
METHODOLOGY ARTICLE Open Access

IntelliGO: a new vector-based semantic similarity
measure including annotation origin
Sidahmed Benabderrahmane1*, Malika Smail-Tabbone1, Olivier Poch2, Amedeo Napoli1,
Marie-Dominique Devignes1

Abstract

Background: The Gene Ontology (GO) is a well known controlled vocabulary describing the biological process,
molecular function and cellular component aspects of gene annotation. It has become a widely used knowledge
source in bioinformatics for annotating genes and measuring their semantic similarity. These measures generally
involve the GO graph structure, the information content of GO aspects, or a combination of both. However, only a
few of the semantic similarity measures described so far can handle GO annotations differently according to their
origin (i.e. their evidence codes).

Results: We present here a new semantic similarity measure called IntelliGO which integrates several
complementary properties in a novel vector space model. The coefficients associated with each GO term that
annotates a given gene or protein include its information content as well as a customized value for each type of
GO evidence code. The generalized cosine similarity measure, used for calculating the dot product between two
vectors, has been rigorously adapted to the context of the GO graph. The IntelliGO similarity measure is tested on
two benchmark datasets consisting of KEGG pathways and Pfam domains grouped as clans, considering the GO
biological process and molecular function terms, respectively, for a total of 683 yeast and human genes and
involving more than 67,900 pair-wise comparisons. The ability of the IntelliGO similarity measure to express the
biological cohesion of sets of genes compares favourably to four existing similarity measures. For inter-set
comparison, it consistently discriminates between distinct sets of genes. Furthermore, the IntelliGO similarity
measure allows the influence of weights assigned to evidence codes to be checked. Finally, the results obtained
with a complementary reference technique give intermediate but correct correlation values with the sequence
similarity, Pfam, and Enzyme classifications when compared to previously published measures.

Conclusions: The IntelliGO similarity measure provides a customizable and comprehensive method for quantifying
gene similarity based on GO annotations. It also displays a robust set-discriminating power which suggests it will
be useful for functional clustering.

Availability: An on-line version of the IntelliGO similarity measure is available at: http://bioinfo.loria.fr/Members/
benabdsi/intelligo_project/

1 Background
1.1 Gene annotation
The Gene Ontology (GO) has become one of the most
important and useful resources in bioinformatics [1].
This ontology of about 30,000 terms is organized as a
controlled vocabulary describing the biological process
(BP), molecular function (MF), and cellular component

(CC) aspects of gene annotation, also called GO aspects
[2]. The GO vocabulary is structured as a rooted Direc-
ted Acyclic Graph (rDAG) in which GO terms are the
nodes connected by different hierarchical relations
(mostly is_a and part_of relations). The is-a relation
describes the fact that a given child term is a specializa-
tion of a parent term, while the part-of relation denotes
the fact that a child term is a component of a parent
term. Another GO relation regulates expresses the fact
that one process directly affects the manifestation of
another process or quality [3]. However, this relation is
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not considered in most studies dealing with semantic
similarity measures. By definition, each rDAG has a
unique root node, relationships between nodes are
oriented, and there are no cycles, i.e. no path starts and
ends at the same node.
The GO Consortium regularly updates a GO Annota-

tion (GOA) Database [4] in which appropriate GO
terms are assigned to genes or gene products from pub-
lic databases. GO annotations are widely used for data
mining in several bioinformatics domains, including
gene functional analysis of DNA microarrays data [5],
gene clustering [6-8], and semantic gene similarity [9].
It is worth noting that each GO annotation is sum-

