approximations 2–4 assume g to be extended
such that the extension is constant in the normal direction off ∂Ω1. Observe that in all these
approximations, the characteristic function of Ω1 is approximated by χΩ1 ≈ ϕ while the
surface delta function δ∂Ω1 is approximated by |∇ϕ|, φ |∇ϕ|2 ε−1B(ϕ), respectively. Note that
in equation (2.28) lower order term ϕ∇g · ∇ϕ/|∇ϕ| is also present. Also, if ϕ is not given by
equation (2.1), then the lower order terms in Approximations 3 and 4 need to be rescaled
[25] and B may also need to be redefined.

2.4.2. Matched asymptotic expansion for Approximation 1—Outer expansion:. At

, we obtain

Thus we recover the Poisson equation (2.2) at leading order.

Inner expansion:. At , we obtain

It follows that
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At , we obtain

Integrating the above equation from −∞ to ∞ we obtain

and by matching the inner and outer expansions it follows that

Thus we also recover the boundary condition in equation (2.4) at leading order.

2.4.3. Matched asymptotic expansion for Approximation 2—Outer expansion:.
The outer expansion is the same as in section 2.4.2.

Inner expansion:. At , we obtain

At , we have

Assuming that G0 is independent of z, integrating the above equation from to −∞ to ∞, and
using the matching conditions, we recover the boundary condition in equation (2.4) at
leading order.

2.4.4. Matched asymptotic expansion for Approximation 3—Outer expansion:.
The outer expansion is the same as in section 2.4.2.

Inner expansion:. At , we obtain

At , we obtain

Assuming that G0 is independent of z, integrating the above equation from −∞ to ∞, using
the matching conditions, and the fact that
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we recover the boundary condition in equation (2.4) at leading order.

2.4.5. Matched asymptotic expansion for Approximation 4—Outer expansion:.
The outer expansion is the same as in section 2.4.2.

Inner expansion:. At , we have

At , we obtain

Assuming G0 is independent of z, integrating the above equation from to −∞ to ∞, and

using that  (following the analysis in equation (2.25)) together with the
matching conditions, we recover the boundary condition in equation (2.4) at leading order.

2.5. Robin boundary condition
2.5.1. Formulation—We next present two diffuse domain approximations for the Robin
problem:

(2.31)

(2.32)

where B(ϕ) = ϕ2(1−ϕ)2. Actually, all four diffuse interface approximations of the Neumann
problem described earlier could be used here. Approximation 1 was used previously in [25].

2.5.2. Matched asymptotic expansion for Approximation 1—Outer expansion:. At

leading order , we obtain

Thus we recover the partial differential equation in equation (2.2) at leading order.

Inner expansion:. At , we obtain

At , we have
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Assuming that G0 is independent of z, integrating the above equation from −∞ to ∞ we
obtain

By matching the inner and outer expansions we obtain

Thus we also recover the boundary condition in equation (2.5) at leading order.

2.5.3. Matched asymptotic expansion for Approximation 2—Outer expansion:.
The outer expansion is the same as in section 2.5.2.

Inner expansion:. At , we have

At , we have

Assuming that G0 is independent of z, integrating the above equation from −∞ to ∞, and
using the matching conditions, we recover the boundary condition in equation (2.5) at
leading order.

2.6. Summary
The preceding analyses show that all that is needed to approximate a PDE in a complex
geometry by a PDE on a larger regular domain is a restriction of the partial differential
operators using the phase field variable ϕ and adding an additional lower order term to take
care of the boundary conditions. Here, we consider a more general second order partial
differential equation in an evolving domain Ω1(t) of the form

(2.33)

with A = A(u,∇u,x,t) :Ω1(t) → Ω1(t) a positive definite matrix, b = b(u,∇u,x,t):  a
vector, , and f = f(x,t), as well as approprioate boundary conditions:

• Dirichlet boundary condition

(2.34)

• Neumann boundary condition
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(2.35)

where V is the normal velocity of ∂Ω1(t), and

• Robin boundary condition

(2.36)

