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Abstract
Complex feedback systems are ubiquitous in biology. Modeling such systems with mass action
laws or master equations requires information rarely measured directly. Thus rates and reaction
topologies are often treated as adjustable parameters. Here we present a general stochastic
modeling method for small chemical and biochemical systems with emphasis on feedback
systems. The method, Maximum Caliber, is more parsimonious than others in constructing
dynamical models requiring fewer model assumptions and parameters to capture the effects of
feedback. Maximum Caliber is the dynamical analog of Maximum Entropy. It uses average rate
quantities and correlations obtained from short experimental trajectories to construct dynamical
models. We illustrate the method on the bistable genetic toggle switch. To test our method, we
generate synthetic data from an underlying stochastic model. MaxCal reliably infers the statistics
of the stochastic bistability and other full dynamical distributions of the simulated data, without
having to invoke complex reaction schemes. The method should be broadly applicable to other
systems.
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Introduction
We describe a method for modeling stochastic chemical and biochemical reactions that have
feedback. By feedback, we mean situations where the output of one reaction drives forwards
or inhibits another reaction. Feedback is an important component of bistability, oscillations,
signal amplification, noise mitigation, and biological regulation. More particularly, we focus
on few-particle systems, where the raw experimental data is in the form of stochastic
trajectories, and for which dynamical fluctuations can be significant. Our approach to
modeling such systems aims to make minimal assumptions about the mathematical forms of
the feedback mechanism, and to put maximal reliance on the experimental data itself.

Key examples of stochastic feedback in biology include the bifurcation points on fitness
landscapes that account for the origins of new biological species, the mosaic patterning of
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the cells within the eye of the fruit fly [1, 2], bacterial evolution through a process called
bet-hedging [3, 4], and many others [5, 6, 7, 8, 9, 10]. One important class of problem is
stochastic bistable systems [11, 12]. These systems are driven by small fluctuations and
feedback to toggle between stable states.

Often an underlying feedback mechanism is unknown or difficult to determine. In dynamical
modeling, it is common to assume an arbitrary nonlinear mathematical form, for example a
Hill-type model of cooperativity in a mass-action model. There are two problems with such
approaches. First, often the assumed mechanism cannot be validated independently. Second,
even when such a model captures the average dynamical behavior, there is no guarantee that
it will accurately describe the fluctuations.

There are methods that go beyond macroscopic mass-action models to capture dynamical
fluctuations to model few-particle systems. Such methods are relevant in studying the
stochastically induced switches of bistable systems mentioned earlier. A principal approach
involves using master equations [13] or simulations of them using Gillespie’s algorithm
[14]. However, the main requirement of this approach is prior knowledge of: (1) the
‘topology’ of the reaction (i.e. a set of ‘process’ arrows interrelating ‘states’, such as
substrates, products and catalysts), and (2) the values of the corresponding rate coefficients.

Many methods are thus focused on extracting rates, network topologies or other features of
chemical reactions. In the method of correlated metric construction (CMC) [15, 16], time
correlations in the concentrations of chemical species are used to infer the reaction topology.
Species concentrations are perturbed randomly, and correlations of relaxations are
monitored. The method, however, does not treat feedback, which involves more complex
correlations that can arise from underlying physical time delays or memory or multistability
[15]. In other cases, the aim of dynamical modeling is to assume a reaction topology and to
find rates that best fit some existing experimental data trajectories[17]. For example,
maximum-likelihood methods [18, 19, 20, 21] are commonly used to analyze ion-channel or
fluorescence experiments [22]. There are methods to discriminate between assumed model
topologies [20]. One disadvantage is that often a large number of different models will fit
the same data equally well [23].

