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Abstract

Background: The goal of class prediction studies is to develop rules to accurately predict the class membership of
new samples. The rules are derived using the values of the variables available for each subject: the main
characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples.
Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in
each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers
that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper
we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced
prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data
and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the
effectiveness of some strategies that are available to overcome the effect of class imbalance.

Results: Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable
selection introduces an additional bias towards classification into the majority class. Most new samples are
assigned to the majority class from the training set, unless the difference between the classes is very large. As a
consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too
severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does
not. Variable normalization can further worsen the performance of the classifiers.

Conclusions: Our results show that matching the prevalence of the classes in training and test set does not
guarantee good performance of classifiers and that the problems related to classification with class-imbalanced
data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be
careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should
always use an appropriate method for dealing with the class imbalance problem.

Background
High-throughput technologies measure simultaneously
tens of thousands of variables for each of the observa-
tions included in the study; data produced by these
technologies are often called high-dimensional, because
the number of variables greatly exceeds the number of
observations. Microarrays are high-dimensional tools
commonly used in the biomedical field; they measure
the expression of genes [1] or miRNAs [2], the presence
of DNA copy number alterations [3] or of variation at a
single site in DNA [4], across the entire genome of a
subject.

Microarrays are frequently used for class prediction
(classification). In these studies the goal is to develop a
rule based on the measurements (variables) obtained
from the microarrays from samples (observations) that
belong to distinct and well-defined groups (classes); these
rules can be used to predict the class membership of new
samples for which the values of the variables are known
but the class-membership is unknown. For example,
many studies tried to predict the clinical outcome of
breast cancer using gene-expression [5]; in this case the
classes are the clinical outcome of breast cancer while
the variables are the expression of the genes. Some of the
classification methods most frequently used for microar-
ray data are discriminant analysis methods, nearest
neighbor (k-NN, [6]) and nearest centroid classifiers [7],
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classification trees [8], random forests (RF, [9]) and sup-
port vector machines (SVM, [10]) (see [11] or [12] for an
introduction to these methods).
An important aspect that specifically characterizes

classification for high-dimensional data is the need to
perform some type of variable selection. Variable selec-
tion consists in the identification of a subset of variables
that are used to define the classification rule, and it can
be performed either before developing the classifier or it
can be embedded in the classification method [13]. The
importance of variable selection for high-dimensional
data rests on two facts: some classification rules cannot
be derived if the number of variables is larger than the
number of observations, and removing the variables that
have little variability across observations improves the
predictive accuracy [14].
In this paper we focus on classification problems for

class-imbalanced data, i.e., on data sets where the num-
ber of observations belonging to each class is not the
same. Class-imbalanced data are common in the biome-
dical field and they also arise when data are high-dimen-
sional. For example, using gene-expression microarray
data, Ramaswamy et al. [15] classified primary versus
metastatic adenocarcinomas: metastatic specimen com-
prised about 16% of the training set (64 versus 12 sam-
ples); Shipp et al. [16] developed a classifier to
distinguish diffuse large B-cell lymphoma from follicular
lymphoma using a data set with a 25% class imbalance
(58 versus 19 samples); IIzuka et al. [17] predicted early
intrahepatic recurrence or non-recurrence for patients
with hepatocellular carcinoma, with a training set with a
36% class imbalance (12 versus 21 samples). The classifi-
cation methods used by these studies were some variants
of the diagonal linear discriminant analysis (DLDA); the
third study used also support vector machines.
Standard classification methods applied to class-imbal-

anced data often produce classification rules that do not
accurately predict the minority class [18]; for this reason
the between-class imbalance problem has been receiving
increasing attention in recent years and many different
strategies were proposed for deriving classification rules
for imbalanced data (see [19] for a review). However,
their use is not widespread in practice and very often
standard classification methods are used when the
classes are imbalanced [20]. For example, Ramaswamy
et al. [15] and Shipp et al. [16] did not modify the classi-
fication rules to take class imbalance into account, while
IIzuka et al. [17] tried to adjust for by making training
and test set equally imbalanced.
The aim of our study was to investigate how class imbal-

ance affects classification for high-dimensional data, and to
evaluate if the high-dimensionality poses additional chal-
lenges when dealing with class-imbalanced data. We
devoted special attention to the isolation of the possible

effect of variable selection and to the investigation of the
effectiveness of some strategies that were proposed to deal
with class imbalance. To our knowledge the joint effect of
high-dimensionality and class imbalance on classification
has not been thoroughly investigated.
The few works that dealt with the class imbalance

problem for high-dimensional data mostly focused on
developing methods for variable selection [21], on the
comparison of the performance of classifiers using dif-
ferent variable selection methods and/or classifiers
[21-23], or on proposing and evaluating different strate-
gies for adjusting classifiers trained on class-imbalanced
data [24-27].
To investigate the effect of class imbalance on high-

dimensional data, we evaluated the performance of six
types of classifiers on imbalanced data. The classification
methods were chosen among those most commonly
used for high-dimensional data and for the sake of sim-
plicity we considered only classification problems where
the number of classes was two (two-class classification
problems). The classifiers were evaluated both on simu-
lated data and on a publicly available data set from a
breast cancer gene expression microarray study [28]; we
assessed both the overall and the class specific predictive
accuracy of the classifiers. We simulated situations
where there was no difference between classes (null
case) and where the two classes were different (alterna-
tive case), varying the number of different variables and
the magnitude of their difference. We used over-sam-
pling, down-sizing and a variant of asymmetric bagging
to correct the class imbalance problem.
In Results we present a series of selected simulation

studies showing the consequences of using class-imbal-
anced high-dimensional data sets for classification, we
show the performance of the corrections for class imbal-
ance, and the results obtained on the breast cancer data.
In Discussion we outline the problems related to classi-
fication for high-dimensional data. In the Methods sec-
tion we briefly describe the classification methods that
we used and the strategies to deal with the class imbal-
ance problem; we also describe the simulations that
were performed and the breast cancer gene expression
microarray data.