The Neumann and Robin boundary conditions (2.35) and (2.36) respectively are natural
generalizations of the stationary domain conditions and are justified in the appendix (see
also [23]). The diffuse domain approximation reads as

(2.37)

where A, b, and c are now extended coefficients, with the only requirement for the extension
of A is that it should remain positive definite. The notation B.C. refers to the appropriate
diffuse domain forms for the boundary conditions discussed in the previous subsections. A
justification of this diffuse domain formulation can be done by performing matched
asymptotic expansions along the same lines as above using that in the inner expansion,

 where V is the normal velocity of ∂Ω1(t). This is seen as follows. For
simplicity, we perform the analysis using Approximation 1 of the Robin boundary condition
(2.31) and we assume that ϕ is given by equation (2.1). That is, we consider

(2.38)

In the outer expansion at O(ε0), we obtain equation (2.33). In the inner expansion, assuming

A = Â0 + Â1 +..., and likewise for b and c, we obtain at :

(2.39)

At the next order , we obtain

(2.40)

Since V is independent of z, integrating from −∞ to ∞, and using the matching conditions
(assuming also that G0 is independent of z), the specific form of ϕ, and that A0∇u0 ·n =
(nA0n)∇u0 ·n+(nA0s)∇u0 ·s, yields

where A0 is the leading order term in the outer expansion of A. Thus, equation (2.36) is
recovered at leading order.

Alternatively, let us consider a conservative generalization of equation (2.33):
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(2.41)

For this equation, we may consider alternative forms of the Neumann and Robin boundary
conditions considered above:

• Neumann boundary condition alternative

(2.42)

where b·n is the normal component of b on ∂Ω1(t), and

• Robin boundary condition alternative

(2.43)

These boundary conditions are justified in the appendix. Note that if b·n = V, then these
reduce to the stationary Neumann and Robin boundary conditions.

The diffuse domain approximation reads:

(2.44)

where as before, the B.C. refers to the appropriate diffuse domain forms for the boundary
conditions discussed in the previous subsections. As before, equation (2.44) can be justified
using the method of matched asymptotic expansions. To see this, again use Approximation 1
of the Robin boundary conditions and ϕ given from equation (2.1). That is, we consider:

(2.45)

In the outer expansion at , equation (2.41) is recovered. In the inner expansion at

, equation (2.39) is obtained. At , we obtain

(2.46)

Integrating from −∞ to ∞ and using the matching conditions yields

so that equation (2.43) is recovered at leading order.

In summary, given a signed distance representation of the geometry Ω1, a phase field
function can be constructed either using equation (2.1) or by solving an auxilliary phase
field equation. If ϕ differs from equation (2.1), then some of the diffuse domain
approximations of the Neumann and Robin boundary conditions need to be rescaled, as
indicated earlier. The PDE and its boundary conditions are then reformulated in the larger
domain as described above. The reformulated PDE can be solved by standard approaches. In
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particular, since the larger domain Ω typically has a simple shape, most likely a box in , a
coarse grid representation is easy to construct. Starting from this coarse grid a hierarchy of
finer meshes can be created using adaptive or global refinements.

REMARK 2.3. Since ϕ = 0 in ΩΩ1, we ensure that the reformulated equations are well posed in Ω
by replacing ϕ  ϕ + δ with a small parameter δ. For the asymptotic analysis it is
sufficient to set δ = ε. However, to obtain satisfactory numerical results a much smaller
value of δ is required. In the simulations that follow, we set δ = 10−6.

3. Numerical examples
As a benchmark for the diffuse domain approach, we consider the Poisson equation with
Dirichlet and Robin boundary conditions and the quasi-steady reaction-diffusion equation
Δu−u = f on a circular domain  (with B1(0) being the unit circle) with
Neumann boundary conditions. The equations are reformulated as above using the phase
field function in equation (2.1) and the computational domain Ω=(−2,2)2 with periodic
boundary conditions on ∂Ω. As indicated in [4], the boundary conditions imposed at ∂Ω do
not influence the solution in Ω1 provided ∂Ω1 is sufficiently far from ∂Ω.