We describe a different (but related) approach called the Maximum Caliber (MaxCal)
method which is the dynamical analog of Maximum Entropy[25, 24, 26, 27, 28, 29, 30, 31,
32, 33]. The MaxCal method has the advantage that the model building is data-driven and
provides an unambiguous recipe for incorporating information on correlations between
observable species. MaxCal bypasses the need to know the functional form or the exact
details of feedback mechanism in advance, and it constructs a minimal model from the data.
To illustrate the MaxCal method, we focus on an engineered cell-biological system called
the genetic toggle switch [34, 35, 36, 37], which has been explored in recent experiments by
Gardner et al. [34]. The toggle-switch has two very different timescales: fast time-scale
fluctuations can trigger the system to switch from one state to the other, and a longer
timescale over which the system remains stable in a single state. Recently Otten and
Stock[32, 33] used MaxCal to infer the most likely discrete Markov model giving rise to a
particular signal decay. Here our goal is different; we are interested in building an
approximate model for complex systems, usually involving feedback, that will infer long
time statistical properties of the system given short-time trajectories.
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Methods
A Bistable Biological Circuit: the Genetic Toggle Switch

Our basic approach here is to create an underlying model of the genetic toggle switch,
simulate it using Gillespie’s algorithm, and then treat those trajectories as our “data”. We
use the generated data, without further inputs about the model used to generate the data, to
build a MaxCal model that will make predictions regarding quantities that have not been
used to parametrize it.

We begin by introducing the detailed model of the toggle switch we use to simulate the data.
The genetic toggle switch is a bistable biological circuit whose basic topology can be
described using two promoters, pA and pB, and their respective transcription products, A and
B. When the gene promoter pA is activated, it produces a transcription factor, protein A,
which then inhibits the promoter of a second transcription factor, protein B. Alternatively,
when the promoter region pB is activated, it produces a transcription factor protein B, which
then inhibits the production of protein A. The feedback network is described in Fig. (1).
What follows is a proposed set of chemical reactions for a genetic toggle switch [38, 39],

(1)

(2)

This system has three types of reaction: (1) A → φ indicates that A molecules are degraded
with rate dA; similarly for B. (2) α → α + A indicates that protein A is produced at rate kα if
the promoter α is active. Similarly β → β + B indicates that protein B is produced at rate kβ if
the promoter β is active. (3) A + β ↔ β* indicates that protein A acts as a catalyst to convert
B’s active promoter β to inactive promoter β* with rate fA. The inactivation is released with
rate rA. Similarly, B + α ↔ α* indicates that protein B converts A’s active promoter α to an
inactive form α* with rate fB. The inactivation is released with rate rB. Conservation requires
that [α] + [α*] = 1 and [β] + [β*] = 1, where the brackets indicate concentrations of the
promoters. For the exclusive toggle switch, ETS, we assume the additional constraint [α*]+
[β*] ≤ 1. With the latter constraint, the only possible steady macroscopic states are (high A
and low B) or (low A and high B)1.

On the one hand, the experiments on the toggle switch reveal that it is a bistable system. On
the other hand, despite the fact that this is an engineered system, the physical basis for the
underlying bistability in experiments is not known. At the mass action level, Gardner et al.
[34] first invoked cooperative binding of transcription factors to promoters to account for the
observed bistability. However, there is no independent experimental validation of that

1In the experiments of Gardner et al. [34], the E. Coli in which are injected the engineered plasmid containing both promoters are
replicating as the experiment is carried through. This set of chemical reactions above does not take this or other complications into
account, rather the reactions put forth are a simple set of ingredients required to obtain bistable steady state as well as switching
between such states.
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mechanism. Later stochastic modeling, based on master equations, showed that invoking
binding cooperativity was unnecessary. The bistability can result from fluctuations alone
[38, 39]. In this case, as in many other cases of dynamical modeling, it is not known a priori
what the physical basis for complex dynamical behaviors is. Dynamical modeling is often
done by first assuming a particular set of reactions (the topology) or by assuming
mathematical functional forms for the rate equations (such as Michaelis-Menten or Hill
terms), and then by choosing parameters for those models that best fit the experimental data.
The downsides to this approach are that they provide no validation for the underlying model,
because the parameters are often not obtainable independently.

