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Abstract
The understanding of mechanisms leading to cellular 
differentiation is the main aim of numerous studies. Ac-
cessibility of DNA to transcription factors depends on 
local chromatin structure and chromatin compaction 
inhibits gene transcription. Histone acetylation corre-
lates with an open chromatin structure and increased 
gene expression. Gene transcription levels are changed 
in early embryonic stem cells differentiation in a tissue-
specific manner and epigenetic marks are modified, 
including increased global acetylation levels. Manipula-
tion of histone deacetylases activity might be an inter-
esting tool to generate populations of specific cell types 
for transplantation purposes. Thus, this review aims 
to show recent findings on histone acetylation, a post 
translational modification and its manipulation in embry-
onic stem cells differentiation. 
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EMBRYONIC STEM CELLS
Embryonic stem cells (ES cells) are derived from inner 
mass cells within a blastocyst and can be maintained and 
proliferated in vitro[1,2]. The importance of  embryonic stem 
cells for modern biology rests in two major properties 
which distinguish them from other cell types. Firstly, they 
are pluripotent cells, capable of  developing into any type 
of  cell from all three embryonic germ layers (endoderm, 
mesoderm and ectoderm) and, secondly, they have the 
ability to self-renew, going through numerous cycles of  
cell division while maintaining the undifferentiated state[3]. 

ES cells represent a suitable model for study of  pro-
cesses involved in lineage specification during mammalian 
development[4]. Also, ES cells can be genetically manipu-
lated. Embryoid bodies or isolated differentiated cells 
are shown to be a useful tool to investigate the effects of  
gene insertion and deletion[5]. 

The first pluripotent cell line was isolated from a 
teratocarcinoma. Embryonal carcinoma cells served as a 
model to study cellular differentiation given their poten-
tial to participate in embryonic development[6], although 
their use in clinical research was not possible given its 
potential to form tumors. Finally, in 1981, ES cells were 
isolated from the inner cell mass of  murine embryos[1,2] 
and in 1998 the derivation of  ES cells from human em-

Online Submissions: http://www.wjgnet.com/1948-0210office
wjsc@wjgnet.com
doi:10.4252/wjsc.v2.i6.121

World J Stem Cells  2010 December 26; 2(6): 121-126
ISSN 1948-0210 (online)

© 2010 Baishideng. All rights reserved.

百世登
BaishidengTM© WJSC|www.wjgnet.com         December 26, 2010|Volume 2|Issue 6|121



Saraiva NZ et al . Histone acetylation in embryonic stem cells

bryos[7] brought the concept of  regenerative medicine 
and tissue engineering as possibilities for the treatment 
of  degenerative diseases.

In the future, degenerative diseases caused by destruc-
tion or loss of  function of  certain cellular type could be 
treated with transplantation of  differentiated ES cells[8]. 
Diabetes mellitus, a candidate for cellular therapy, is caused 
by selective destruction of  pancreatic cells. Another candi-
date is Parkinson’s disease in which dopaminergic neurons 
are destroyed in a particular region of  the brain. 

Also, the use of  adult stem cells for replacing dam-
aged cardiomyocytes is described, although clinical ap-
plication of  these cells may be hindered because of  their 
limited ability to proliferate and differentiate in culture[9]. 
Therefore, considering the pluripotency and self-renewal 
abilities of  ES cells, these cells can be expanded in vitro, 
an attractive source of  stem cells for treatment of  several 
cardiac diseases. The capacity of  murine ES cells to differ-
entiate into cardiac myocytes has been investigated inten-
sively[10-13] and important findings were described, includ-
ing the report of  improvement of  left ventricular function 
after myocardial infarction by transplanting murine ES 
cells in rodents[14,15].

The first step to develop efficient cellular therapies for 
human diseases is the establishment of  in vitro differentia-
tion protocols and methods for sorting large amounts of  
specific cell types from total population without cellular 
damage. Unfortunately, the heterogeneous nature of  cel-
lular differentiation in vitro has discouraged the use of  ES 
cells in transplantation studies[8]. A better understanding 
of  epigenetic events leading to lineage commitment and 
differentiation might clarify the pathways of  heteroge-
neous ES cells differentiation and support the develop-
ment of  efficient protocols aiming at the achievement of  
lineage-restrictive differentiation. 