marized by an evidence code (EC) which traces the pro-
cedure that was used to assign a specific GO term to a
given gene [10]. Out of all available ECs, only the
Inferred from Electronic Annotation (IEA) code is not
assigned by a curator. Manually assigned ECs fall into
four general categories (see Section 2.4.3 and Table 1):
author statement, experimental analysis, computational
analysis, and curatorial statements. The author state-
ment (Auth) means that the annotation either cites a
published reference as the source of information (TAS
for Traceable Author Statement) or it does not cite a
published reference (NAS for Non traceable Author
Statement). An experimental (Exp) annotation means
that the annotation is based on a laboratory experiment.
There are five ECs which correspond to various specific
types of experimental evidence (IDA, IPI, IMP, IGI, and
IEP; see Table 1 for details), plus one non specific par-
ent code which is simply denoted as Exp. The use of an
Exp EC annotation is always accompanied by the cita-
tion of a published reference. A Comp means that the
annotation is based on computational analysis per-
formed under the supervision of a human annotator.
There are six types of Comp EC which correspond to
various specific computational analyses (ISS, RCA, ISA,
ISO, ISM and IGC; see Table 1 for details). The curator-
ial statement (Cur) includes the IC (Inferred by Curator)
code which is used when an annotation is not supported

by any direct evidence but can be reasonably inferred by
a curator from other GO annotations for which evi-
dence is available. For example, if a gene product has
been annotated as a transcription factor on some experi-
mental basis, the curator may add an IC annotation to
the cellular component term nucleus. The ND (No bio-
logical Data available) code also belongs to the Cur cate-
gory and means that a curator could not find any
biological information. In practice, annotators are asked
to follow a detailed decision tree in order to qualify
each annotation with the proper EC [11]. Ultimately, a
reference can describe multiple methods, each of which
provides evidence to assign a certain GO term to a par-
ticular gene product. It is therefore common to see mul-
tiple gene annotations with identical GO identifiers but
different ECs.
The statistical distribution of gene annotations with

respect to the various ECs is shown in Figure 1 for
human and yeast BP and MF aspects. This figure shows
that IEA annotations are clearly dominant in both spe-
cies and for all GO aspects, but that some codes are not
represented at all (e.g. ISM, IGC).
However, the ratio between non-IEA and IEA annota-

tions is different in yeast and human. It is about 2.0 and
0.8 for the yeast BP and MF annotations compared to
about 0.8 and 0.6 for the corresponding human annota-
tions, respectively. This observation reflects a higher
contribution of non-IEA annotation in yeast and is
somewhat expected because of the smaller size of yeast
genome and because more experiments have been car-
ried out on yeast. In summary, GO ECs add high value
to gene annotations because they trace annotation ori-
gins. However, apart for the G-SESAME and SimGIC
measures which select GO annotations on the basis of
ECs [12], only a few of the gene similarity measures
described so far can handle GO annotations differently
according to their ECs [9], [13]. Hence, one objective of
this paper is to introduce a new semantic similarity
measure which takes into account GO annotations and
their associated ECs.

Table 1 EC weight lists assigned to the 16 GO ECs considered in this study

Auth Exp Comp Cur Auto

EC TAS NAS EXP IDA IPI IMP IGI IEP ISS RCA ISA ISO ISM IGC IC ND IEA

List1 1

List2 1 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0 0.4

List3 1 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0 0

List4 0 1

Table 1: The various weights assigned to the ECs are listed in the following lines as EC weight lists 1 to 4. TAS: Traceable Author Statement; NAS: Non-traceable
Author Statement; EXP: Inferred from Experiment; IDA: Inferred from Direct Assay; IPI: Inferred from Physical Interaction; IMP: Inferred from Mutant Phenotype; IGI:
Inferred from Genetic Interaction; IEP: Inferred from Expression Pattern; ISS: Inferred from Sequence Similarity; RCA: Inferred from Reviewed Computational
Analysis; ISA: Inferred from Sequence Alignment; ISO: Inferred from Sequence Orthology; ISM: Inferred from Sequence Model; IGC: Inferred from Genomic
Context; IC: Inferred from Curator; IEA: Inferred from Electronic Annotation; ND: No biological Data available. The EC categories are indicated in the first line of
the table. Auth: Author statement; Exp: Experimental; Comp: Computational Analysis; Cur: Curator statement; Auto: Automatically assigned.
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1.2 Semantic similarity measure
1.2.1 The notion of semantic similarity measure
Using the general notion of similarity to identify objects
which share common attributes or characteristics appears
in many contexts such as word sense disambiguation,
spelling correction, and information retrieval [14,15].
Similarity methods based on this notion are often called
featural approaches because they assume that items are
represented by lists of features which describe their prop-
erties. Thus, a similarity comparison involves comparing
the feature lists that represent the items [16].
A similarity measure is referred to as semantic if it can

