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Abstract
Hamilton’s rule states that cooperation will evolve if the fitness cost to actors is less than the
benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying
assumptions, however, and does not accurately describe social evolution in organisms like
microbes where selection is both strong and nonadditive. We derived a generalization of
Hamilton’s rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity made
cooperative sporulation surprisingly resistant to exploitation by cheater strains. Selection was
driven by higher-order moments of population structure, not relatedness. These results provide an
empirically testable cooperation principle applicable to both microbes and multicellular organisms
and show how nonlinear interactions among cells insulate bacteria against cheaters.

Social evolution has illuminated many different areas of biology, from altruistic behavior in
insects to sex ratios, selfish genetic elements, and multicellularity (1, 2). The central puzzle
in this field is how cooperation–increasing the fitness of other individuals–persists when
cheaters can benefit without paying the cost of cooperating. The most prominent explanation
for the evolution of cooperation is kin selection, in which benefits preferentially go to
individuals who share cooperation alleles (3, 4). The centerpiece of kin selection theory is
Hamilton’s rule (3, 5, 6). It states that cooperation will evolve if rb – c > 0, where b is the
benefit of cooperation, c is the cost of cooperation, and r is the genetic relatedness of actors
to recipients (Fig. 1A). Kin selection relatedness is a statistical regression coefficient
describing the similarity of actors and recipients at relevant cooperation loci and is not
necessarily equal to whole-genome similarity (5-7).

Hamilton’s rule is an elegant evolutionary principle, but it encounters problems when
selection is strong and fitness effects are nonadditive (5, 8). Nonadditivity occurs whenever
fitness is a nonlinear function of social environment (Fig. 1B) or when different genotypes
have different slopes (Fig. 1C). Under these circumstances, b and c are functions of r (9).
This confounds fitness effects with population structure, obscures the biological causes of
selection, and limits the usefulness of Hamilton’s rule as an interpretive tool (Fig. S1). It
also makes it difficult to test kin selection with Hamilton’s rule, since costs and benefits
can’t be extrapolated to other population structures. Social evolution needs theory that
makes testable predictions for specific systems (10, 11).

These problems are especially pronounced for cooperation among microbes. Microbial traits
as diverse as quorum sensing, biofilms, development, metabolism, mutualism, and virulence
are social and vulnerable to cheating (11-18). Many systems show strong frequency-
dependent selection, one form of nonadditivity (12, 14, 16-18). So far, social evolution
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theory has mostly been a qualitative, heuristic guide to interpretation. Models are seldom
compared to data, and attempts to measure Hamilton’s rule are rare [but see (19, 20)]. Even
though microbes have been singled out as important tests of social evolution theory (11), it
is still unclear how much relatedness is required to prevent cheaters from spreading, whether
relatedness in natural populations is sufficient, and whether kin selection acts differently in
microbes than in animals.

To bridge the gap between theory and data, we derived a generalization of Hamilton’s rule
that does not assume additivity or weak selection and whose parameters are empirically
measurable (21). We found that cooperators increase in frequency if

(1)

Distributions can be described by their moments: parameters that measure their shape and
location. The relatedness vector r = {r1, r2, …} measures how the distributions of social
environments encountered by cooperators and noncooperators differ in each of these
moments (Fig. S2). r1 is equivalent to r in Hamilton’s rule (5). The other terms are higher-
order relatedness coefficients (22)(23). Any smooth function can be expanded into a Taylor
polynomial series whose coefficients measure its linear, quadratic, and higher-order
components. The benefit vector b describes noncooperator fitness as a function of social
environment (red lines in Fig. 1) in terms of its Taylor coefficients. c is the cost of
cooperation when all neighbors are noncooperators. m • d is nonzero when benefits depend
on recipient genotype (Fig. 1C). m is the moments vector for cooperators. d is the difference
between the Taylor series of cooperators and noncooperators. Unlike Hamilton’s rule,
equation (1) disentangles fitness effects from population structure and is valid for arbitrarily
complex forms of social selection. When fitness effects are additive, equation (1) reduces to
rb – c > 0.