REGULATION OF GENE EXPRESSION 
Mammalian development occurs with the establishment 
of  hundreds of  cellular types, all of  them derived from 
the same totipotent cell. Each differentiated cell relies on 
the same genetic material, although showing specific gene 
expression patterns, achieved by silencing and activation 
of  tissue-specific genes[16]. The mechanisms of  gene ex-
pression diversification are regulated by epigenetics. These 
heritable changes based in chromatin structure and not in 
DNA sequence, permit modulation of  gene expression 
activities in response to external signs[17].

Eukaryotic cells contain approximately 6 million pair 
bases of  DNA corresponding to almost 30 000 different 
proteins. The main part of  the DNA sequence remains 
silenced in a compact chromatin form which makes 
transcription difficult or impossible[18]. Only a small part 
of  DNA is used for gene expression in each tissue type. 

The chromatin structure is established by epigenetic 
modifications, including DNA methylation, histone 
post translational modifications, chromatin remodelling 
and non-coding RNAs[19]. Studies have elucidated DNA 
methylation and histone post translational modifications 

as important events that play key roles in mammalian de-
velopment and lineage specification[16].

Nucleosomes form the fundamental repeating units of  
eukaryotic chromatin and are composed by 147 DNA base 
pairs wrapped twice around eight core histone proteins: 2 
H2A, 2 H2B, 2 H3 and 2 H4[20]. Each core histone protein 
possesses a globular domain and a long N-terminal tail 
protruding from the nucleosome which can be covalently 
modified. Such modifications include acetylation, phos-
phorylation, methylation and others[18]. Histone modifica-
tions act in chromatin condensation, replication, DNA re-
pair and transcriptional regulation. Some post translational 
modifications are associated with euchromatin (histone 
H3 acetyl-lysine 9, mono-, di- and tri-methyl lysine 4 and 
histone H4 acetylation) while others are related to hetero-
chromatin (mono-, di-, tri-methyl lysine 9 and histone H3 
tri-methyl lysine 27)[21].

Among these post translational modifications, acetyla-
tion and methylation have been the most studied. Histone 
acetylation is related to transcriptionally-active domains and 
its levels correlate with gene expression[10]. Histone meth-
ylation can play a different role in gene expression events, 
depending on which residue is modified[22]. Locus-specific 
histone modifications are proposed for description of  a 
code defining the transcriptional potential state of  a cell - 
the histone code[23]. 

When post translational modifications are blocked, 
development is affected. Histone-deacetylase 1 deficiency 
in mice leads to embryonic lethality[24]. Depletion of  genes 
responsible for histone H3 lysine 9 methylation, de novo 
methylation and maintenance of  methylated status also 
results in embryonic death[25-27].

The regulatory mechanisms for transcription and chro-
matin organization involved with histone modifications 
are not clearly defined. One hypothesis is that epigenetic 
factors, including modifying enzymes and remodelling 
factors, are capable of  inducing cis- and trans- chromatin 
interactions[28]. Conformational changes could even be 
mediated by protein complexes recruited by post transla-
tional modifications. These interactions would promote 
structural changes on chromatin and related DNA, alter-
ing their physical properties and affecting higher order 
structures, leading to consequences in many aspects of  
genome function[29]. 

HISTONE ACETYLATION
Histone acetylation, precisely on lysine residues, promotes 
neutralization of  its positive charge, weakening the interac-
tion between the histone tail and the negatively charged 
local DNA. This mechanism induces exposure of  local 
chromatin structure[30], permitting the binding of  transcrip-
tion factors and significantly increasing gene expression[31]. 

Two main enzymes control acetylation. Histone acetyl-
transferase (HAT) adds acetyl groups to the histone tails, 
neutralizing them and weakening their nucleosome inter-
actions. Histone deacetylase (HDAC), on the other hand, 
removes acetyl groups from histones and drives chroma-
tin compaction and gene silencing on the local DNA[11]. 
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Over the past decade, more then a dozen HDAC were 
identified in mammalian cells. Based on their sequence 
similarities, HDACs were grouped into four functional 
classes: class Ⅰ (HDAC1, HDAC2, HDAC3 and HDAC8), 
class Ⅱ (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 
and HDAC10), class Ⅲ (SIRT1 and SIRT7) and class Ⅳ 
(HDAC11 and related enzymes)[32].

Studies in mice revealed that HDAC1 gene expression 
is stimulated by growth factors[33] and controlled by nega-
tive feedback mechanism of  its own product[34]. HDAC1 
plays a significant role in many biological processes, such 
as cell cycle progression, cell proliferation and differen-
tiation, being essential for normal embryonic develop-
ment[24]. 