handle the relationships that exist between the features
of the items being compared. Comparing documents
described by terms from a thesaurus or an ontology
typically involves measuring semantic similarity [17].
Authors such as Resnik [18] or Jiang and Conrath [19]
are considered as pioneers in ontology-based semantic
similarity measures thanks to their long investigations in
general English linguistics [20]. A general framework for
comparing semantic similarity measures in a subsump-
tion hierarchy has been proposed by Blanchard et al.
[15]. For these authors, tree-based similarities fall into
two large categories, namely those which only depend
on the hierarchical relationships between the terms [21]
and those which incorporate additional statistics such as
term frequency in a corpus [22].
In the biological domain, the term functional similar-

ity was introduced to describe the similarity between

genes or gene products as measured by the similarity
between their GO functional annotation terms. Biolo-
gists often need to establish functional similarities
between genes. For example, in gene expression studies,
correlations have been demonstrated between gene
expression and GO semantic similarities [23,24].
Because GO terms are organized in a rDAG, the func-
tional similarity between genes can be calculated using a
semantic similarity measure. In a recent review, Pesquita
et al. define a semantic similarity measure as a function
that, given two individual ontology terms or two sets of
terms annotating two biological entities, returns a
numerical value reflecting the closeness in meaning
between them [9]. These authors distinguish the com-
parison between two ontology terms from the compari-
son between two sets of ontology terms.
1.2.2 Comparison between two terms
Concerning the comparison between individual ontology
terms, the two types of approaches reviewed by Pesquita
et al. [9] are similar to those proposed by Blanchard et
al. [15], namely the edge-based measures which rely on
counting edges in the graph, and node-based measures
which exploit information contained in the considered
term, its descendants and its parents.
In most edge-based measures, the Shortest Path-Length

(SPL) is used as a distance measure between two terms
in a graph. This indicator was used by Rada et al. [25]
on MeSH (Medical Subject Headings) terms and by Al-
Mubaid et al. [26] on GO terms. However, Pesquita
et al. question whether SPL-based measures truly reflect
the semantic closeness of two terms. Indeed these mea-
sures rely on two assumptions that are seldom true in
biological ontologies, namely that nodes and edges are
uniformly distributed, and that edges at the same level
in a hierarchy correspond to the same semantic distance
between terms. Node-based measures are probably the
most cited semantic similarity measures. These mainly
rely on the information content (IC) of the two terms
being compared and of their closest common ancestor
[18,22]. The information content of a term is based on
its frequency, or probability, of occurring in a corpus.
Resnik uses the negative logarithm of the probability of
a term to quantify its information content, IC(ci) = -Log
(p(ci)) [18,27]. Thus, a term with a high probability of
occurring has a low IC. Conversely, very specific terms
that are less frequent have a high IC. Intuitively, IC
values increase as a function of depth in the hierarchy.
Resnik’s similarity measure between two terms consists
of determining the IC of all common ancestors between
two terms and selecting the maximal value, i.e. the IC of
the most specific (i.e. lowest) common ancestor (LCA).
In other words, if two terms share an ancestor with a
high information content, they are considered to be
semantically very similar. Since the maximum of this IC

Figure 1 Distribution of EC (evidence codes) in yeast and
human gene annotations according to BP and MF aspects. The
number of annotations assigned to a gene with a given EC is
represented for each EC. Note that some genes can be annotated
twice with the same term but with a different EC. The cumulative
numbers of all non-IEA annotations are 18,496 and 9,564 for the
yeast BP and MF annotations, respectively, and 21,462 and 16,243
for the human BP and MF annotations, respectively. Statistics are
derived from the NCBI annotation file, version June 2009.
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value can be greater than one, Lin introduced a normali-
zation term into Resnik’s measure yielding [22]:

SIM c c
IC LCA c c

IC c IC cLin i j
i j

i j

( , ) *
( ( , ))

( ) ( )
.=

+
2 (1)