Results
The classifiers were developed on the training sets, while
the predictive accuracy (PA, overall and class specific:
PA1 for Class 1 and PA2 for Class 2), predictive values
(PV1 and PV2) and area under the ROC curve (AUC)
were evaluated on the test sets. If not otherwise stated,
the samples were normalized (mean-centered), while the
variables were not (see Methods), and the test sets were
balanced ( k test

1 = 0.5). The classification with RF and
penalized logistic regression (PLR) were based on the
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0.5 threshold, if not differently specified (see Methods).
Each simulation was repeated 1000 times. Most of the
figures show the results only for DLDA, PLR and one of
the nearest neighbor classifier; the results for the other
classifiers are shown in the Additional Files.

Simulations results: Null case
Under the null case there was no difference between the
two classes, as all the variables were simulated from the
same distribution (see Methods for details on data simu-
lation). In the first set of simulations only p = 40 vari-
ables were generated, and all were used to derive the
classification rule (G = p). The imbalance was the same
in the training and in the test set ( k ktrain test

1 1= ).
The class specific PA were not equal when the classes

were imbalanced: most of the samples from the test set
were classified in the majority class, which had a larger
PA compared to the minority class (Figure 1 and Addi-
tional File 1). However, in all the situations the classifier
showed no relation with the outcome (PA1 = 1 - PA2)
and had no information about the true class status (PV1

= 1 - PV2 = �1, the assumed proportion of samples
from Class 1 in the population, and AUC = 0.5, Addi-
tional File 1).
The overall PA reached its minimum value when the

data were balanced (PA = 0.5), and increased when the
class imbalance of the test set became larger (Figure 1
and Eq. 5). The average class specific PA depended on
the class imbalance of the training set but not on the
class imbalance of the test set (Additional File 1); more-
over, the overall PA was equal to 0.5 for all the classifiers
when the test set was balanced, regardless of the imbal-
ance of the training set (Additional File 1 and Eq. 5).
For most classifiers, performing variable selection

further increased the probability of classifying a new sam-
ple in the training set majority class (Figure 2). For exam-
ple, for 1-NN with k train

1 = 0.1, when we increased the
number of variables (p = 1000 and 10000) and performed
variable selection (G = 40) we obtained PA1 = 0.02 and
0.00, and PA2 = 0.98 and 1.00, respectively, instead of the
values expected under the null case (0.1 and 0.9, the pro-
portion of samples from each class in the training set);
also in this case the classifiers were not informative (PA1

= 1 - PA2). The departures of the PA from the expected
values depended on the procedure of variable selection,
as we did not observe a similar effect when we increased
the number of variables (p = 1000 and 10000) but did
not perform variable selection (G = p).
The effect of variable selection can be explained

recognizing that the sampling variability is larger in the
minority class. Sample mean values far from the true
population values arise more frequently in the minority
class, and the variables that show large differences
between the classes are more likely to be selected. The

new samples from the test set are therefore more similar
to the samples of the majority class, and as a conse-
quence they have a larger probability of being classified
in that class. We observed this behavior not only for
t-test with equal variances but also for other commonly
used parametric and non-parametric variable selection
methods (Additional File 2).
Among the classifiers that we considered, RF, SVM

and PAM (Prediction Analysis of Microarrays) were the
most sensitive to class imbalance when we did not per-
form variable selection (showing the largest difference
between class-specific PA, Figure 1), while apparently
variable selection had little or no effect on their class-
specific PA (Figure 2). The reason is that these
classifiers perform some type of variable selection auto-
matically, therefore for these classifiers the results of
Figure 1 embed variable selection. When the classifica-
tion rules of RF and PLR were adjusted to take the
class imbalance into account (RF-THR and PLR-THR,
see Methods), the dependency of the class specific PA
on class-imblance diminished but it did not disappear
(data not shown). Variable normalization (see Methods)
did not change the null case results: regardless of the
class imbalance, its impact on data was very limited
since the true means of all variables were all equal (data
not shown).

Simulation results: Alternative case
For the alternative case we considered situations in
which some of the variables had different means in the
two classes, varying the number of different variables
(pDE) and the mean difference (μ(2)) (see Methods for
details).
Similarly to the null case, most samples were classified

in the majority class: the class specific PA of the minor-
ity class rapidly decreased as the class imbalance
increased; this effect was more marked when the differ-
ences between classes were smaller (data not shown) or
when we increased the number of variables (from p =
40 to p = 1000 and 10000) and performed variable
selection (Figure 3, left panels, where pDE = 20, μ(2) = 1
and G = 40 variables were selected). The AUC and PV
of the majority class decreased as the class imbalance
increased, even though not substantially (Additional File
3): the limited decrease of the PV of the majority class
can be explained recalling that under the null hypothesis
its value is large, being equal to the proportion of sam-
ples from that class in the population (PVi = �i). The
PV of the minority class increased (Additional File 3):
when the PA of one class approaches the value of 1, so
does the PV of the other class (Eq. 6). The dependency
of PV and AUC on class imbalance was more marked if
smaller differences between classes were considered
(data not shown).
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The noise introduced in the classifier by selecting
null-variables was only partially responsible for the
decrease in the PA of the minority class (observed when
the number of variables was increased). In an attenuated
form this effect was still present even when all the vari-
ables were different between the two classes (pDE = p,

Figure 3, right panels). Similarly to the null case, we
were more likely to select variables for which the discre-
pancy between the true and the sample values was lar-
ger in the minority class; as a consequence we were less
likely to classify new samples in this class. This behavior
was not a peculiarity of the t-test with equal variances,

Figure 1 Behavior of the classifiers under the null hypothesis with no variable selection. The figure shows the overall (PA) and class
specific predictive accuracies (PA1 and PA2), varying the proportion of samples from Class 1 in the training set ( k train

1 ), for nine classifiers. The
training set contained 80 samples, and p = 40 variables were generated from the same distribution for both classes (N(0, 1)); no variable
selection was performed (G = p). The proportion of Class 1 samples in the test set, containing 20 samples, was the same as in the training set.
The PA were evaluated on the test set. Samples were mean centered. Details on data generation and on classifiers are reported in the Methods
section.
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but was observed also for the other variable selection
methods that we considered (Additional File 2).
The classifier that showed the smallest decrease in the