We applied our generalized rule to data from experimental populations of Myxococcus
xanthus bacteria. When starved of amino acids, M. xanthus cells aggregate and form fruiting
bodies in which a small fraction of cells become stress-resistant spores while the rest die
(24). Some cheater strains sporulate superefficiently among cooperators but do poorly on
their own (14). We mixed a cooperator strain and a cheater strain at different frequencies, let
them develop, and measured their abundance among surviving spores. Fitness effects were
strongly nonadditive (Fig. 2A). Cooperators increased the fitness of both genotypes (F(1,43)
= 1872.92, P < 0.0001; n = 48), but the effect was strongly nonlinear (slightly less than
exponential; F(1,43) = 15.69, P < 0.001). Cheaters benefited more than cooperators (F(1,43) =
81.87, P < 0.0001). Cooperators were more fit than cheaters at low frequencies (F(1,43) =
51.54, P < 0.0001) but less fit at high frequencies. Cooperating was therefore altruistic when
locally common but mutually beneficial when rare (25).

We calculated b and d in equation (1) from the Taylor series of the fitted statistical model
and found that their linear, additive components were very small (Fig. 2B). The largest terms
were order 10–15. This is caused by the steepness of the curves in Fig. 2A and means that
fitness was disproportionately determined by groups with high frequencies of cooperators.
The genotype of individual neighbors mattered less than the genotype of several neighbors
collectively. Under such circumstances, the most important components of population
structure are the corresponding higher-order moments–not first-order relatedness. c was
−1.73 (± 0.02 SEM) × 10−6. A negative cost indicated that cooperation provided a direct
fitness benefit when most neighbors were noncooperators. This was a minor component of
fitness, however. Large negative values of d indicated that cheaters mainly gain advantage
by benefiting from cooperative groups more than cooperators do.
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We calculated r and m for an experimental population where most groups contained both
genotypes, but with a strong skew toward one or the other (Fig. 2C). The components of
these vectors varied less than those of b and d (Fig. 2D). Kin selection relatedness was r1 ≈
0.8. Putting it all together, the predicted inclusive fitness effect of cooperation was r • b – c
+ m • d = 0.014 spores/cell (95% CI 0.004–0.021), which did not significantly differ from
the observed value of 0.0135. A positive inclusive fitness effect indicated that, in this
population, kin selection favored cooperation.

To better understand kin selection in this system, we calculated the inclusive fitness effect
for populations with different global cooperator frequencies and rates of migration between
groups. We found that cooperative development in M. xanthus is surprisingly resilient to
cheating. In the conventional island model of population structure (26), cheaters could only
invade populations of cooperators if migration was high enough that r1 < 0.6 (Fig. 3A).
Considering the large fitness advantage cheaters often had within groups, this is a
surprisingly low relatedness threshold. Re-examining Fig. 3A gives an intuitive explanation
for this result. Compared to cooperators in all-cooperator groups, cheaters only had a net
advantage in groups with >70% cooperators. Population structure limits the abundance of
groups in this narrow range of frequencies (Fig. S2). The specific form nonadditivity takes is
crucial. Increasing returns from cooperation limits the ability of cheaters to invade, while
decreasing returns makes it easier (Fig. S3). When population structure was very low, direct
fitness benefits allowed cooperators to escape being displaced by cheaters. Instead, both
genotypes coexisted in a balanced polymorphism (Fig. 3A). Population structure reduced the
equilibrium frequency of cheaters and their effect on population mean fitness (“cheater
load”; Fig. 3B). Selection was frequency dependent because the higher-order components of
population structure that dominate selection were also frequency-dependent (Fig. S4).
Hamilton’s, however, misleadingly placed the cause of frequency dependence in its fitness
terms b and c instead of its population structure term r (Fig. S4).