In studies of  chromatin function, including histone 
acetylation, ES cells differentiation represents a unique 
model during lineage commitment in DNA regions regu-
lated throughout development[35]. Pluripotent ES cells ex-
hibit chromatin domains with both transcriptionally active 
and silent histone modifications[36]. At the onset of  dif-
ferentiation, changes in morphology and gene expression 
pattern become evident[37]. During early differentiation, 
transcription levels of  many genes are strongly altered in 
a temporal manner. Epigenetic changes involving post 
translational histone modifications are related to regula-
tion of  both local and global gene expression[38]. Histone 
acetyltransferases stimulate transcription through the 
acetylation of  histones, resulting in relaxation of  nucleo-
somes[39].

Histone deacetylases and acetylases transmit differen-
tiation signals to initiate appropriate epigenetic modifica-
tions, such as erasure of  pre-existing chromatin structure 
and establishment of  new histone modification patterns 
during in vitro differentiation of  ES cells[37].

According to Meshorer et al[40], ES cells undergo a 
wave of  global acetylation with the beginning of  differen-
tiation process. Histone H3 lysine 9 acetylation is an active 
euchromatin-related modification. Its level is almost unde-
tectable in pluripotent ES cells and dramatically increases 
when cells leave the undifferentiated state. Histone H3 
lysine 9 trimethylation, a silent heterochromatin functional 
component, is almost undetectable in pluripotent ES cells 
and increases on day 7 of  differentiation[40]. Another study 
identified higher levels of  histone H3 lysine 9 acetylation 
on day 2 of  differentiation which increased two fold on 
day 4 and was maintained until day 18, the last day evaluat-
ed. On the other hand, histone H3 lysine 9 trimethylation 
levels increased on day 2, corresponding to a deacetylation 
of  this residue[35]. 

When pluripotent genes were evaluated, including 
Oct4, Nanog, Utf1, Foxd3, Cripto and Rex1, they revealed an 
opened chromatin on undifferentiated cells and condensed 
chromatin after differentiation. In contrast, neural-specific 
genes including Pax3, Pax6, Irx3, Nkx2.9 and Mash1 were 
revealed as transcriptionally silent on pluripotent cells 
and active after tissue-specific differentiation[41]. All these 
changes reveal the importance of  epigenetic control over 
ES cells differentiation.

USE OF HDAC INHIBITORS TO INDUCE 
ES CELLS DIFFERENTIATION
HDAC inhibitors supplementation aims to evaluate his-
tone acetylation effects on gene expression before and 
after cellular differentiation and elucidate molecular path-
ways controlling the loss of  undifferentiated state and 
commitment to a specific cellular lineage[9,39,42-45]. 

Trichostatin A (TSA) is a reversible HDAC inhibi-
tor that reacts at nanomolar concentrations with most 
class Ⅰ and Ⅱ HDACs[30], promoting histone hyperacety-
lation and strongly increasing cellular protein synthesis. 
This event leads to differentiation of  tumor cells, prevent-
ing them from proliferation[46]. In some cases histone hy-
peracetylation can cause cell cycle arrest or even apopto-
sis[18]. Crystallography studies indicate that TSA blocks the 
enzyme catalytic site by chelating a zinc ion on the enzyme 
tubular structure base[46].

TSA treatment promotes histone H3 and H4 hyper-
acetylation even when performed in the presence of  LIF, 
rapidly leading to morphological and molecular changes 
resembling those observed in the early phase of  ES cells 
differentiation[47].

The increased acetylation levels caused by TSA induced 
in pluripotent ES cells the same cellular behaviour as those 
involved in differentiation processes. The authors also re-
ported decreased levels of  histone H3 lysine 9 acetylation 
in undifferentiated ES cells treated with TSA on pluripo-
tent related genes: OCT3/4, REX1 and FGF4. In differ-
entiation-related genes, histone H3 lysine 9 acetylation was 
higher in TSA treated cells.

HDAC inhibition is related to neuronal lineage pro-
gression[48-50]. Histone deacetylation is involved with re-
pression of  neuronal genes in non-neuron cells. HDAC 1 
and 2 combine with co-repressors CoREST, N-CoR and 
mSin3A and are recruited by REST (also known as NRSF 
- neuron-restrictive silencer factor)[51]. REST blocks transcription 
of  neuronal genes by linking to NRSE - neuron-restrictive 
silencer element - present on regulatory regions of  many 
neuronal genes. HDAC inactivation inhibits REST mecha-
nisms and prevents its role against neuronal differentiation. 
Studies using rat hippocampal progenitor cells revealed a 
neurogenic transcription factor (NeuroD - neurogenic differ-
entiation transcription factor) increased after HDAC inhibition, 
leading to neuronal differentiation[52].