PA for the minority class was DLDA, which was practi-
cally insensitive to class imbalance when the number of
variables was small (p = 40 and pDE = 20, 40, Figure 3);

PAM, SVM and RF were the most sensitive to class
imbalance also under the alternative case (Additional
File 4 and 5).
Similarly to previous findings [14] we also observed

that variable selection improved the performance of the
classifiers under the alternative case: the class specific

Figure 2 Effect of variable selection under the null hypothesis. The figure shows the Class 1 predictive accuracy (PA1) obtained varying the
proportion of samples from Class 1 in the training set ( k train

1 ), using nine classifiers. The training set contained 80 samples, and p = 40, 1000 or
10000 variables were generated from the same distribution for both classes (N(0, 1)); 40 variables were selected (G = 40). The test set was
balanced ( k test

1 = 0.5) and contained 20 samples. The PA were evaluated on the test set. Samples were mean centered. Details on data
generation are reported in the Methods section.
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Figure 3 Effect of performing variable selection and increasing the number of variables. The figure shows the predictive accuracy for
Class 1 (PA1), varying the proportion of samples from Class 1 in the training set ( k train

1 ), for three classifiers. Forty, 1000 or 10000 variables (p)
were generated and 40 variables were selected and used to develop the classifiers. In the left panels the mean of pDE = 20 variables was
different in the two classes, while in the right panels all the variables had different means (see Methods for details on data generation). The
training set contained 80 samples, while the test set contained 20 samples and was balanced. Additional file 4 shows the results for all the
classifiers.
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PA were consistently better when variable selection was
performed, also for situations where there was a large
class imbalance (see Additional File 6 for results where
all the variables were included in the classifiers).
We evaluated how the performance of the classifiers

was affected by the magnitude of the difference between
classes (Figure 4): we considered the same simulation
settings of Figure 3 but varied the mean of the pDE = 20
non-null variables (μ(2) = 0, 0.25, 0.5, ..., 2, 2.5, 3). For
the balanced training set ( k train

1 = 0.5) the overall PA
(Figure 4, left panels) reached the value of 1 when μ(2)

was between 1 and 1.5 for all the classifiers; much larger
differences between the classes were needed (μ(2) ≥ 2) to
obtain the same PA for the highly imbalanced data
( k train

1 = 0.1). The differences between classifiers trained
with different class imbalance were not entirely due to
their ability of selecting the non-null variables (all the
non-null variables were selected in almost all simula-
tions when μ(2) ≥1.5). RF, SVM and PAM required the
greatest difference between classes in order to predict
correctly all the samples in the imbalanced cases (Addi-
tional File 7). Normalizing the variables worsened the
PA on class-imbalanced data (Figure 4, right panels);
this can be attributed to the different class imbalance in
training and test set ( k test

1 = 0.50), as variable normali-
zation did not have this negative effect when the imbal-
ance was the same (data not shown).

Solutions
All the solutions were evaluated using the same simula-
tion settings described for Figure 3, left panels, with p =
1000.
Over-sampling
We ran a set of simulations in which we obtained a
balanced training set by increasing the sample size, repli-
cating the samples from the minority class (over-sam-
pling, see Methods for details). Over-sampling (Figure 5
and Additional File 8, second column) produced almost
no change in PA compared to full-data analysis (Figure 5
and Additional File 8, first column) for most classifiers.
Most of the classification rules were just slightly modified
by the presence of replicated samples, as they depended
on the within-class mean and variability of the variables,
which are hardly modified by over-sampling. For the
same reasons the variable selection process was also not
substantially affected by over-sampling. Only 3-NN and
5-NN benefitted from over-sampling, while 1-NN was
not modified at all (Additional File 8).
The performance of 1-NN, DLDA and PLR improved

when over-sampling was used together with variable
normalization, but only when the test set was balanced
( k test

1 = 0.5), therefore this result seems of limited prac-
tical utility (in Additional File 9 we give a possible
explanation of this phenomenon for DLDA). Over-

sampling with variable normalization partly removed the
dependence of class specific PA on class imbalance for
RF and PAM when there was the same imbalance in
training and test set ( k ktest train

1 1= ), however only if the
class imbalance was moderate (0.30 ≤ k train

1 ≤ 0.70,
Additional File 9).
Down-sizing
In a second set of simulations we obtained a balanced
training set by removing a subset of samples from the
majority class (down-sizing, see Methods). The PA of
the minority class was greatly improved by down-sizing
and the class-specific PA became the same for both
classes, regardless of the class imbalance in the original
training set (Figure 5 and Additional File 8, third col-
umn). For example, using only 4 samples per class
( k train

1 = 0.1), all the classifiers achieved a PA of about
0.70 for both classes, while the full-data analysis
assigned all the samples from the test set to the majority
class (PA1 = 0 and PA2 = 1 using n1 = 4 and n2 = 76).
The PV of the majority class further increased, while the
PV of the minority class decreased substantially as the
PA of the majority class moved away from 1 (see Eq. 6).
The classifiers that were the most sensitive to class
imbalance were those that benefitted the most from
down-sizing. For example, PA1 increased from 0.5 (full-
data) to 0.8 when we down-sized the training set using
PAM with k train

1 = 0.2 (Additional File 8).
Importantly, the variability of the estimated PA

obtained by down-sizing increased with class imbalance;
the 95% prediction intervals obtained for k train

1 = 0.5
were between 0.8 and 1.0 while they were between 0.50
and 0.90 when k train

1 = 0.10 (Additional File 10).
The PA (overall and class-specific) obtained by down-

sizing decreased as the class imbalance increased (as
k train

1 moved away from 0.50); this effect was not due to
class imbalance but to the decrease in sample size of the
training set.
Multiple down-sizing (Asymmetric bagging with variable
selection)
Neglecting information from the majority class as in
simple down-sizing is intuitively unappealing, therefore
we considered multiple down-sizing (MultDS), i.e., for
each training set we repeatedly down-sized the training
set, randomly selecting the samples from the majority
class and including all the samples from the minority
class, developed a classifiers on each training set, and
assigned new samples to the class to which they were
classified more frequently (see Methods for details). The
performance of MultDS (Figure 5, forth column) was
similar but consistently better than down-sizing in
terms of average PA. The decrease of PA for imbalanced
data due to smaller sample size was still present but less
pronounced. In our simulation settings the PA of all
classifiers did not vary for a wide range of imbalance
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levels ( k train
1 = 0.20 to 0.80). MultDS had a smaller

variability of PA compared to simple down-sizing (Addi-
tional File 10); for example, when k train

1 = 0.1 the aver-
age PA was around 0.85 for most classifiers and 95%
prediction intervals were between 0.7 and 1.0.