We note particular advantages in using MaxCal to analyze the data generated for the ETS:
(1) the MaxCal model is parametrized from the data directly, (2) the mathematical forms of
the rate expressions need not be known in advance, (3) the fluctuations and higher moments
of the dynamical distribution function are determined directly from the model; they provide
additional information for validating the model against the experimental data, and (4) the
long-time dynamical behavior can be inferred from shorter-time trajectories. In this case, the
simulated data shows that there is production and disappearance of A and B and that there is
an inverse correlation of populations of A with B. Without asserting a particular mechanism,
i.e. reaction network topology, MaxCal uses this information to build a minimal model.

Modeling bistable systems using Maximum Caliber
The method of MaxCal is described in detail elsewhere [24, 27, 29, 30, 28, 32, 31, 33] and
in the supplementary material of this paper. We summarize it briefly here. In equilibrium
statistical mechanics, Jaynes showed [26] that the Boltzmann distribution law can be derived
from the principle (Maximum Entropy) that all the equilibrium microstates of a system
should be taken to be equivalent, except insofar as the system must satisfy some constraint
on an average equilibrium quantity (in the canonical ensemble, the fixed quantity is the
temperature, or equivalently, the average energy, 〈U〉). In nonequilibrium statistical
mechanics, MaxCal asserts that all the trajectories (pathways) of a system should be taken as
equivalent, except insofar as the system must satisfy some constraint on an average
dynamical quantity, such as an average rate. In equilibrium statistical mechanics, the central
quantity is a partition function, which is a weighted sum over all the accessible microstates.
In MaxCal, the central quantity is a dynamical partition function, which is a weighted sum
over all the possible pathways.

We briefly outline a sketch of how one computes the dynamical partition function in
MaxCal and later discuss the particular case of the ETS. We begin by defining pΓ(t), or
simply pΓ as the probability of observing trajectory, or pathway, Γ within some small time
interval [t,t + δt] [32]. We assume that all possible trajectories within the interval [t,t + δt]
are equally likely until a measurement says otherwise. Our trajectory ensemble is therefore
maximally uncertain until data is used to constrain this ensemble.

In order to compute the trajectory ensemble, we maximize the caliber,  (pΓ), which is the
measure −ΣΓ pΓ ln pΓ, subject to constraints on average observables, 〈An〉,

(3)

where λn and α are Lagrange multipliers. In the absence of data, the first term in the above,
−ΣΓ pΓ ln pΓ, simply asserts all trajectories are equally likely. Otherwise, given data, this
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term allows trajectories to be re-weighted in the least biased way possible according to
Jaynes’ prescription[25].

Maximizing  with respect to {pΓ}, yields

(4)

where Q is the dynamical analog of the equilibrium partition function. The dynamical
partition function infers cumulants, subscripted c, of dynamical observables as follows

(5)

where m is the cumulant order.

We now treat the ETS. The raw data takes the form of observed time traces of numbers of A
and B molecules. The numbers of A or B molecules go up when such molecules are
produced and down when such molecules are degraded. Fig. (3a) shows an example time
trace. In our MaxCal treatment, we begin by subdividing the time trace into small time slices
of length δt. We don’t know a priori the underlying nature of the feedback between A and B.
We define two binary indicator variables for each species; one for production and one for
degradation. Let ℓα be 0 when A is not produced within a small interval of length δt, or 1
otherwise. Correspondingly, ℓβ is 0 when B is not produced, and ℓβ is 1 otherwise. We
choose the time interval, δt, to be sufficiently small so that no more than a single A or B is
produced within it. Next, we assign variables ℓi,A and ℓi,B to each of the i individual protein
molecules of type A and B, respectively. Let the variable ℓi,A or ℓi,B equal 1 when the ith
particle is not degraded within interval δt or 0 otherwise.