Recently, Schlicker et al. improved Lin’s measure by
using a correction factor based on the probability of
occurrence of the LCA. Indeed, a general ancestor
should not bring too high a contribution to term com-
parison [28]. A limitation of node-based measures is
that they cannot explicitly take into account the distance
separating terms from their common ancestor [9].
Hybrid methods also exist which combine edge-based
and node-based methods, such as those developed by
Wang et al. [29] and Othman et al. [30].
1.2.3 Comparison between sets of terms
Concerning the comparison between sets of terms, the
approaches reviewed by Pesquita et al. fall into two
broad categories: pairwise methods which simply com-
bine the semantic similarities between all pairs of terms,
and groupwise methods which consider a set of terms as
a mathematical set, a vector, or a graph. The various
pairwise methods differ in the strategies chosen to cal-
culate the pairwise similarity between terms and in how
pairwise similarities are combined. These methods have
been thoroughly reviewed previously [9]. Hence we con-
centrate here on two representative examples that we
chose for comparison purposes, namely the Lord mea-
sure which uses the node-based Resnik measure in the
pairwise comparison step, and the Al-Mubaid measure
which uses an edge-based measure. The study by Lord
et al. in 2003 [2] provides the first description of a
semantic similarity measure for GO terms. Semantic
similarity between proteins is calculated as the average
of all pairwise Resnik similarities between the corre-
sponding GO annotations. In contrast, the measure
defined by Al-Mubaid et al. [26], [31] considers the
shortest path length (SPL) matrix between all pairs of
GO terms that annotate two genes or gene products. It
then calculates the average of all SPL values in the
matrix, which represents the path length between two
gene products. Finally, a transfer function is applied to
the average SPL to convert it into a similarity value (see
Methods). In group-wise methods, non semantic similar-
ity measures co-exist with semantic ones. For example,
the early Jaccard and Dice methods of counting the per-
centage of common terms between two sets are clearly
non semantic [15]. However, in subsequent studies, var-
ious authors used sets of GO terms that have been
extended with all term ancestors [32], [33].
Graph-based similarity measures are currently imple-

mented in the Bioconductor GOstats package [34]. Each
protein or gene can be associated with a graph which is

induced by taking the most specific GO terms annotat-
ing the protein, and by finding all parents of those
terms up to the root node. The union-intersection and
longest shared path (SimUI ) method can be used to cal-
culate the between-graph similarity, for example. This
method was tested by Guo et al. on human regulatory
pathways [35]. Recently, the SimGIC method was intro-
duced to improve the SimUI method by weighting
terms with their information content [36].
Finally, vector-based similarity measures need to

define an annotation Vector-Space Model (VSM) by ana-
logy to the classical VSM described for document retrie-
val [37], [38], [39]. In the annotation VSM, each gene is

represented by a vector

g in a k-dimensional space

constructed from basis vectors

ei which correspond to

the k annotation terms [40,41]. Thus, text documents
and terms are replaced by gene and annotation terms,
respectively, according to

 
g ei

i

i= ∑ * , (2)

where

ei is the i-th basis vector in the VSM annota-

tion corresponding to the annotation term ti, and where
ai is the coefficient of that term.
The DAVID tool, which was developed for functional

characterization of gene clusters [6], uses this represen-
tation with binary coefficients which are set to 1 if a
gene is annotated by a term and zero otherwise. Similar-
ity is then calculated using “Kappa statistics” [42] which
consider the significance of observed co-occurrences
with respect to chance. However, this approach does
not take into account the semantic similarity between
functional annotation terms. In another study by Chaba-
lier et al., the coefficients are defined as weights corre-
sponding to the information content of each annotation
term. The similarity between two genes is then com-
puted using a cosine similarity measure. The semantic
feature in Chabalier’s method consists of a pre-filtering
step which retains only those GO annotations at a cer-
tain level in the GO graph.
Ganesan et al. introduced a new vector-based seman-

tic similarity measure in the domain of information
retrieval [14]. When two annotation terms are different,
this extended cosine measure allows the dot product
between their corresponding vectors to be non-zero,
thus expressing the semantic similarity that may exist
between them. In other words, the components of the
vector space are not mutually orthogonal. We decided
to use this approach in the context of GO annotations.
Hence the IntelliGO similarity measure defines a new
vector-based representation of gene annotations with
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meaningful coefficients based on both information con-
tent and annotation origin. Vector comparison is based
on the extended cosine measure and involves an edge-
based similarity measure between each vector
component.