Our generalization of Hamilton’s rule provides a kin selection principle that is valid for
systems with strong nonadditive fitness effects. It shows why higher-order moments of
population structure appear in models of social evolution (23, 27), shows when they are
important, and provides a general method for handling them. Because equation (1) refers
only to fitness and genotype frequencies, it is independent of many system-specific details
and can be applied to cooperation at all levels of biological organization–not just microbes.
It also lets social evolution theory be more than a heuristic guide to interpretation. Because
all the terms in equation (1) are empirically measurable, it is both a quantitative analytical
tool and a testable hypothesis. The inclusive fitness effect (r • b – c + m • d) is a quantitative
measure of selection one can use to compare different hypothetical mechanisms for the
evolution of cooperation. One could, for example, evaluate the relative importance of
population structure and infectious transfer of cooperation genes (28) by comparing the
amount of allele frequency change due to kin selection or due to gene transfer. The inclusive
fitness effect also shows when “trojan horse” strategies for controlling microbial infections
with human-introduced cheaters (29) are likely to be successful.

Strong nonadditivity plays an important role in microbial cooperation. It causes these
systems to deviate from the traditional scheme where social interactions are classified as
altruistic, mutually beneficial, selfish, or spiteful (24, 25). Frequency-dependent selection
within groups can create situations where cooperation is altruistic at some frequencies but
mutually beneficial at others (Fig. 2A). With nonadditivity, the r in Hamilton’s rule can also
be a relatively unimportant component of population structure. In our M. xanthus system,
selection is primarily determined by higher-order terms that measure the abundance of
groups with high frequencies of cooperators. Finally, strong population structure is not
always needed to prevent the spread of strong cheaters. The cheater strain we examined has
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a hundred-fold fitness advantage within groups when it is rare and massively reduces group
fitness when it is common. Nevertheless, increasing-returns nonadditivity allows
cooperation to evolve at levels of population structure comparable to that seen among social
insect colonies (30). Cheaters have a rare advantage in several systems (12, 16-18) and may
be a common property of microbial cooperation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Measuring the costs and benefits of cooperation in microbes. Blue: cooperator fitness. Red:
noncooperator fitness. (A) In Hamilton’s rule, b is the slope of fitness against the frequency
of cooperators among social neighbors. c is the fitness difference between cooperators and
noncooperators for a given social environment. Fitness effects are nonadditive when benefits
are (B) nonlinear or (C) depend on recipient genotype.
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Fig. 2.
Parameters of the generalized Hamilton’s rule measured in an experimental population of
sporulating Myxococcus bacteria. (A) Absolute fitness of a cooperator strain (blue circles)
and a cheater strain (red diamonds) as a function of their frequency within groups. Data
points: independent experimental replicates. Lines: regression model fit to data. (B) Fitness
terms in equation (1), calculated from the data shown in (A). Green diamonds: benefit vector
b. Purple circles: genotype-dependence vector d. Points show best-fit model ± SD from
bootstrapped data. (C) Initial distribution of cooperators among groups for a specific
experimental population. (D) Social structure terms in equation (1), calculated for the
population shown in (C). Blue: cooperator moments m. Red: noncooperator moments mnon.
Black: relatedness vector r.
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Fig. 3.
M. xanthus development is resilient to cheating. (A) Conditions under which kin selection
favors cooperation. Blue: cooperators have higher mean fitness than cheaters. Red: cheaters
have higher mean fitness. In an island model of population structure, cheaters only invade
when migration between groups is large enough that first-order relatedness is < 0.6. When
cheaters can invade, they reach an equlibrium frequency where cooperators remain at least
40% of the population. We report population structure in terms of first-order relatedness
instead of migration rate to aid comparison with other systems. (B) Cheater load. Points
show population mean fitness near the selective equilibrium for a given level of population
structure.
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