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ABSTRACT 

Surgery in the cranial area includes complex anatomic situations with high-risk structures and high demands for 

functional and aesthetic results. Conventional surgery requires that the surgeon transfers complex anatomic and surgical 

planning information, using spatial sense and experience. The surgical procedure depends entirely on the manual skills 

of the operator. The development of image-guided surgery provides new revolutionary opportunities by integrating 

presurgical 3D imaging and intraoperative manipulation. Augmented reality, mechatronic surgical tools, and medical 

robotics may continue to progress in surgical instrumentation, and ultimately, surgical care. The aim of this article is to 

review and discuss state-of-the-art surgical navigation and medical robotics, image-to-patient registration, aspects of 

accuracy, and clinical applications for surgery in the cranial area. © 2007 Biomedical Imaging and Intervention Journal. 

All rights reserved. 
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INTRODUCTION 

Surgery in the cranial area includes operations of the 

fronto-zygomatico-maxillary complex, nasal cavity, 

paranasal sinuses, ear, and the skull base that have close 

proximity to highly critical structures such as nerves, 

vessels, the eye, cochlear and labyrinth organ, or the 

brain. Such operations often require re-establishing 

functional and aesthetic anatomy by repositioning 

displaced skeletal elements, or by grafting and 

contouring abnormal bony contours and transplants [1-5]. 

The need for accurate preoperative determination of the 

proposed surgical procedure is essential, and excellent 

intraoperative orientation and manual skills are required 

for surgical precision and reliable protection of vital 

anatomic structures [6-12]. Next generation surgical 

systems should explore and enhance imaging or 

manipulation, the two basic components of a surgical 

procedure [14]. The development of image-guided 

surgery provides new revolutionary opportunities by 

integration of presurgical 3D imaging, obtained by 

computed tomography (CT) or magnetic resonance 

imaging (MRI), and intraoperative manipulation through 

three fundamental issues [4,15,16]:  

(1) Localisation - determination of a target’s locus 

(for example, tumour, foreign body, and so on) that 

defines a task the surgeon performs, 
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(2) Orientation - information on current location on 

the patient’s anatomy that defines where the surgeon 

(with respect to the surgical tool) is operating, and  

(3) Navigation - the process of (passive) guidance to 

reach a desired target from the current location (for 

example, biopsy, tumour resection, bone segment 

manipulation, implant positioning, and so on).  

As a logical extension of image-guided surgery, the 

development of mechatronic surgical tools, tele-

manipulated robotic arms, and semi- or fully- automated 

surgical robots are beginning to introduce the next 

revolution [17,18].  

SURGICAL NAVIGATION SYSTEMS 

Surgical navigation systems generally consist of a 

(transportable) work station, a monitor, a graphical user 

interface with software to plan and guide therapy, and a 

position measuring system (a three-dimensional 

coordinate-detection or tracking system, which can be 

either mechanical, electromagnetic, or optical) [6,12,19-

22]. By providing a spatial coordinate system relative to 

the patient's anatomy (see chapter on image-to-patient 

transformation), the actual position of a probe or tracked 

surgical tool is shown with respect to cross-sectional 

images of the preoperative dataset (see chapter on image 

guidance). 

Mechanical navigation systems 

A mechanical navigation system consists of an 

articulated arm with six degrees of freedom [23-26]. 

Calculation of position is based on measurement of 

temperature changes recorded by a semiconductor 

temperature sensor within the gear of movable angles. As 

the spatial system is entirely self-referential, rigid 

fixation of both the patient and the navigation arm is an 

important prerequisite [19,20,23,24,27].  

The advantages of the mechanical systems are 

acceptable precision, low susceptibility to failure, and 

sterile covering with a tube [21,23,25,29]. The 

disadvantages are impractical handling during some 

surgeries, restricted range (circa 60 cm), and mobility as 

well as the space requirements in the operating table 

[6,19,25,27]. Due to their bulkiness, the mechanical 

systems have been generally replaced by more flexible 

electromagnetic and optical navigation systems.  