2 Results
2.1 The IntelliGO Vector Space Model to represent gene
annotations
2.1.1 The IntelliGO weighting scheme
The first originality of the IntelliGO VSM lies in its
weighting scheme. The coefficients assigned to each vec-
tor component (GO term) are composed of two mea-
sures analogous to the tf-idf measures used for
document retrieval [43]. On one hand, a weight w(g, ti)
is assigned to the EC that traces the annotation origin
and qualifies the importance of the association between
a specific GO term ti and a given gene g. On the other
hand, the Inverse Annotation Frequency (IAF ) measure
is defined for a given corpus of annotated genes as the
ratio between the total number of genes GTot and the

number of genes Gti
annotated by the term ti. The IAF

value of term ti is calculated as

IAF t log
G

Gi
Tot

t i

( ) .= (3)

This definition is clearly related to what was defined
above as the information content of a GO term in an
annotation corpus. It can be verified that GO terms
which are frequently used to annotate genes in a corpus
will display a low IAF value, whereas GO terms that are
rarely used will display a high IAF which reflects their
specificity and their potentially high contribution to vec-
tor comparison. In summary, the coefficient ai is
defined as

 i i iw g t IAF t= ( , )* ( ). (4)

2.1.2 The IntelliGO generalized cosine similarity measure
The second innovative feature of the IntelliGO VSM con-
cerns the basis vectors themselves. In classical VSMs, the
basis is orthonormal, i.e. the base vectors are normed and
mutually orthogonal. This corresponds to the assumption
that each dimension of the vector space (here each anno-
tation term) is independent from the others. In the case
of gene annotation, this assumption obviously conflicts
with the fact that GO terms are interrelated in the GO
rDAG structure. Therefore, in the IntelliGO VSM, basis
vectors are not considered as orthogonal to each other
within a given GO aspect (BP, MF, or CC).

A similar situation has been handled by Ganesan et al.
[14] in the context of document retrieval using a tree-
hierarchy of indexating terms. Given two annotation

terms, ti and tj, represented by their vectors,

ei and


e j ,

respectively, the Generalized Cosine-Similarity Measure
(GCSM) defines the dot product between these two
base vectors as

 
e e

Depth LCA t t

Depth t Depth ti j
i j

i j
* *

( ( , ))

( ) ( )
.=

+
2 (5)

The GCSM measure has been applied successfully by
Blott et al. to a corpus of publications indexed using
MeSH terms [43]. However applying the GCSM to the
GO rDAG is not trivial. As mentioned above, in an
rDAG there exist more than one path from one term to
the Root. This has two consequences for the GCSM for-
mula (5). Firstly, there may exist more than one LCA
for two terms. Secondly, the depth value of a term is
not unique but depends on the path which is followed
up to the rDAG root. We therefore adapted the GCSM
formula to rDAGs in a formal approach inspired by
Couto et al. [44].
The GO controlled vocabulary can be defined as a tri-

plet g = (T, Ξ, R), where T is the set of annotation
terms, Ξ is the set of the two main hierarchical relations
that may hold between terms, i.e. Ξ = {is-a, part-of }.
The third element R contains a set of triples τ = (t, t’,
ξ), where t, t’ Î T , ξ Î Ξ and tξt’. Note that ξ is an
oriented child-parent relation and that ∀ τ Î R, the rela-
tion ξ between t and t’ is either is-a or part-of. In the g
vocabulary, the Root term represents the top-level node
of the GO rDAG. Indeed, Root is the direct parent of
three nodes, BiologicalProcess, CellularComponent, and
MolecularFunction. These are also called aspect-specific
roots. The Root node does not have any parents, and
hence the collection R does not contain any triple in
which t = Root. All GO terms in T are related to the
root node through their aspect-specific root. Let Parents
be a function that returns the set of direct parents of a
given term t:

Parents T T

Parents t t T R t t

: ( ),

( ) { | , , ( , , )},

→
= ′ ∈ ∃ ∈ ∃ ∈ = ′



   Ξ
(6)

where  (T ) refers to the set of all possible subsets of
T. Note that Parents(Root) = ∅. The function Parents is
used to define the RootPath function as the set of direc-
ted paths descending from the Root term to a given
term t:
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RootPath T T
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⎨
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⎪

⎩
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⎪
⎪
⎪
⎪

1 otherwise

(7)

Thus, each path between the Root term and a term t
is a set of terms F Î RootPath(t).
The length of a path separating a term t from the Root

term is defined as the number of edges connecting the
nodes in the path, and is also called the Depth of term
t. However, due to the multiplicity of paths in rDAG,
there can be more than one depth value associated with
a term. In the following, and by way of demonstration,
we define Depth(t) as the function associating a term t
with its maximal depth:

Depth t RootPath ti i i( ) (| |) | ( ).= − ∈Max Φ Φ1 (8)

Note that since RootPath(Root) = {{Root}}, we have
Depth(Root) = |{Root}| -1 = 0.
We then define the Ancestors function to identify an

ancestor term of a given term t as any element a of a
path F Î RootPath(t).

Ancestors T P T: ( )→

and

Ancestors t T RootPath t( ) { | , ( ( )) ( )}.= ∈ ∃ ∈ ∧ ∈ Φ Φ Φ (9)

Thus, the common ancestors of two terms ta and tb
can be defined as:

CommonAnc t t Ancestors t Ancestors ta b a b( , ) ( ) ( ).= ∩ (10)

Let LCAset(ta, tb) be the set of lowest common ances-
tors of terms ta, tb. The lowest common ancestors are at
the maximal distance from the root node. In other
words their depth is the maximum depth of all terms a
Î CommonAnc(ta, tb). Note that this value is unique but
it may correspond to more than one LCA term:

LCAset T T T: ( ),x → 

LCAset t t CommonAnc t t

Depth Depth a
a b a b

i i

( , ) { ( , ) |

( ) ( ( ))

= ∈
=


 Max ,,

( , )}.a CommonAnc t ti a b∈
(11)

Having defined the LCAset, it is possible to define a
subset of paths from the Root term to a given term t
that pass through one of the LCA terms and subse-
quently ascend to the root node using the longest path
between the LCA and the Root term. This notion is
called ConstrainedRootPath, and can be calculated for
any pair (t, s) with s Î Ancestors(t):

ConstrainedRootPath t s RootPath t

s
i

i

j j

( , ) { ( ) |

( )

( , ((

= ∈
∈ ∧

∀ ∈

Φ
Φ

Φ Φ RRootPath s

Depth sj i j

( ))

( )) (| | ( ) ))}.

∧

⊂ ⇒ = +Φ Φ Φ 1

(12)

This leads to a precise definition of the path length
PLk(t, s), for s Î Ancestors(t) and for a given path Fk Î
ConstrainedRootPath(t, s) as:

PL t s Depth sk i k( , ) | ( ).|= − −Φ 1 (13)

For a given LCA Î LCAset(ti, tj), we can now define
the shortest path length (SPL) between two terms ti and
tj passing through this lowest common ancestor as

SPL t t LCA PL t LCA

PL t LCA
i j k k i

h h j

( , , ) ( ( , ))

( ( , )).

= +Min

Min
(14)

The minimal SPL between terms ti and tj considering
all their possible LCAs is thus given by

MinSPL t t SPL t t LCA

LCA LCAset t t
i j l i j l

l i j

( , ) ( ( , , )) |

( , ).

=

∈

Min
(15)

Returning to the GCSM formula (5), we now relate Depth
(ti)+Depth(tj) in the denominator of the expression with
MinSPL(ti, tj) and Depth(LCA). Note that from (8) we have
Depth(ti) = Maxk(|Fk| - 1), with Fk Î RootPath(ti).