We have introduced four types of indicator variables. We therefore require four constraints
to represent the observable average protein number rise and decrease, for both types of
protein, in the time trace. These observables are the production rates and degradation rates
of A and B. Lagrange multipliers (hα,hA) enforce the average observed production and
degradation rates of protein A while (hβ,hB) enforce the average observed production and
degradation rates of protein B. For example, the statistical weight for production of a single
A, say, within δt is exp(hα) (Since the time interval is chosen to be short, this statistical
weight for a single event is small.). Now, we construct the dynamical partition function as
the weighted sum over all the possible microtrajectories within interval δt,

(6)

where the function  captures the so-far-unspecified correlations between proteins of type A
and B, and the exponential term enforces the four average observables from the time traces.
We direct the reader to the supporting material for a more detailed derivation of the
dynamical partition function as well as for a discussion regarding why first moments,
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instead of higher order moments, of the production and degradation rates of A and B are
constrained.

Prior to defining , we first note that this MaxCal partition function gives the correct master
equation for uncorrelated systems (  ≡ 1). In that case it is shown, see supporting material
for detailed derivation as well as [32], that Eq.(6) reduces to the master equations for an A
and B birth-death process shown in Eq. (1),

(7)

where

(8)

is small (see above) and where X = (α, β). Similarly, exp(−hA) = δtdA(note the sign
difference from Eq.(8)) and exp(−hB) = δtdB.

Introducing Correlation
We need to specify . From the experimental time traces, it is clear that when A is high, B is
low, and vice versa. Therefore the variables which coincide to birth and death events of A
(ℓ α, ℓi,A) are coupled to those of B (ℓβ, ℓi,B). Possible couplings are {ℓαℓβ, ℓi,Aℓj,B, ℓαℓi,B,
ℓβℓi,A}. Analyses of the ETS time traces (“the data”), depicting levels of A and B as a
function of time, show that the more A is present the less B is produced (and vice versa).
Therefore birth of A and birth of B event coupling, ℓαℓβ, cannot be the only, or dominant,
contribution to the coupling between A and B species. Furthermore, analyses of the traces
shows that the survival probability of a particular A in the low state (in other words, how
long a particular A survives in the low state after being produced) is independent of the
number of B’s in the high state (and vice versa), thus ℓi,Aℓj,B also cannot be the dominant
type of coupling between A and B species. We only have one type of coupling left to
consider, {ℓαℓi,B, ℓβℓi,A}. The following definition of  is the simplest expression consistent
with both observations

(9)

where KAβ and KBα are the correlation coupling parameters. As with the other Lagrange
multipliers, these two quantities are not known until the data extraction is performed. The
formulation of Eq.(9) does not require invoking otherwise-unknown functional forms for the
rate equations.

We describe two different methods of determining the Lagrange multipliers KAβ and KBα
from observed trajectories. First, we can measure the correlation 〈Σi ℓβℓi,A〉 for every
interval following a time point where 〈NA〉 = k/d and 〈NB〉 = 0, for example. This average is
obtained from Eq. (6) as follows
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(10)

Second, we can compute the average production of B, say, within the time interval following
every data point where NA is in the high state (specified by NA = k/d, and NB = 0). For k/d
not an integer, we can round to the nearest integer. We select to average the production in
B(or A) over the interval following a data point where NA = k/d, and NB = 0(or NB = k/d, and
NA = 0) to get good statistics.

The average production rate of B is given by

(11)

From an observed trajectory, we harvest these average quantities to find the values of the
coupling parameter Lagrange multipliers, KAβ and KBα, that are consistent with the data.