Electromagnetic navigation systems  

The position of electromagnetic navigation is 

measured by detecting of magnetic field changes with 

coils [19,21,29]. The electromagnetic transmitter is 

located near the operative site and the receiver is inside 

the surgical instrument. The advantages of 

electromagnetic navigation systems are the use of very 

small detector coils, absence of visual contact between 

instrument and sensor system, rapid computation of the 

signals, and easy sterilisation [21,25].  

However, due to interference by external magnetic 

fields and metal objects, particularly those associated 

with drilling and sawing tools [12,21,30,31], incorrect 

position sensing of up to 4 mm may occur . To reduce 

the incorrect position sensing special titanium or ceramic 

instrument set is required [19,20,32]. Electromagnetic 

navigation systems are relatively contraindicated for use 

of patients with pacemakers and cochlear implants [29]. 

Optical navigation systems  

Optical based systems are used for intra-operative 

navigation [4,16,21,25,33,34]. Position calculation is 

provided by a minimum of three infrared diodes or 

passive light reflecting reference elements mounted to 

the registered patient using dynamic reference frame 

(DRF) and the surgical tool (tracker), and recognition of 

the obtained patterns with a stereotactic camera. The 

advantages of optical navigation systems are high 

technical accuracy in the range of 0.1-0.4 mm [35,36], 

convenient handling, and easy sterilisation. The 

disadvantages are the necessity of constant visual contact 

between camera-array, DRF and instruments, and the 

potential susceptibility to interference through light 

reflexes on metallic surfaces in the operating 

environment [21,25,37-39].  

MEDICAL ROBOTICS 

Robots are generally defined as computer controlled 

devices with five to six degrees of freedom that can 

execute complex movements with high accuracy [14,40]. 

Medical robots can be classified based on technology, 

application, or role [14].  

Using a technology-based classification, two groups 

of systems that differ substantially from each other can 

be distinguished:  

● telemanipulators robots (not pre-programmed) 

● pre-programmed surgical robots (automated or 

semi-automated)  

Application-based taxonomy distinguishes robots on 

the basis of surgical disciplines and operative procedures. 

Role-based taxonomy distinguishes robots into three 

discrete categories:  

● passive (the role of the robot is limited in scope 

or its involvement is largely low risk) 

● restricted (the robot is responsible for more 

invasive tasks with higher risk but still 

restricted from essential portions of the 

procedure) 

● active (the robot is intimately involved in the 

procedure and carries high responsibility and 

risk). 

Telemanipulated robots 

Telemanipulated robots are non-autonomously 

working robotic arms (manipulator) that are controlled 

remotely by the surgeon using force-feedback joysticks 

or more advanced haptic devices (master console) 
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[18,41]. Compared to conventional endoscopic arms with 

limited mechanical control, telemanipulated robots 

provide a greater degree of freedom and have a computer 

controlled men-machine interface that allows for 

automatically processing of the input for the manipulator 

system without active interaction by the surgeon for 

motion scaling, tremor filtering, indexing, and so on. 

[18,41-44].  

Pre-programmable surgical robots 

Pre-programmable surgical robots can automatically 

or semi-automatically execute surgical tasks directly on 

the patient. These systems include: 

● floor or operating table mounted robots with six 

degrees of freedom 

● roof mounted modified surgical microscopes 

with generally six to seven active and one 

passive degree of freedom [45-49] 

The surgeon in the operating theatre supervises the 

execution of the plan by the robot [7,50].  

Interactive assistant robots are navigated tool 

support systems that carry, guide, and move surgical 

instruments. The robot is primarily moved passively by 

the surgeon but the robot can limit the degrees of 

freedom of the movements. Favourable positions can be 

saved and reached again with high precision. The 

surgeon has a spatial interval in which free movements 

are allowed, preventing movement into high-risk areas 

[21,40].  

Mechatronic surgical tools 

As a separate development in surgical 

instrumentation, mechatronic surgical tools are dedicated 

to special tasks such as drilling or bone shaving [5,51,52]. 

These tools may include force feedback sensors to 

prevent bone perforation or navigated controlled systems 

that only work within a certain surgical accuracy 

threshold. 