In the tests that follow, we set the right hand side f and the boundary function g such that we
obtain the following analytic solution:

(3.1)

This enables us to quantify the errors introduced by the diffuse domain approach. As
discussed above, the reformulated problem can be solved using standard numerical
techniques. In this section, we use a finite element discretization (FEM) implemented with
the adaptive FEM toolbox AMDiS [47]. To discretize space, a conforming triangulation τh is
introduced and the mesh is locally adapted using a bisection algorithm (see [47] and
references therein) such that the mesh is refined near the domain boundary ∂Ω1 and a coarse
mesh is used elsewhere. Globally continuous piecewise linear finite elements are used with a
standard weak form of the equations. To show the versatility of the diffuse domain
approach, we also provide results using an adaptive finite difference method in section 4.1.

3.1. Dirichlet boundary conditions
We set f(x,y) = 1, g(x,y) = 1/4 and solve Δu = f using each of the three diffuse domain
Approximations (2.21)–(2.23). In figure 3.1, the y = 0 slices of the discrete solution for
different values of ε are shown in comparison with the analytic solution. The results
reproduce the convergence result from the asymptotic analysis in section 2.3. While
extrapolation could be used in principle to obtain a more accurate solution (essentially
second-order in ε), this requires interpolation since the meshes are different when ε is varied
because of adaptivity. Hence we do not present extrapolated results here. We do not present
results for Approximation 4 since this was found to be less robust than Approximations 1–3.
Observe that Approximation 3 appears to provide more accurate results than the others. In
figure 3.2, the numerical solution in the whole domain Ω is shown for Approximation 3.

3.2. Neumann boundary conditions
We set f(x,y) = 1−1/4(x2 +y2), g(x,y) = 1/2 and solve Δu−u = f using the diffuse domain
Approximations (2.27)–(2.29). The analytic solution is the same as in the previous example.
The corresponding numerical results for the different diffuse domain approximations are
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shown in figure 3.3. The results reproduce the convergence result in the asymptotic analysis
in section 2.4. In this case, Approximation 1 appears to be the most accurate of the three.

3.3. Robin boundary conditions
We solve Δu = f with Robin boundary conditions using f(x,y) = 1, g(x,y) = 3/4, and k = −1.
The analytic solution is the same as in the previous examples. We use Approximation 1 in
equation (2.31). The corresponding numerical results are shown in figure 3.4, and again
reproduce the convergence result in the asymptotic analysis in section 2.5.

4. Applications
4.1. Time dependent and moving domains

We next consider the following PDE in an evolving domain Ω1(t):

(4.1)

with Neumann boundary condition

(4.2)

We take Ω1(t) to be a growing, perturbed circular domain and suppose that the velocity of
the domain v(x,t) is given. The initial domain is enclosed by the polar curve

(4.3)

and the velocity v is given by

(4.4)

where

(4.5)

Thus, the domain increasingly deviates from a circle as time proceeds and acquires a

complex shape. We choose f and g such that the solution is . The initial

condition is .

To approximate equation (4.1), we solve the diffuse domain model using Approximation 2
in equation (2.28),

(4.6)

in the square (−2,2)2 with zero Neumann boundary conditions. To determine ϕ, we have
several choices. Here, we reconstruct ϕ from the signed distance function r via equation
(2.1). Because the velocity v is given analytically (see equation (4.4)), we construct r
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exactly. More generally, one could solve a Hamilton-Jacobi equation for the signed distance
function

(4.7)

where V is an extension of v|∂Ω1 · n off ∂Ω1 such that ∇V · n = 0 in a neighborhood ∂Ω1
(e.g., [1, 30]). Alternatively, one could solve for ϕ directly using an advective Cahn-Hilliard
equation

(4.8)

where ν and F are appropriately defined mobility and double well free energy functions,
respectively.