To evaluate if the results obtained by MultDS were
influenced by the number of samples left out to obtain a
balanced training set we run a set of additional simula-
tions where the sample size was smaller (ntrain = 50,
ntest = 20): at the same level of class imbalance MultDS

Figure 4 Performance of three classifiers varying the between class differences and normalization methods. The figure shows the overall
predictive accuracy (PA) for 1-NN, DLDA and PLR, obtained varying the difference between classes. We considered the same simulation settings
of the left panels of Fig. 3 (p = 1000) but varied the mean of the pDE = 20 non-null variables (μ(2)). The results obtained by normalizing samples
(left panels) or variables (right panels) are reported. Details on data generation are reported in the Methods section.
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worked better when the number of samples was larger;
the observed differences increased with class imbalance
and the performance of MultDS became similar to sim-
ple down-sizing when the sample size was small (data
not shown).
Use of different threshold for RF and PLR
We considered two variants of RF and PLR, where
the threshold value used for classification was based on
the class imbalance of the training set rather than on
the fixed value of 0.5 (RF-THR and PLR-THR, see
Methods). Using these variants the dependency of the
class specific PA on the class imbalance was less pro-
nouced but still present (Additional File 11).

An application to breast cancer microarray data
We used the published gene-expression microarray data
set of Sotiriou et al. [28] to evaluate the effect of class
imbalance on classification for real high-dimensional
data (see Methods for details on data). We considered

two classification problems: the prediction of estrogen
receptor (ER) status (ER+ vs ER-) and of grade of breast
cancer (1 or 2 vs 3).
We obtained different levels of class imbalance by

repeatedly randomly selecting subsets of the samples
from the complete data set: 500 different training and
test sets were obtained for each situation.
In a first set of analyses we trained the classifiers using

class balanced and class-imbalanced training sets (nER- =
5 vs nER+ = 5, 10, 20, 30, 45, and nER- = 10 vs nER+ =
10, 20, 30, 45); the test sets were balanced (20 ER+ vs
20 ER-). The class specific PA (PAER+ and PAER-) were
strongly dependent on class imbalance of the training
sets for all the classifiers (Figure 6 and Additional Files
12 and 13); most test set samples were classified in the
ER+ class (majority class in the training set) and PAER+

was larger than PAER-. For example, when the training
sets included 20 ER+ and 5 ER- samples, the PAER+ was
above 0.90 for all the classifiers, while PAER- ranged

Figure 5 Solutions to the class imbalance problem. The figure shows, for three classifiers, the overall (PA) and class specific predictive
accuracies (PA1 and PA2), varying the proportion of Class 1 samples in the training set ( k train

1 ). The simulation settings are the same as those
from the left panels of Fig. 3 (p = 1000). The results are given for the situations when no class imbalance correction is applied (No correction,
first column), or when over-sampling (second column), down-sizing (third column) or multiple down-sizing (MultDS, forth column) are used.
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from about 0.2 to 0.6; the PV for the ER+ class (PVER+)
was about 0.9, while it ranged between 0.7 and 0.8 for
the ER- class (PVER-), and the AUC was between 0.8
and 0.9.
Using the smaller but balanced training set (down-

sizing) the class specific PA were approximately the
same (about 0.75 and 0.85, using 5 or 10 samples per
class, respectively). For most classifiers the AUC and
PVER+ were smaller than those obtained using the larger
imbalaced data, while the PVER- were larger. Similarly to
the simulation studies, DLDA was the least sensitive to

class imbalance. Over-sampling did not remove the
dependency of class-specific PA on class imbalance for
most of the classifiers, with differences between class-
specific PA as large as 0.22 (20 ER+ vs 10 ER-, DQDA).
Over-sampling worked reasonably well only for 3-NN
and 5-NN when the imbalance was not too large (data
not shown); these results were in line with the simula-
tion studies results.
We used MultDS for several different levels of class

imbalance in the training set (Figure 6 and Additional
File 14). PAM seemed to benefit the most from MultDS;

Figure 6 Prediction of ER status. The figure shows the class specific predictive accuracies (dots, white for the ER+ and colored for the ER-class;
expressed as %), and their 95% prediction intervals. The results reported in black and white refer to simple down-sizing, while those in red to
multiple down-sizing. Five ER- samples (upper panels) or 10 ER-samples were included in the training set, while the number of ER+ samples was
5, 10, 20, 30 or 45. The test sets were balanced (20 ER- and 20 ER+ samples). The samples (left panels) or the variables (right panels) were mean-
centered.
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however, the gains in PA achieved by using MultDS
rather than simple down-sizing were not as considerable
as those observed in the simulation studies for the same
level of class imbalance. This could be the consequence
of using a smaller sample size in the breast cancer
application.
The major advantage of MultDS over simple down-

sizing was the reduction of variability of the estimated
predictive accuracy; for example, when the minority
class included only 5 samples (upper panels of Figure 6)
the prediction intervals obtained by simple down-sizing
included the value of 0.50 for all the classifiers, while
the lower limit of the prediction intervals obtained by
MultDS were above 0.60 for most classifiers even for
the largest degree of class imbalance. Compared to sim-
ple down-sizing, the PVER+ slightly increased, while the
PVER- decreased, ranging between 0.50 and 0.60; the
AUC increased (Additional File 14).
Grade of breast cancer was more difficult to predict

than ER status (overall PA about 0.60 using the small
balanced training set and about 0.70 when using the lar-
ger training set, data not shown). The smaller differ-
ences in between-class gene-expression translated in
larger sensitivity of the classifiers to class imbalance (PA
for the minority class was between 0.10 and 0.20 when
we used the most imbalanced data set), therefore the
effect of class imbalance was stronger. Overall, the
results obtained for grade prediction were in line with
those obtained from the simulations.
Variable normalization further increased the effect of

class imbalance, causing even more cases to be classified
in the training set majority class (data not shown).
Using normalized variables down-sizing worked well,
and so did over-sampling for k-NN, DLDA and PLR,
but only if the test set was balanced; therefore, the prac-
tical importance of this result seems very limited.