IMAGE-TO-PATIENT TRANSFORMATION 

Image-to-patient (IP) transformation or registration 

is the essential determination of a one-to-one mapping 

between the coordinates in the image data and those in 

the patient [53,54]. The registration procedure is based 

on anatomical landmarks (bone or skin), artificial 

markers (fiducials, bone affixed or skin applied), teeth 

supported registration templates, external registration 

frames, and laser surface scanning [12,25,55-60].  

Anatomical landmarks 

Registration with anatomical landmarks uses clearly 

defined external (such as nasion, spina nasalis, tragi, 

medial canthi, mastoid, umbo, and so on) and/or internal 

landmarks [61,62]. However, precise identification of the 

landmarks in both the patient and the image dataset is 

subjective and depends on the experience of the operator 

[63]. Surface matching, which is done by touching about 

40-80 points on the patient’s skin or bone, can refine 

anatomical registration [62,64]. However, this method is 

generally inaccurate and time-consuming.  

Fiducial markers 

The advantage of fiducial markers over anatomical 

landmarks is the enhanced localisation accuracy on the 

image data and the patient. Consequently, registration 

with skin-applied fiducials is more accurate than 

registration with surface anatomical landmarks [65-67]. 

However, the use of skin-applied fiducials is associated 

with high logistics because the markers must be placed 

prior to data set acquisition and must be kept in their 

position until the patient enters the operating room. The 

time lag between imaging and surgery, and the 

sensitivity to skin shift can lead to unfavourable 

inaccuracies [25,56,63,68-70]. Bone-implanted fiducials 

provide invariant spatial registration points with the 

highest possible accuracy and generally serve as the 

reference gold standard in registration [21,53,66,68,71-

73]. The drawbacks of bone-implanted fiducials are their 

invasiveness, the need for additional surgery, and 

possible major patient discomfort for which they should 

not be left in place for an extended period [55,63,70,71].  

Registration templates 

Registration templates are non-invasive, denture 

fixed acrylic splints with integrated fiducial markers 

[36,39,60,71,74-81]. Proven accuracy similar to bone 

implanted fiducials is available for the regions of the 

maxilla, mandible, orbit and face [36,72,81]. Registration 

templates cannot be applied to edentulous patient, except 

when the templates are invasively secured to the 

underlying bone.  

Vogele-Bale-Hohner (VBH) mouthpiece / external 

registration frame 

The Vogele-Bale-Hohner (VBH) vacuum 

mouthpiece is an individualised mouthpiece that can be 

objectively and rigidly secured against the maxilla with 

submillimetric repositioning control, that is regulated by 

the amount of negative pressure on the scale of a vacuum 

pump [56,82-84]. Alternatively, the VBH mouthpiece 

can be glued to an acrylic template, similar to 

registration templates. Compared to registration 

templates, where the markers are integrated in the 

template, an external registration frame is connected to 

the VBH mouthpiece. The VBH mouthpiece can be 

removed after registration [55,59,82,83,85-89]. The 

external registration frame allows for broad marker 

distribution around the entire head volume. Supported 

with exchangeable markers for CT/MRI/PET/SPECT, 

the external registration frame can serve as a single 

reference device for multimodal surgical navigation and 

fusion imaging [56,84,90-92].  
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Laser surface registration 

Laser surface registration is based on projection of 

visible laser beams on the patient’s skin [67-70,93]. The 

skin reflections are detected by a camera array and a 

virtual three-dimensional matrix of the skin anatomy of 

the patient is generated. The matrix, which is an 

advanced surface-matching algorithm, is then matched to 

the surface matrix of the pre-operative image-data set.  

Currently, up to 300,000 skin surface points can be 

registered. This allows the registration accuracy reach 

comparable values to bone markers or registration 

templates [67]. However, the shift of the patient’s skin 

surface or different tension in muscles of expression 

when performing CT-data acquisition and during 

preoperative and intraoperative recording, may lead to an 

invalid data set correlation [68,69,93]. Though the 

patient might to be continuously tracked during surgery, 

the original geometry of the facial soft tissue may be 

destroyed by intraoperative swelling, surgical cuts, or 

during repositioning osteotomies [21,33,69,94]. To 

compensate, a combination with dynamic reference 

frames must be available for intraoperative tracking after 

the initial laser registration has been reported [94]. Laser 

surface registration is unsuitable for surgery in the 

mandible but is expected to serve as a sufficiently stable 

and relatively invariable reference base for many 

applications in cranio-maxillofacial surgery [66,67,70, 

93,94]. 