Results/Discussion
Testing the Maximum Caliber approach

How can we determine whether or not the MaxCal procedure correctly extracts unique
model parameters from trajectory data? We built a computer model of a system having an
ETS-type bistability, with parameters that we fix in advance. From that underlying model,
we generate time traces of A and B numbers using the Gillespie algorithm [14]. For
simplicity, we assume that the reactions are symmetric in A and B. That is, we choose
parameters d = dA = dB, k = kα = kβ and f = fA = fB, r = rA = rB and simulate Eqs (1)–(2) with
the restrictions that apply to the ETS. For the symmetric case, we therefore have hα = hβ, hA
= hB and K = KAβ = KBα.

The asymmetric case is no more difficult to treat than the symmetric case but it is more
cumbersome. For example, to compute K for a given time trace we measured 〈Σiℓβℓi,A〉 and
〈Σi ℓαℓi,B〉 and used Eq. (10) to find two slightly different K’s which we averaged to find the
symmetric K. For the asymetric case we would not average both those equations. We would
use both equations to solve for our two different Lagrange multipliers.

Further, we note that the ETS is one particular model of the toggle switch introduced by
Lipshtat et al. [38] to explain features of the experiments of Gardner et al. [34]. Other
models of the toggle could be constructed that would show qualitatively similar behavior to
the ETS. We take the simulations of the ETS as if they represented some true, albeit
particular, experimental system. We then use MaxCal to build an effective model of this
system, and test if MaxCal correctly deduces the properties of the underlying system which
would require more data to determine than is needed to parametrize the model.

To apply MaxCal, we first subdivide the trajectories into time intervals of length δt. Since
the steady-state of the toggle switch involves a high level of production of one of the
proteins, it means that protein production must be faster than protein degradation. We select
a value of δt smaller than the fastest observable timescale, namely protein production. This
ensures that we avoid having multiple production events within a single δt. Thus, from the
protein-number time trace, at each time point, indexed i, we have a specified number of
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particles of type A and B, {NA(ti), NB(ti),ti}. From these time points, we must determine the
production, degradation and correlation Lagrange multipliers. In the absence of species B,
for example, the Lagrange multipliers for production and degradation of species A are
readily extracted from A-only time traces following a recipe analogous to that outlined in
reference [32, 31] for determining forward and backward hopping rates in 2-state systems.
As an example, this is done by breaking the A-only time trace into small time intervals and
computing hα and hA from average production and degradation probabilities of A within δt.
Since short trajectories are sufficient to compute accurate hα and hA and this is
straightforward to accomplish, as outlined in Stock et al. [32], here we simply use −hA = ln
(δtdA) and hα = ln(δtkA) from Eq. (8); see supplementary material. Similarly for B where
−hB = ln (δtdB) and hβ = ln (δtkB). We use the time traces in the presence of both A and B to
compute K.

In Fig. (2), we look at properties of our model and how sensitive our model predictions are
to the numerical value of K in general. We plot the variance over mean production squared
of species A, a quantity we call F, within the interval [t,t + δt] given NA = 0 at time t. We
define the mean production as 〈δNA〉 = 〈NA (t + δt) − NA (t)〉 and the variance as

, where the subscript c denotes cumulants. These cumulants can

be computed analytically, for example see Eq. (5). We plot , as a function
of the number of N = NB proteins, and K. It shows that fluctuations in numbers of protein A
grow dramatically larger either as the number, N, of proteins B increases or as the negative
feedback is made stronger. The latter is expected for a bistable system.

Fig. (3a) shows the Gillespie trajectory of the populations of states A and B over time, for a
particular set of parameters. We then applied MaxCal to those trajectories to extract our
Lagrange multipliers by the methods described above. Fig. (3b) shows the MaxCal model
that we extracted. At a qualitative level, MaxCal captures well the two very different time
scales: the fast fluctuations within each stable state of the system, and the much longer time
scale over which transitions occur from one state to the other. It also captures the sharpness
of the transitions between the two stable states. Comparing Fig. (4) to Figure (3) shows how
even small changes in K in this model can dramatically change the qualitative system
behavior. For example, as K becomes more positive (weakening the negative feedback), the
transitions become much less sharp.