Discussion
Our results showed that some of the classifiers that are
more frequently used for class prediction with high-
dimensional data are highly sensitive to class imbalance.
All the classifiers that we considered assign most of the
new samples to the majority class from the training set,
unless the difference between classes is large. This pro-
blem arises for two reasons: the probability of assigning
a new sample to a given class depends on the prevalence
of that class in the training set, and with variable selec-
tion this probability is further biased towards the major-
ity class. As a consequence, when classifiers are trained
on class-imbalanced data there are usually large differ-
ences between class specific predictive accuracies; more-
over, the overall predictive accuracy is not informative,
especially when both the training and the test set are
imbalanced ([29], chapter 2). In most circumstances, the

unequal predictive accuracies produced by class-
imbalanced classifiers have the effect of slightly decreas-
ing the difference in the class-specific predictive values,
which is present when the predictive accuracies are
equal and the classes are imbalanced; generally, the pre-
dictive values of the minority class increase, while there
is a slight reduction for those from the majority class,
which are large even when the classifer is uninformative.
Similarly to our previous findings for another classifier
[30], we observed that also in this setting all these prop-
erties are mantained even if the prevalence in the train-
ing and test set is matched. Normalizing (centering) the
variables generally additionally biases the classification
results, and only if the training and test set have the
same imbalance it does not produce an additional nega-
tive effect. Using the embedded class imbalance correc-
tions available for RF, SVM or PAM does not remove
the dependency of the classification probabilities on
class imbalance. Our results indicate that variable selec-
tion further increases the probability of assigning a new
sample to the majority class; the reason is that the sam-
pling variability is larger in the minority class and there-
fore the biggest deviations between the true and the
observed values arise in this class. As a consequence,
the selected variables are those that have the biggest
departures from the true values in the minority class,
either indicating differences between classes that do not
exist (null variables), or amplifying some differences that
exist (non-null variables). However, at the same time
variable selection plays also a positive role in high-
dimensional classification; similarly to previous findings
[14] our results also indicate that the predictive accuracy
of all the classifiers is improved if the classification rule
is derived using only a selected subset of the measured
variables.
The next question is if there are satisfactory remedies

for these problems. A first set of solutions consisted in
creating a balanced training set, either by replicating
(over-sampling) or by removing (down-sizing) some of
the samples. Over-sampling does not remove or attenu-
ate the class imbalance problem [31] also in our settings
because we considered classification rules and a variable
selection method that are hardly modified by the pre-
sence of replicated samples; the k-NN classifiers (k > 1)
are the only exeption. On the other hand, simple down-
sizing works well in removing the discrepancy between
the class-specific predictive accuracies, but as expected
it has a large variability and the predictive accuracy of
the classifiers worsens when the effective sample size is
reduced considerably because the class imbalance is
large.
Our attempt in overcoming these problems was the

combination of classifiers trained on balanced down-
sized training set. Multiple down-sizing can be seen as a
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special case of asymmetric bagging [24], except that the
variables are selected in each down-sized training set.
We based the combination of the classifiers on majority
voting even though more complex methods are avail-
able; for example, EasyEnsemble [32] combines the out-
puts from the classifiers using AdaBoost [33,34].
In practice multiple down-sizing improves on simple

down-sizing: the major advantage is the reduction of
variability of the estimated predictive accuracy [35]; in
some situations we observed also a limited improvement
of predictive accuracy. The relative benefit of multiple
down-sizing over simple down-sizing depends on the
amount of information discarded by simple down-sizing,
i.e., on the level of class imbalance but also on the num-
ber of left-out samples. The real data had smaller sam-
ple size compared to the simulated data and for that
reason multiple down-sizing was not as beneficial on
real data as in the simulations.
We used penalized logistic regression (PLR) as a clas-

sification method and evaluated its predictive accuracy
as the fraction of correctly classified samples (see the
limitations of this approach in [36], page 247). The clas-
sification based on the 0.50 threshold on the predicted
probabilities assigns most samples to the majority class
from the training set, similarly to simple logistic regres-
sion. Using the threshold based on the imbalance from
the training set, which works well for logistic regression,
reduces but does not remove the classification bias
towards the majority class, also when no variable selec-
tion is performed before fitting the PLR model; variable
selection further increases this bias. Similar results hold
for random forest.
We did not attempt to perform a comprehensive study on

class imbalance for high-dimensional data, but we focused
solely on some types of classifiers and of classification strate-
gies. We selected which classifiers to evaluate among those
that are most commonly used for high-dimensional data. It
is possible that other methods that we did not consider
might be less sensitive to class imbalance. Most of our results
were based on one single method for variable selection, i.e.,
t-test with equal variances, which bases the selection of the
genes on the difference between their means. Some of the
effects of variable selection on class-imbalanced classification
might depend on this choice. However, our results show that
also other parametric and non-parametric variable selection
methods have the same type of problem on imbalanced data.
This is because they all attempt to select, among a very large
number of candidate variables, those that differ the most
between the classes, using different metrics to define the dif-
ference. We decided to focus on some of the solutions for
the class imbalance problem: over-sampling, down-sizing
and multiple down-sizing. We observed that these
approaches performed well in removing the bias towards the
classification into the majority class, with the exception of

over-sampling. More complex methods might be more effec-
tive in reducing the variability of the predictive accuracy. The
development of guidelines for the design of class prediction
studies with class-imbalanced data is also a very important
issue, which we considered only marginally in this paper.