IMAGE-GUIDANCE 

For image-guidance, the correlation between the 

space coordinates of the image-data in the navigation 

system and the patient’s coordinates defined during 

registration are preserved during the surgical procedure. 

The coordinates are obtained by rigid fixation of the 

patient on the operating table, for example invasively via 

the Mayfield head clamp, or non-invasively via the 

vacuum mouthpiece based VBH head holder [56,64,95]. 

Alternatively, bone (invasive) or registration template 

(non-invasive) affixed DRFs are used for continuous 

patient tracking after initial registration [33,36,60,74,76].  

During surgery, the navigation software indicates 

the actual real-time position of the tracked surgical tool 

within the patient’s presurgical 3D-data for 

intraoperative orientation, and shows the calculated 

accuracy of the tool’s position and angulations related to 

the predefined surgical plan. Integrated mechatronic 

surgical tools provide automatic on/off-regulation 

depending on the current position of the patient in 

relation to the planned working space or the connection 

of the drill speed to the operator accuracy. Integrated 

mechatronic surgical tools are immediate stopped when 

possible damage to vital structures occurs (= navigated 

control) [5,51,52]. In addition, the development of 

adjustable rigid aiming devices enables a steady linear 

approach to defined targets [56,85,96-98].  

Visualisation of the navigation process is generally 

provided via the computer screen of the navigation 

system’s transportable workstation. A disadvantage of 

such a display is that the surgeon has to look up at the 

screen and therefore, cannot simultaneously view the 

surgical field [4,13,39,51,71].  

In contrast, augmented reality (AR) provides 

navigational support by direct projection of segmented 

structures from the preoperative image data (surgical 

targets, resection lines, and planned implant position) to 

the patient. Therefore allowing complete interaction with 

the real world, while simultaneously making the virtual 

environment accessible [30,58,71,99,100-104,111]. AR 

can be based on monocular projection in the operating 

microscope or the binocular optics of a tracked surgical 

microscope projection for the purpose of building 

semitranslucent screens placed between the operating 

screen and the surgeon or the head mounted displays 

[4,22,30,58,71,99,100,105-110]. Recently, a promising 

AR concept using laser registration and stereotactic 

optical projection of tumour margins and osteotomy lines 

directly on the patient was presented. This concept does 

not necessitate navigation instruments [104,111,112]. 

ASPECTS OF ACCURACY 

Terminology 

Accuracy is of utmost importance for clinical 

application of image-guided surgery and medical 

robotics. Use of standardised terminology and 

measurement types is essential for correct understanding 

and comparability of accuracy reports [113].  

Accuracy is qualitatively determined as the amount 

of approximation of the mean of the measurements to the 

true value (which refers to the term trueness) and 

quantitatively determined through the margin of error 

and the uncertainty of measurement, which is 

characterised by the variation of the mean value from 

several single measurements. 

Precision is the inner accuracy of measurements 

obtained by repeated measurements (under the same 

circumstances and with the same measurement technique 

and system) and refers to the quantitative 

characterisation of the concision of the measuring 

instrument and its readout. Although often used as a 

synonym for accuracy, precision must be clearly 

distinguished from the term accuracy.  

For evaluation of image-guided surgery, the 

suggested measurement types are as follows: [66,72,113-

115]:  

● Fiducial Localising Error (FLE): the error in 

locating the fiducial points. 

● Fiducial Registration Error (FRE) : the error 

between corresponding fiducial points after 

registration 

● Target Registration Error (TRE) : the error 

between corresponding points other than the 

fiducial points after registration 

● Target Positioning Error (TPE): the error 

between the real position of the navigated 

surgical tool and the calculated position during 
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the actual surgical procedure (TRE plus 

additional factors).  

The best indicator for a navigation system’s or 

medical robot’s accuracy is represented by the TPE, but 

the definitive overall accuracy of the surgical procedure 

has to be ultimately evaluated by directly comparing the 

achieved surgical result to the initial planning data.  