To solve equation (4.6) we use an adaptive finite-difference, multilevel-multigrid method
with block-structured Cartesian mesh refinement (see [48]). Centered finite difference
approximations are used for the space discretization and the time stepping is performed by
the Crank-Nicholson method. The overall scheme is second order accurate in space and
time. The complexity of this method is optimal, i.e., the number of operations to solve the
equations is , where N is the number of unknowns. The mesh is refined in the diffuse
interface region around ∂Ω1 where ϕ exhibits a sharp transition.

In figure 4.1 we present the results using an adaptive mesh with six levels of refinement.
The mesh size ranges from hcoarse = 0.25 to hfine = 4/1024≈0.0039. We use the interface
thickness parameter ε = 0.025 in equation (2.1); there are approximately 10 grid points
across the diffuse interface layer. The boxes correspond to the boundaries of the adaptive
Cartesian patches. Each interior box contains a mesh that is one half of the size of the mesh
in the box that contains it. The bounding box corresponding to coarsest mesh is the
boundary of the computational domain itself. In figure 4.2[a], the numerical solution from
figure 4.1[f] (‘o’) is shown together with the exact solution (solid line) along the y = 0 slice
of the domain (restricted to Ω1). The absolute value of the difference between the numerical
and exact solutions (error) on the y = 0 slice is shown in figure 4.2[b]. The error is on the
order of 10−3 with the largest error occurring near the rightmost finger. Clearly the solution
of the diffuse domain model provides a good approximation of the true solution.

4.2. Three dimensional results
Next, we consider the solution of the Poisson equation Δu = f in a complex domain Ω1 with
boundary consisting of two rectangular cuboids and a 4×4 array of cylindrical connecting
pillars. The height and radius of the pillars is 1.8 and 0.1, respectively. The rectangular
cuboids have dimension 2×2×0.2; see figure 4.3. We apply Robin boundary conditions ∇u·n
= k(u−g) on ∂Ω1 with

(4.9)

where x = (x1,x2,x3). The numbers zb and zt denote x3-values for which g attains the values
gb and gt, respectively. In figure 4.3, we present the numerical solutions (shown on ∂Ω1)
obtained by solving the diffuse interface Approximation 1 from equation (2.31). The
function ϕ is obtained from a level set description of the domain via equation (2.1) with ε =
0.05. The equations are solved in the computational domain Ω = (−4.0,4.0)3 with periodic
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boundary conditions using the AMDiS adaptive finite element framework described earlier.
A BiCGStab algorithm is used to solve the system of discrete equations. In this simulation,
we have taken k = 1, gb = 2, gt = 1, zb = −2, zt = 2. The right hand side is f = 1. In figure
4.3[a], the solution is shown with approximately 5 grid points across the diffuse interface
layer (949,704 degrees of freedom (DOFs)) and in [b] the mesh is refined so that there are
approximately 10 grid points across the layer (6,346,674 DOFs). The solution can be
interpreted as a stationary temperature field (with blue and red denoting low and high
temperatures respectively), where the structure is heated at the bottom and cooled at the top.
In figure 4.4, a cross section of the mesh corresponding to figure 4.3[a] is shown together
with the level contours of ϕ. Next, we modify the functions g and k in the Robin boundary
conditions using the same complicated cuboid-pillar geometry as above. We take

(4.10)

with g0 = 10 and , where  denotes the center of the bottom cuboid
and lx, ly and lz denote the edge lengths in x1-, x2- and x3-directions, respectively. For the
function k, we take

(4.11)

and

with h0 = 10 and h1 = 2. Thus, h is large in the lower part of the domain and moderate in the
upper part. However, in the lateral directions k≈0 which approximates no flux boundary
conditions. Again, the computational domain is Ω = (−4.0,4.0)3 with periodic boundary
conditions. The result is shown in figure 4.5 using an adaptive mesh with at least 5 grid
points across the diffuse interface (e.g. as in figure 4.3[a] and figure 4.4). Again the solution
can be interpreted as a stationary temperature field.