Conclusions
Our results show that the naive use of classifiers on
class-imbalanced high-dimensional data can produce
classification results that are highly biased towards the
classification in the majority class. The extent of this
bias depends on the classification method, on the mag-
nitude of the difference between classes, and on the
level of class imbalance, and it is further increased when
variable selection methods are used; variable normaliza-
tion generally increases the bias and it should be
avoided, unless the class imbalance is equal in training
and test set. When class imbalance is moderate, and no
correction for class imbalance is applied, our results
indicate that DLDA performs well. In addition to its
relative robustness to class imbalance, another advantage
of DLDA is its simplicity and interpretability.
Our results suggest that using a balanced training set is

a good choice for the design of high-dimensional class
prediction studies, also in situations where the propor-
tion of samples from each class is not equal in the popu-
lation. If class imbalance cannot be avoided, researchers
should take the class imbalance problem into account,
and appropriately adjust their classification rules. We
showed that multiple down-sizing can be effectively used
if class imbalance is not too severe. This method is useful
in removing the bias towards the classification in the
majority class, and in reducing the variability of the pre-
dictive accuracy compared to simple down-sizing.
Further work is needed in order to asses if more complex
approaches to the correction of class imbalance problem
can further increase the class-specific predictive accura-
cies and predictive values, and reduce their variability.

Methods
Notation
Let xij be the expression of j th variable (j = 1, ..., p) on
ith individual (i = 1, ..., n). Some of the samples are
known to belong to Class 1 (n1 samples) and others to
Class 2 (n2). Let �i, ki

train and ki
test denote the propor-

tion of samples from Class i in the population, in the
training set and in the test set, respectively. We limit our
attention to the G variables (G ≤ p) that are the most
informative about the class distinction. We defined the
most informative variables to be those with the largest
absolute value of the univariate statistic derived from the
two-sided t test with equal variances. For sample i we
denote the set of selected variables by xi. Let x j

( )1 and
x j

( )2 denote the mean expression of the jth selected
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variable in Classes 1 and 2, respectively. Let x* represent
the set of selected variables for a new sample.

Analysis
Statistical analysis and simulations were carried out
using R language for statistical computing (R version
2.8.1) [37].

Classification methods
k-nearest neighbors
Nearest neighbor rules (k-NN, [38]) are simple nonpara-
metric methods that classify a new specimen based on
the class labels of its nearest neighbors, i.e., of the speci-
mens in the training set to which its variables are most
similar. The class of the new specimen is predicted to
be the majority class label of its k nearest neighbors
[12]. In this paper we used the Euclidean distance to
define the distance between samples and used 3 differ-
ent k-NN classifiers, with k = 1, 3 and 5.
Analysis was performed with the knn function of the

class package in R.
Discriminant analysis
Discriminant analysis methods are used to find linear
combination of variables that maximize the between-
class variance and at the same time minimize the within-
class variance [11,12]. Special cases of discriminant
analysis are diagonal linear discriminant analysis (DLDA)
and diagonal quadratic discriminant analysis (DQDA).
DLDA makes the assumption that the variables are inde-
pendent and have the same variability in both classes.
DLDA classification rule assigns a new sample (with

expression of the selected genes x*) to Class 1 if
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mate of the pooled variance for variable g. DQDA
assumes that the variables are independent but that their
variances can be different in the two classes. DQDA clas-
sification rule assigns a new sample to Class 1 if
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and to Class 2 otherwise. s g1
2 and s g2

2 are the esti-

mated variances of variable g in Class 1 and Class 2,
respectively.

The function stat.diag.da in the sma package
was used to perform DLDA and DQDA.
Random forest
Random forest (RF, [39]) is a classifier consisting of an
ensemble of classification trees; each of the T trees is
built on a bootstrap sample drawn from the complete
data, m among the p variables are randomly chosen and
used to find the best split for each node, trees are not
pruned, i.e., they are grown to the largest extent, and
the new samples are assigned to a class for each of the
trees. RF classifies the new samples in the class
to which they were assigned most frequently by the
T trees.
To take into account the class imbalance of the train-

ing set we considered also a different classifier, which
assigned a new sample to Class 1 if the proportion of
classification assignments to Class 1 was greater than
the proportion of samples in Class 1 in the training set

( k train
1 ). This corrected classifier is referred in the text

as RF-THR. We assessed the performance of both classi-
fication rules.
We used the function randomForest in the ran-

domForest package, used default values for the para-
meters (T = 500, m = p ) and defined class priors
equal to the proportion of samples in each class in the
training set - option classwt. The RF-THR classifica-
tion was obtained using the option cutoff in the
randomForest function.
Support vector machines
Linear support vector machines (SVM; [40]) attempt to
find a linear combination of the variables that best sepa-
rates the samples into two groups based on their class
labels. When perfect separation is not possible, the opti-
mal linear combination is determined by a criterion to
minimize the number of misclassifications and simulta-
neously maximize the distance between the classes.
In this paper we used the functions svm and

predict from the e1071 package, with linear kernel
basis, we specified the class weights as the proportion of
samples from each class and did not use the default
variable scaling of the svm function.
PAM
Nearest shrunken centroids classification (also known as
“Prediction Analysis of Microarrays”, PAM, [41]) is an
enhancement of the simple nearest centroid classifica-
tion, where a new sample is classified in the class whose
centroid is closest to, in squared distance. The centroid
of a class is the vector containing the mean expression
profile of all samples from that class in the training set.
The shrunken centroids are obtained by standardizing

the centroids (dividing the centroid value for each vari-
able by the within-class standard deviation for that vari-
able (sg)), and by shrinking each class centroid toward
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the overall centroid for all classes by an amount called
threshold. A test sample x* is classified in Class 1 if
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and in Class 2 otherwise. In Eq. (3) s0 is the median
value of the sg over the set of variables, and x g

,( )1 and
x g

,( )2 are Class 1 and Class 2 shrunken centroids for
variable g, respectively. The second term in the equation
is a correction based on the class prior probability πk.
We used the functions pamr.train and pamr.