Influential factors of accuracy 

The overall accuracy of image-guided / robotic 

surgery depends on all systematic and non-systematic 

(random) errors, from the data-set acquisition to the 

surgical procedure [116]. The accurate linking of the 

virtual planning to the surgical site depends on the 

accuracy of the registration procedure, which includes 

limitations in the image space and the device space (see 

chapter image-to-patient transformation). Image quality 

depends on the image resolution as represented by the 

voxel size and slice thickness. The thinner the slice 

thickness and the smaller the voxel size, the higher is the 

accuracy of determining the centre of the fiducial 

markers (fiducial-based registration) or the accuracy of 

the calculated 3D surface model (surface based 

registration) [88,119,120]. In principle, multi detector 

CT is more accurate than MRI, because MRI is prone to 

inhomogeneities of the magnetic field and, due to the 

longer examination time, more susceptible to motion 

artefacts [64,117-119]. The arrangement of fiducial 

markers is a critical factor and it is important to use as 

many points as possible (although the return diminishes 

rapidly after five or six markers are used), avoid near-

collinear configurations, and ensure that the centroid of 

the fiducial points is as near as possible to the target 

[12,54]. The typical feedback provided by the 

registration software is a measure of the degree of 

alignment of the points used in the registration. 

Unfortunately these measures show no direct correlation 

to the TRE and to reliably control the registration 

accuracy intraoperatively, the real error between the 

image and the patient’s anatomy has to be checked prior 

to surgery by a few independent markers not used for 

initial registration and/or by anatomic landmarks 

[10,12,36,39,77,93]. This can be performed with the 

probe of the navigation system by comparing the probe’s 

real position (device space) to the virtual position 

displayed on the computer screen (image space). The 

accuracy of the surgical transfer is dependant on the 

technical accuracy of the navigation system, mechatronic, 

semi-active, or active robotic system and the surgical 

application accuracy. Notably, human error is attributed 

to imaging, registration, and transfer errors, for which 

every step has to be carefully managed.  

CLINICAL APPLICATIONS 

Image-guided surgery 

Successful clinical applications of image-guided 

surgery in the cranial area have been already described 

for many procedures, such as the following 

(neurosurgical procedures excluded): oral implant 

surgery [10,16,37,38,52,73,77,79,103,121], removal of 

tumours and foreign bodies [16,33,58,76,81,122], bone 

segment navigation [60,122,123], temporo-mandibular-

joint surgery [74,124], biopsy [16], frameless stereotactic 

interstitial brachytherapy [28,87], percutaneous radio 

frequency ablation of the Gasserion ganglion in 

medically untreatable trigeminal neuralgia [88,95,125], 

functional endoscopic sinus surgery and skull base 

surgery [5,9,12,22,107,126-128]. Use of mechatronic 

surgical tools has been tested for navigate-controlled 

drilling in oral implant surgery [52] and shaving in 

functional endoscopic sinus surgery [13,51]. 

Medical robotics 

In the cranial area, robotic systems were considered 

to help the surgeon interactively with the following tasks 

[1,7,21,40,45,129]: (1) the drilling of holes with an 

automatic stop after penetrating the bone to protect the 

tissue lying deep to the bone, (2) the defined drilling of 

the implant bed for positioning of implants or bone 

fixtures for anaplastology, (3) the milling of the bone 

surfaces in plastic surgery according to a 3D-operation 

plan, (4) performing deep saw-cuts for osteotomies and 

allowing for the precise three-dimensional transportation 

of the subsequent bone segments or CAD/CAM 

(computer aided design / computer aided manufacturing) 

transplant, (5) the preoperative automatic selection of the 

necessary osteosynthesis plates, their bending by a 

special machine and their intraoperative positioning in 

defined positions, or (6) the automated guidance for non-

flexible catheter implantation at brachytherapy.  

Pre-clinical and clinical studies have been started 

around the millennium in Germany, France, USA and 

Japan for robot-assisted placement of craniofacial 

implants in ear anaplastology [130], resection of 

frontotemporal bone segments [131], implant fabrication 

combined with CAD/CAM technology in reconstructive 

surgery [21,79,131], model surgery in orthognatic 

surgery [26], passive guidance for the positioning of oral 

implants [133-135], and videoendoscopic ENT and skull 

base surgery [18,47-49,132].  