As a more quantitative test, Fig. (5a) shows that the MaxCal model correctly computes static
properties such as the particle-number distribution functions around the two states. For the
dynamics, Fig. (5b) shows that MaxCal also gives approximately correct dwell-time
distributions, even over time scales that are much longer than those used to parametrize our
model 2.

For instance, MaxCal predicts an average dwell time of 〈 τ 〉 = 0.44 ±0.43 × 106 s while the
simulated data reveals average dwells of 〈 τ 〉 = 0.74 ±0.70 × 106 s. The dwell time
uncertainty is related to the inherent dwell-time-distribution variance, not a sampling error.

2The dwell times were obtained by determining levels of protein A and B at time intervals of length T in the time traces. If protein A
had the higher level, then a counter is set to 1; otherwise it is 0. A switch is indicated by a change in the counter in the next interval.
For sufficiently large T, there is a range over which the dwell times are independent of T. If T is too large, short transitions are missed.
If T is too small, fluctuations are picked up as switches between steady states. It is because of the difficulty in defining what is a true
transition in the presence of the rare raggedy switches that we define a switch through the simple algorithm above. Since we are really
interested in comparing the dwells in MaxCal and Gillespie traces, to avoid bias, we use the same algorithm throughout with T equal
to 1000 Gillespie or MaxCal steps, a step being defined by a change in particle number of A or B. We also verified our distribution of
dwell times in different ways, for example by averaging levels of A and B within the interval T and using this to determine whether
our counter variable should be set to 0 or 1. Different specialized methods for computing dwell times for toggle switches are also
available in the literature [40].
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Figs. (6) and (7) are based on different parameter values: d = 0.005, k = 0.1, f = 100 and r =
2. In this case, the value of K = −0.295 that is extracted by MaxCal corresponds to a larger
number of transitions between states per unit time. The average dwell time found by MaxCal
is 〈τ〉 = 0.11 ± 0.11 × 106s while for the simulated data it is 〈τ〉 = 0.16 ±0.17 × 106s. As the
binding-unbinding rates to the gene-promoter complex, f and r, are made large compared to
typical birth-death rates, the predictions of MaxCal improve.

Within our MaxCal model, we have assumed that correlations happen essentially
instantaneously, without time delays. However, real systems will have time delays. The
approximation made in our current MaxCal model qualitatively breaks down when binding-
unbinding events from the gene-promoter complex are slow compared to typical birth-death
rates. For example, the agreement of Fig. (5b) was worse than that of Fig. (7). This is
because there is a delay in the effect of species B on A, and vice versa, when binding-
unbinding rates are not much faster than birth-death events.

We note here the importance of the dynamical fluctuations, relative to average properties.
Suppose we take the average (mass-action) behavior of the same model of the ETS that we
used in our Gillespie simulation above. The time evolution of the two species A and α would
be given by

(12)

(13)

We neglect here terms in Eq. (12) that are due to binding and unbinding of A in the ETS to β
because we assume there are a large number of A’s. In addition, we have assumed that there
is a single α.

When binding and unbinding rates of A and B to the promoter, f and r respectively, are faster
than production and degradation of A and B, then we can assume that 〈 α 〉 is in approximate
equilibrium with 〈 α* 〉, so we have 〈 α̇ 〉 = 0. Combining Eq. (13) with Eq. (12) yields

(14)

The key point is that the mass-action dynamics predicted from Eq. (14) shows no bifurcation
behavior [38]. The bistability in this system is a stochastic phenomenon that results from the
small numbers of particles.