predict from the pamr package. The threshold value
in each step of the simulation was set to the largest
threshold with the smallest number of misclassification
error in the training set.
PLR
Logistic regression cannot be used when the number of
variables exceeds the number of observations. Penalized
logistic regression (PLR, [42]) avoids this problem by
considering a penalized log likelihood, which for a two
class problem and a quadratic penalty is given by
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where yi denotes the response for ith individual (1 for
Class 1 and 0 for Class 2), and pi is the probability of
belonging to Class 1 for a sample with variables xi (pi =
P (yi = 1|xi)), which is a function of the observed data x
and of the regression coefficients (a and b). The penali-
zation parameter l can be chosen or estimated (by cross
validation or using Akaike’s information criterion), while
a and b are estimated (using Newton-Raphson proce-
dure). For a new sample with features x* the prob-
abilities to belong to Class 1 or Class 2 are estimated
( p̂ and 1 - p̂ ) and the sample is classified in Class 1 if
p̂ > 1 - p̂ , i.e., if p̂ > 0.5, and in Class 2 otherwise,
with ties broken at random.
Another possibility is to classify a sample in Class 1 if

p̂ k train> 1 ; we refer to the results obtained using this
classification rule as those based on the theoretical
threshold (PLR-THR).
We used the functions plr and predict.plr from

the stepPlr package. We used l = 1 for all the analyses;
this choice was determined after an exploratory analysis

that showed that in our simulation settings using any
value for l in the range from 0 to 1.5 had little effect on
the classification rules. However, we observed that large
values of l worsened the performance of PLR when the
training set was highly imbalanced.

Data simulation
We simulated p = 40, 1000 or 10000 independent vari-
ables for each of n = 100 samples. Under the null case
all the variables were simulated independently from the
standard normal distribution (mean μ= 0 and standard
deviation s = 1, N(0, 1)) and the class membership of
the samples was randomly assigned. Under the alterna-
tive case, class membership was dependent on variables;
for each sample, p0 variables were generated indepen-
dently from N(0, 1) (null-variables), while the remaining
variables (pDE, non-null variables) were generated inde-
pendently from a normal distribution with mean μ(2)

and standard deviation s = 1 for samples from Class 2,
and from N(0, 1) for samples from Class 1. Different
values of μ(2) (μ(2) = 0.1, 0.2,...,1.9, 2,3) and of pDE (pDE
= 20, 40 or p) were considered.
The data set was split into a training set (ntrain = 80

samples) and a test set (ntest = 20 samples). Different
levels of imbalance between the two classes were con-
sidered, varying the proportion of samples from Class 1
from 5% to 95% (k1 = 0.05, 0.10,..., 0.95). We looked at
situations where we had (i) imbalanced training sets
( k train

1 = 0.05, ..., 0.95) and balanced test sets ( k test
1 =

0.50), (ii) the same imbalance in training and test set
( k train

1 = k test
1 = 0.05, ..., 0.95) and (iii) balanced training

set and imbalanced test set ( k train
1 = 0.50, k test

1 = 0.05,
..., 0.95). In a limited set of simulations we also used
smaller sample size (n = 70, ntrain = 50, ntest = 20). All
the simulations were repeated 1,000 times.

Derivation of the classification rules
Normalization
We evaluated the effect of data normalization, develop-
ing classification rules (i) without normalizing data (i.e.,
using raw data xij), (ii) normalizing the samples (i.e., set-
ting the mean expression for each sample equal to zero,
using x x

p
xij

s
ij ikk

p= − =∑1
1 and (iii) normalizing the

variables (i.e., setting the mean expression for each vari-
able equal to zero, using. x x

n
xij

v
ij kjk

n= − =∑1
1

. Normal-
izations were performed separately on training and test
set.
Variable selection
Variable selection was performed exclusively on the
training set, selecting the G genes with the largest abso-
lute value of the univariate two-sample t test statistic
(G = 40); we also considered the situation where all the
variables were used (G = p). The classification rules
were derived completely on the training set, using the
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variables selected on the training set and the six classifi-
cation methods described in the section Classification
methods.

Evaluation of the performance of the classifiers
The performance of the classifiers was evaluated on the
test set. It is well know that for imbalanced data the
proportion of correctly classified samples can be a mis-
leading measure of the performance of a classifier ([29],
chapter 2). For this reason three different measures of
accuracy were considered: (i) overall predictive accuracy
(PA, the number of correctly classified samples from the
test set divided by the total number of samples in the
test set), (ii) predictive accuracy of Class 1 (PA1=P (Pre-
dict Class1|True Class1), i.e., PA evaluated using only
samples from Class 1), (iii) predictive accuracy of Class
2 (PA2).
Predictive accuracy can be seen as the weighted aver-

age of the class specific predictive accuracies, with
weights equal to the proportion of samples each class:

PA PA PA= ∗ + ∗1 1 2 2k ktest test . (5)

We derived the 95% prediction intervals for the overall
PA as the 2.5th percentile to the 97.5th percentile from
the distribution of PAs obtained from 1000 replications,
as described in [43].
We evaluated also the predictive values for both

classes, i.e., the probabilities of predicting the true class
membership: PVi = P (True Classi|Predict Classi). The
predictive values depend on the proportion of samples
from each class in the population (�i is the proportion
of samples from Class i in the population).
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If not otherwise stated, we assumed that the propor-
tion of samples in each class was the same in the train-
ing set and in the population ( i i

traink= ).
In biomedical research the two classes often refer to a

disease status (positive or negative), and sensitivity (true
positive fraction) and specificity (1-false positive frac-
tion) are used to describe the accuracy of the classifier.
Assuming that Class 1 is the positive class, PA1 is the
sensitivity of the classifier and PA2 is its specificity.
Furthermore, PV1 is the positive predictive value (PPV)
and PV2 is the negative predictive value (NPV).
We calculated also the area under the receiver operat-

ing characteristic (ROC) curve (AUC) ([29], chapter 4),
using the hmisc package.