5. Conclusions and outlook
We have extended previous work and presented a general approach for solving PDEs in
complex, stationary or moving geometries with Dirichlet, Neumann and Robin boundary
conditions. Using a phase field approach, the partial differential equations are reformulated
on a larger regular domain with additional lower order terms that approximate the boundary
conditions. Matched asymptotic analyses were performed to demonstrate convergence to the
original problem as the diffuse interface width tends to zero. Numerical simulations were
performed which confirm the convergence analysis and show the effectiveness of the
approach in simulating PDEs in complex domains.

Up to now, the geometry of the domain has been given analytically. This is not a restriction
of the approach. For example, the phase field function can be the solution of another
problem that determines the geometry. We now give an example of this in the context of
heteroepitaxial growth where phase separation may occur in a growing thin crystal film. The
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model involves the solution of a Cahn-Hilliard equation in a film [19] which evolves due to
surface diffusion (and also deposition/desorption). Neglecting deposition and desorption, the
simplest set of governing equations for a binary film is

where Ω1(t) is the evolving thin film domain, V is the normal velocity of the surface ∂Ω1(t),
n is the outward unit normal vector to ∂Ω1(t), and H is the mean curvature. The operator ΔΓ
denotes the surface Laplacian on ∂Ω1(t), u is the concentration of one of the film
components, and μ is the chemical potential. A diffuse domain approximation for this
system combines a phase field approach for both the evolving surface and a diffuse domain
equation for the Cahn-Hilliard equation in the moving domain:

where B(ϕ) = 36ϕ2(1−ϕ)2, g(ϕ) = 30ϕ2(1−ϕ)2 and we have used Approximation 2 for the
Neumann boundary condition from equation (2.28) in the last equation. We could have used
any of the diffuse domain approximations of the Neumann boundary conditions here,
although Approximations 3 and 4 need to be rescaled where the rescaling is determined
from the leading order term of the inner asymptotic expansion for ϕ.

An additional advantage of the diffuse domain approach is that it can easily be combined
with a diffuse interface approximation of PDEs on surfaces introduced in [40], where the
surfaces are implicitly described as a level set of a phase field function. Applications for
these type of problems can for example be found in cell biology, where proteins diffusing
inside the cell can bind to the membrane and diffuse along the membrane, whereas
membrane-bound proteins can dissociate and become free to diffuse in the cytoplasm.
Assuming a stationary membrane and cellular domain, a simple model for such a situation is
(e.g., see [25,35]):

where v and u are the surface and volume concentrations, respectively, the Ri, i = 1,2 are
reaction terms depending on u and v, respectively, and rd and ra are desorption and
absorption rate coefficients. The operator ΔΓ again denotes the surface Laplacian on the
boundary ∂Ω1. A diffuse domain approximation for this system is
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using Approximation 2 for the Neumann boundary condition from equation (2.28) in the
volume concentration equation. Here, u, v and j are extended variables in Ω and B(ϕ) is as
above. For a generalization in which a moving elastic membrane is considered and thus ϕ is
evolving we refer the reader to [29].
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Appendix A
In this appendix, we derive equations (2.6), (2.7) and (2.8). We also justify the Neumann
and Robin boundary conditions given in equations (2.35), (2.36) and (2.42), (2.43) for
moving domains.

Stationary domains. equations (2.6) and (2.7) are actually the distribution forms of equation
(2.2) with Neumann and Robin boundary conditions. To see how these equations arise, we
briefly derive the weak form of equation (2.2) with Neumann boundary conditions (the case
with Robin boundary conditions is analogous). Multiply equation (2.2) by a test function ψ

and integrate over Ω1. Using integration by parts and that  on ∂Ω1, it follows that:

which is the weak form of the equation (2.2) with Neumann boundary conditions.
Introducing the characteristic function χΩ1 of the domain Ω1 and the surface delta function
δ∂Ω1, and changing the integration domain to Ω, we obtain

Next, integrate by parts and use that χΩ1 vanishes on ∂Ω. This gives

and hence equation (2.6) follows.