Cost-benefit ratio  

Image-guided surgery is considered to be more 

accurate than standard surgery. Comparative studies in 

oral implant surgery indicate significantly more accuracy 

compared to the manual freehand procedure even if 

performed by experienced surgeons [79,136,137]. In 

addition, no significant difference between experienced 

surgeons and trainees was found, which demonstrates 

that image-guidance is a valuable means for achieving a 

predictable and reproducible result without heavy 

reliance on the clinician’s surgical experience 

[10,79,136,138]. In other procedures, such as 

percutaneous interventions (which are generally a 

“blind” surgical procedure), removal of foreign bodies, 

access to deep seated locations, orientation in complex 
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and changed anatomic regions, etc., clear benefit of 

image-guidance is evident [4,12,16,33,128,143]. 

Generally, shorter operation time, safer manipulation 

around delicate structures and higher intraoperative 

accuracy have been reported [9,16,20,60,128,139,140]. 

Further, image-guidance may allow for more thorough 

surgical resection and potentially decreasing the need for 

revision procedures [140]. 

In a large clinical study for image-guided ENT 

surgery, it was found that image-guidance can provide 

additional relevant information that was not available to 

the surgeon solely by virtue of his existing knowledge 

and that every second application of the navigation 

system may lead to a change in surgical strategy [5]. 

Accordingly more benefit is obtained from additional 

orientation and resulting cognitive relief at the moment 

of stressed and distracted surgical situations. Another 

clinical study including 158 surgical procedures in 

cranio-maxillo-facial surgery showed high to very high 

medical benefits for image-guided biopsies, punctures of 

the trigeminal ganglion, removal of foreign bodies, 

osteotomies of the facial skeleton, arthroscopies of the 

temporomandibular joint and positioning of dental 

implants [16].  

Image-guided surgery is more expensive than the 

standard procedure (navigation systems cost about 

USD 60,000 to USD 200,000) and requires presurgical 

imaging with registration elements, intraoperative image-

to-patient registration and specialised equipment for tool 

tracking. However, these systems can be used for a wide 

range surgical procedures in different medical 

specialities [56,57,59,83-85,89,144] and thus may 

represent a valuable acquisition for an institution [16,33]. 

A further beneficial aspect is the associated automatic 

and complete electronic documentation of the 

intervention [16,116].  

Robots are expected to be more accurate and more 

reliable than a human being. Robots can work as part of 

an interactive system, are immune to radiation and can 

be automatically programmed for documentation, 

evaluation and training protocols [14,40,45,46,129]. 

Except for very few cases, surgical robots will not 

execute operations fully autonomously but will support 

the physician to achieve optimal results [1,7,21,40,44, 

45,129,141].  

Considering the advantages mentioned above, 

image-guided surgery and medical robotics may have a 

positive cost/effort–benefit ratio, depending on the 

individual surgical task and the developmental stage of 

each system. The necessity of special knowledge for this 

technology is indisputable and the relationship between 

cost and benefit may additionally be dependent on 

familiarity and availability [15,113].  

CONCLUSION 

Due to the complex anatomic situations with high-

risk structures and the high demands for functional and 

aesthetic results, surgery in the cranial area is a prototype 

for application of image-guided surgery and medical 

robotics. Successful clinical use has been already 

described for many different procedures and clear benefit 

is proved in terms of intraoperative orientation, surgical 

accuracy, safety and reduced operation time. The 

development of mechatronic surgical tools may 

additionally improve safety and surgical accuracy. For 

appropriate clinical application of image-guided surgery, 

it is important that the surgeon is aware of all influential 

factors of accuracy and the maximum error of each 

system / technique regarding the required surgical 

accuracy for the individual operation.  

In the future, surgical navigation with integration of 

intraoperative imaging, improved augmented reality 

techniques, sophisticated mechatronic surgical tools and 

new robotic developments which are smaller, less 

expensive and easier to operate will enable continued 

progress in surgical instrumentation, and ultimately, 

surgical care. 
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