Solutions for the development of classifiers for class-
imbalanced data
Over-sampling
Simple over-sampling consists in obtaining a class-
balanced training set replicating a subset of randomly
selected samples from the minority class (replicating
max(n1, n2) - min(n1, n2) samples from the minority
class and obtaining a training set of size 2max(n1, n2))
[19,44,45]. The classification rule was derived on the
resampled training set as described for the original data
and evaluated on the test set. The classification rule is
derived on the replicated training set as described for
the original data and evaluated on the test set.
Down-sizing
Simple down-sizing consists in obtaining a class-
balanced training set by removing a subset of randomly
selected samples from the majority class (removing max
(n1, n2) - min(n1, n2) samples from the majority class,
obtaining a training set of size 2min(n1, n2)) [19,45].
The classification rule is derived on the reduced training
set as described for the original data and evaluated on
the test set.
Multiple down-sizing (MultDS, asymmetric bagging with
embedded variable selection)
With multiple down-sizing (MultDS) we tried to make
use of the whole information available in the majority
class by performing down-sizing multiple times. 101
random selections of samples from the majority class
were made and classification rule was derived on each
of the 101 balanced training sets (note that the minority
class was the same in each training set). The 101 down-
sized classifiers were combined by majority voting: the
class assignments for new samples were obtained from
each of the down-sized classifier and the new samples
were assigned to the class with the larger number of
votes. Multiple down-sizing can be seen as a special
case of asymmetric bagging [24], except that the vari-
ables are selected in each down-sized training set.
Microarray Data
Sotiriou et al. [28] analyzed cDNA gene expression pro-
files from 99 tumor specimens from breast cancer
patients. In addition to gene expression values for 7650
genes (probes) preprocessed as described in Sotiriou
et al. (2003), there was standard prognostic variable
information available for each patient (the data are pub-
licly available at http://linus.nci.nih.gov/~brb/DataArc-
hive.html). Missing log-expression values were replaced
with 0. Here we considered two two-class prediction
problems: the first was to predict estrogen receptor (ER)
status, which was negative (ER-) for 34 patients
and positive (ER+) for 65 patients, according to ligand-bind-
ing assay; the second was to predict the grade of tumors,
which was 1 or 2 for 54 patients and 3 for 45 patients.
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On these data we evaluated the performance of all the
classifiers used in the simulation studies, obtaining dif-
ferent levels of class imbalance in the training and test
sets by including a selected subset of the samples in the
analyses. For each setting (imbalance level) we replicated
the analysis 500 times, by randomly selecting which
samples to include in the training and in the test set.
Variable selection consisted in selecting on each training
set the 40 probes with the largest absolute value of the
univariate statistic derived from the two-sided t test
with equal variances. Overall PA, class specific PA and
PV, and AUC were obtained averaging the results
obtained from the 500 analyses. We evaluated the classi-
fiers both without applying any specific corrections for
class imbalance, and using the solutions presented in
the previous paragraph for the simulation studies (over-
sampling, down-sizing and multiple down-sizing). We
evaluated the 95% prediction intervals for the class spe-
cific PAs using 500 replications.

Additional material

Additional file 1: Behavior of the classifiers under the null
hypothesis, using test sets that are balanced and have different
sample size. The additional file reports in a table format the same
results presented graphically in Figure 1; here the results refer to a
balanced test set and compare two different sample sizes of test set.
Besides predictive accuracies, also predictive values and AUC are
reported.

Additional file 2: Behavior of eight variable selection methods
under the null and alternative hypothesis.

Additional file 3: Predictive accuracies, predictive values and area
under the ROC curve for nine classifiers under the alternative
hypothesis. The additional file presents in a table format the complete
simulation results shown grafically in Figure 5, first column. Predictive
accuaracies, predictive values and AUC are reported.

Additional file 4: Effect of performing variable selection and
increasing the number of variables for the nine classifiers. The
additional file reports the same results described in the left panels of
Figure 3 for 1-NN, DLDA and PLR, but for all the classifiers.

Additional file 5: Effect of performing variable selection and
increasing the number of variables when all the variables are
different between the two classes, for the nine classifiers. The
additional file reports the same results described in the right panels of
Figure 3 for 1-NN, DLDA and PLR, but for all the classifiers.

Additional file 6: Effect of not performing variable selection. The
additional file reports the predictive accuracy results obtained for the
nine classifiers, when the number of variables is large (p = 1000) and
variable selection is not performed. The simulation setting is the same as
for Figure 5, first column.

Additional file 7: Effect of varying the magnitude of the difference
between classes. The additional file shows, for the nine classifiers, the
same results presented in Figure 4 for 1-NN, DLDA and PLR.

Additional file 8: Solutions to the class imbalance problem. The
additional file shows, for the nine classifiers, the same results presented
in Figure 5 for 3-NN, DLDA and PLR.

Additional file 9: Over-sampling and variable centering. The
additional file shows the behavior of the classifiers using over-sampling
and mean-centering the variables. An explanation for the improved
behavior of DLDA is given.

Additional file 10: Variability of the overall predictive accuracy. The
figure shows, for four classifiers, the overall predictive accuracy and its
95% prediction intervals (obtained with no correction, over-sampling,
down-sizing and multiple down-sizing). The simulation setting is the
same as described for Figure 5, but the test set contained 500 samples.

Additional file 11: Threshold based on class imbalance for
classification with PLR and RF. The figure shows, for RF and PLR, the
overall (PA) and class specific predictive accuracy (PA1 and PA2) obtained
in the same simulation setting of Figure 5: here the classification rule
was based on the threshold equal to the class imbalance of the training
set (RF-THR and PLR-THR).

Additional file 12: Overall predictive accuracy and the 95%
prediction intervals for the prediction of ER status. The figure shows
for all the classifiers the same results as those presented in Figure 6.

Additional file 13: Behavior of the nine classifiers for the prediction
of ER status - no correction. The table shows, for all the classifiers, the
predictive accuracies presented in Figure 6 (no correction for class
imbalance), together with the predictive values and AUC.

Additional file 14: Behavior of the nine classifiers for the prediction
of ER status using multiple down-sizing. The table shows, for all the
classifiers, the predictive accuracies obtained in Figure 6 using multiple
down-sizing, together with the predictive values and AUC.
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AUC: area under the ROC curve; DLDA: diagonal linear discriminant analysis;
DQDA: diagonal quadratic discriminant analysis; ER: estrogen receptor; ER+:
positive estrogen receptor status; ER-: negative estrogen receptor status; k-NN:
nearest neighbor classifier with k neighbors; LOOCV: leave-one-out cross-
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