The derivation of equation (2.8) follows from a similar line of reasoning, except that
integration by parts is performed twice. Using that u = g on ∂Ω1, we obtain

which is the weak form of the equation. Introducing χΩ1, δ∂Ω1 and changing the domain of
integration to Ω as before gives
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Integrating by parts twice and using that χΩ1 vanishes on ∂Ω, it follows that

Using the fact that ∇χΩ1 = −δ∂Ω1 n and that g is constant in the normal direction, we may
write

and

where we have also integrated by parts and used that δ∂Ω1 vanishes on ∂Ω. Putting
everything together gives

from which equation (2.8) follows.

Moving domains. To justify the Dirichlet and Robin boundary conditions in equations
(2.35), (2.36) we derive the weak form of the equations as follows. The result in 1D can be
found in [23]. Multiply equation (2.33) by a time and space dependent test function ψ and
integrate from 0 to T in time and over Ω1 in space. Integrating by parts in both space and
time gives

which is the weak form of equation (2.33). Thus, the natural boundary condition is to
specify n · A∇u+uV as in equations (2.35) and (2.36). In the above, we have used the fact
that

To derive the diffuse interface approximation (2.37) of equation (2.33) we follow the
procedure outlined earlier and introduce φ ≈ χΩ1. Then, integrating over Ω and performing
integration by parts in both space and time yields
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where B.C. stands for the approximation of the boundary conditions. For example, if
approximation 1 of the Robin boundary conditions is used, then B.C. = −εk(u−g)|∇ϕ|2.
Finally, a similar analysis can be used to derive the boundary conditions (2.42) and (2.43)
for the conservative equation (2.41) and to justify the corresponding diffuse interface
approximation (2.44).
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Fig. 2.1.
Domain  described by a phase-field function ϕ.
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Fig. 3.1.
diffuse interface approximation of Dirichlet problem for the Poisson equation. A slice of
u(x,y) along y = 0 for different values of ε as labeled. [a]: result using Approximation 1 in
equation (2.21), [b]: result using Approximation 2 in equation (2.22) and [c]: result using
Approximation 3 in equation (2.23).
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Fig. 3.2.
The numerical solution u(x,y) in the whole domain Ω using Approximation 3 in equation
(2.23) with ε = 0.1.
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Fig. 3.3.
diffuse interface approximation of the Neumann problem. A slice of u(x,y) along y = 0 for
different values of ε as labeled. [a]: result using Approximation 1 in equation (2.27), [b]:
result using Approximation 2 in equation (2.28), and [c] result using Approximation 3 in
equation (2.29).
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Fig. 3.4.
The diffuse domain approximation of the Robin problem using Approximation 1 in equation
(2.31). [a] The y = 0 slice of the numerical solution u(x,y) for different values of ε as labeled.
[b]: The numerical solution u with ε = 0.1.
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Fig. 4.1.
Solution of the diffuse domain approximation equation (4.6), at different times as labeled,
with Ω1 being a perturbed, growing growing circular domain. In [f], the boxes correspond to
the boundaries of the adaptive Cartesian mesh patches. Each interior box contains a mesh
that is one half of the size of the mesh in the box that contains it. See text for additional
parameters.
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Fig. 4.2.
The y = 0 slice of the result in figure 4.1[f]. [a]: The numerical solution (‘o’) and the exact
solution (‘-’), [b]: The absolute value of the difference between the numerical and exact
solutions along the y = 0 slice.
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Fig. 4.3.
Solution u of the diffuse domain Approximation 1 with Robin boundary conditions (4.9) on
the boundary of the domain Ω1. Blue and red denote small and large values of u. [a]:
simulation using at least 5 grid points across the diffuse interface (949.704 DOFs), [b].
refined simulation using at least 10 grid points across the diffuse interface (6.346.674
DOFs).
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Fig. 4.4.
Phase field function ϕ on cross section of the mesh from the simulation shown in figure
4.3[a].
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Fig. 4.5.
Solution u of the diffuse domain Approximation 1 on the boundary of the domain Ω1 with
Robin boundary conditions (4.10) and (4.11) using at least 5 grid points across the diffuse
interface (949,704 DOFs).
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