Neuronal differentiation in TSA-treated cultures se-
emed to be enhanced at the expense of  oligodentrocytes 
which need HDAC activity for the progression of  neural 
progenitors into mature oligodendrocytes[53]. Also, even 
though astrocyte differentiation involves HAT activity for 
glial fibrillary protein (GFAP) expression[53,54], TSA appar-
ently decreases its proportion in comparison to neuron 
cells, suggesting that HDAC inhibitors enhances neuronal 
differentiation also at the expense of  astrocytes[50].

Histone acetylation is also involved in striated myocyte 
differentiation. Class Ⅱ HDACs are highly expressed in 
adult cardiomyocytes and skeletal myoblasts[15] where they 
bind and repress myocyte enhancer factors 2 (MEF2) 
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functions[55,56]. HDACs are also involved in the repression 
of  neuronal genes in cells that are not committed to neu-
ronal specification and the HDCAs inhibition is related to 
cellular commitment in many lineages[51].

In this respect, the control of  global histone acetyla-
tion can be obtained by using HDAC inhibitors. Class Ⅱ 
HDAC are highly expressed in skeletal and cardiac mus-
cle[15] and interact with myocyte enhancer factors (MEF2) 
inactivating them. Because of  this property, HDAC are 
used clinically for cardiac hypertrophy treatment. Stud-
ies in vitro have demonstrated that TSA enhances striated 
myocyte population in undifferentiated stem cells when 
applied at day 6 or 7 of  differentiation[9,57,58]. The last au-
thors[9] verified that TSA induces the expression of  p300, 
an intrinsic histone acetyltransferase that is co-activator of  
GATA-4 gene (a critical cardiac transcription factor), sug-
gesting that mechanisms of  TSA-induced cardiac-specific 
differentiation involve acetylation of  specific transcription 
factors such as GATA-4. 

TSA treatment induces entry of  mesoderm cells into 
the cardiac muscle differentiation process in a dose-
dependent manner, increasing Nkx-2, MEF2C, GATA4 
and cardiac actin transcripts[58]. Authors believe that 
HDAC4 expression inhibits cardiomyogenesis, decreas-
ing cardiac muscle related genes expression, and inhibi-
tion of  HDAC activity is sufficient for increasing early 
cardiomyogenesis[9,57].

Nonetheless, there are studies[39] that show TSA det-
rimental effects to striated myogenesis when the HDAC 
inhibitor is applied at the onset of  ES cell differentiation. 
HDACs have a critical role in cellular biology by control-
ling the expression of  selective cell cycle inhibitors[24] and 
many studies have shown that HDAC inhibition leads 
to anti-proliferative effects on ES cells[39,47,59,60]. Thus, the 
effects of  TSA over the cells appear to be completely de-
pendent on dosage and stage of  differentiation. 

Also, HDAC inhibition causes an increase in the num-
ber of  apoptotic cells by inducing the expression of  pro-
apoptotic genes[61] as well as histone hyperacetylation since 
the relaxed form of  DNA is easily catalyzed by endonucle-
ases[62]. Therefore, the HDACs inhibitors require attention 
on its use, aiming at minimum dosages. 

CONCLUSION
Elucidation of  mechanisms driving ES cells differentia-
tion and the consequent control of  these events are the 
objective of  numerous studies in cellular and molecular 
biology. Unfortunately, this process is still not clear in 
many aspects and the same culture system drives cellular 
commitment in different ways. 

During differentiation, levels of  histone acetylation 
are increased, leading to rises in gene expression from all 
germ layers. But, in this early differentiation phase, cells 
are not committed yet to specific lineages[63]. The under-
standing of  when these chromatin modifications can drive 
cellular differentiation and how they are achieved is an 
objective of  many studies. For instance, studies inducing 

histone hyperacetylation in ES cells in order to establish 
a desired cellular phenotype are conducted in cardiomyo-
cytes and neuronal cell types. 

In ES cells differentiation, even though changes in 
gene expression patterns can alter phenotype and func-
tion of  cells, more studies are needed in order to elucidate 
whether these transient changes in gene expression pro-
moted by HDAC inhibitors can sustain differentiation or 
only a transitory phenotype. In addition, the establishment 
of  adequate protocols in order to minimize antiprolifera-
tive effects and obtain desirable effects are needed, con-
sidering the dose and the stage of  cellular differentiation.
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