Our MaxCal approach bears some resemblance to maximum-likelihood (ML) methods. ML
starts with knowledge of a reaction topology. ML expresses the probabilities of the various
trajectories the system could take, given that reaction topology. ML then finds those
parameters that maximize the probability of the experimentally observed path. MaxCal also
enumerates all the possible trajectories of a system. However, MaxCal does not require prior
knowledge of the reaction topology. In addition, MaxCal chooses parameters to ensure that
the average rates of the model are identical to those of the experiments and gives a minimal
model consistent with this data.
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Conclusions
We have described how to apply the method of Maximum Caliber to model the time
trajectories of bistable systems. As an illustration, we have considered the exclusive toggle
switch (ETS) [38, 39], resembling the experimental system of Gardner et al. [34]. To create
the “raw experimental data” trajectories, we simulated a model exclusive toggle switch
using the Gillespie algorithm. We then applied the method of MaxCal, to see if it could
properly extract the full dynamical and static behavior of the toggle switch.

MaxCal takes as input a few measured average quantities over the trajectories. It then
computes a dynamical partition-function-like quantity. From that quantity, MaxCal then
predicts other dynamical properties. We find that MaxCal produces a predictive underlying
model for this stochastically driven bistable system. The advantages of the MaxCal approach
are that: 1) it is more directly data-driven that other approaches, 2) the model is built using a
minimal set of parameters(in our case we use less parameters than would have been used in
the corresponding master equations for the toggle), 3) it is based on observable correlations
between variables, rather than ad hoc functional forms, and 4) it captures the dynamical
averages and fluctuations at both short and long time scales despite requiring only relatively
short trajectories to predict quantities that would otherwise typically require much larger
datasets. Also, as shown in Fig. (2), we find that switching behavior of the toggle switch
correlates with conditions under which the fluctuations become unstable.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The genetic toggle switch
DNA plasmid is shown with promoters pA and pB of genes gA and gB that, when transcribed,
produce proteins A and B, respectively. The gene-promoter complex for species A(B) is
denoted α(β) in Eq.(1). In this gene circuit, production of A inhibits B or production of B
inhibits A. In Eq.(2), this is shown by having A bind to the gene-promoter complex of B, and
vice-versa.
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Fig.2. Effect of negative feedback strength on production fluctuations of A
Here we look at how F, production rate fluctuations normalized by its mean squared, varies
with N and K using hα = hβ = −4.605, hA = hB = 7.60.
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Fig.3. Levels of promoter unbound protein A(red) and levels of unbound protein B(green)
(a) Toggle-switch trajectory generated by Gillespie model. Computer-generated trajectories
using the parameters d = 0.005, k = 0.1, f = 2 and r = 0.01. The time trace was broken up
into time intervals δt = 0.1. Applying MaxCal to the trajectories from (a), we extracted the
Lagrange multiplier K = −0.380 and use hα = hβ = −4.605 and hA = hB = 7.6. (b) MaxCal
model with parameters extracted from the simulations. Representative trajectories generated
using those values in the MaxCal model.
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Fig.4. Correlation strength changes hopping dynamics
Given the same Gillespie model as in Fig. (3a), if we now use a value of: (a) K 50%
smaller(−0.19) or (b) 50% larger (−0.57) than those extracted by MaxCal, the predicted
model behavior is very different.
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Fig.5. MaxCal predicts static and dynamical distribution functions
(a) Distribution of particle numbers, (b) Distribution of dwell times. (Green) Gillespie ‘raw
data’. (Red) Maximum Caliber model. Parameters are those used in Fig. (3).
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Fig.6. Gillespie and MaxCal time traces for a different parameter regime
(a) Gillespie time trace. Gillespie model, using d = 0.005, k = 0.1, f = 100 and r = 2. (b)
MaxCal model time trace. Corresponding MaxCal model with the extracted parameter K =
−0.294 using hα = hβ = −4.605 and hA = hB = 7.6.
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Fig. 7. Prediction of dynamical and static distrbutions for a different parameter regime
(a) Distribution of particle numbers. (b) Distribution of dwell times. (Green) Gillespie
simulations. (Red) MaxCal model. Parameters are those used in Fig. (6).
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