From (13) we have
PLk(ti, LCA) = |Fk| - 1 - Depth(LCA) with Fk Î Con-

strainedRootPath(ti, LCA) and ConstrainedRootPath(ti,
LCA) ⊂ RootPath(t). Given any LCA Î LCAset(ti, tj), it
is then easy to demonstrate that

Depth t PL t LCA Depth LCAi k k i( ) ( ( , )) ( ).≥ +Min (16)

Similarly,

Depth t PL t LCA Depth LCAj h h j( ) ( ( , )) ( ).≥ +Min (17)

Thus,

Depth t Depth t

SPL t t LCA Depth LCA

MinSPL t

i j

i j

i

( ) ( )

( , , ) * ( )

( ,

+ ≥

+ ≥2

tt Depth LCAj) * ( ).+ 2

(18)
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In the case of a tree, this inequality becomes an
equality.
The semantic similarity between two terms is assumed

to be inversely proportional to the length of the path
separating the two terms across their LCA. When we
adapt the GCSM measure in (5) by replacing in the
denominator the sum Depth(ti) + Depth(tj) by the smal-
ler sum MinSPL(ti, tj) + 2 * Depth(LCA), we ensure that
the dot product between two base vectors will be maxi-
mized. With this adaptation, the IntelliGO dot product
between two base vectors corresponding to two GO
terms ti and tj is defined as

 
e e

Depth LCA

SPL t t Depth LCAi j
i j

*
* ( )

( , ) * ( )
.=

+
2

2Min
(19)

One can verify that with this definition, the dot pro-
duct takes values in the interval 0[1]. We observe that

for i j e ei i= =, *
 

1 , since MinSPL(ti, tj) = 0. Moreover,

when two terms are only related through the root of the

rDAG, we have
 
e ei i* = 0 because Depth(Root) = 0. In

any other case, the value of the dot product represents a
non zero edge-based similarity between terms. Note that
this value clearly depends on the rDAG structure of the
GO graph.

2.2 The IntelliGO semantic similarity measure
In summary, the IntelliGO semantic similarity measure
between two genes g and h represented by their vectors

g and


h , respectively, is given by the following cosine

formula:

SIM g h
g h

g g h h
IntelliGO( , ) *

* *
,=

 

    (20)

where:

•
 
g ei ii

= ∗∑  : the vectorial representation of the

gene g in the IntelliGO VSM.

•
 
h ejj j= ∑  * : the vectorial representation of

the gene h in the IntelliGO VSM.
• ai = w(g, ti)* IAF(ti) the coefficient of term ti for
gene g, where w(g, ti) represents the weight assigned
to the evidence code between ti and g, and IAF(ti) is
the inverse annotation frequency of the term ti.
• bj = w(h, tj)* IAF(tj) the coefficient of term tj for
gene h.

•
   
g h e ei ji j i j

*
,

= ∗ ∗ ∗∑   : the dot product

between the two gene vectors.

•
 
e e

Depth LCA
SPL t t Depth LCAi j

i j
* * ( )

( , ) * ( )
= +

2
2Min : the dot

product between

ei and

  
e e ej i j( ∗ ≠ 0 if the corre-

sponding terms ti and tj share common ancestors
other than the rDAG root).

2.3 The IntelliGO Algorithm
The IntelliGO algorithm was designed to calculate the
similarity measure between two genes, taking as input
their identifiers in the NCBI GENE database, and as
parameters a GO aspect (BP, MF, CC), a particular spe-
cies, and a list of weights associated with GO ECs. The
output is the IntelliGO similarity value between the two
genes. In order to calculate this efficiently, we first
extract from the NCBI annotation file [45] the list of all
non redundant GO terms and the list of associated
genes they annotate, whatever their evidence codes. The
IAF values are then calculated and stored in the Specie-
sIAF file. We then construct all possible pairs of GO
terms and query the AMIGO database [46] to recover
their LCA, Depth(LCA) and SPL values. Each dot pro-
duct between two vectors representing two GO terms
can thus be pre-calculated and stored in the DotProduct
file.
The first step of the IntelliGO algorithm consists of

filtering the NCBI file with the user’s parameters (GO
aspect, species and list of weights assigned to ECs) to
produce a CuratedAnnotation file from which all genes
of species and GO aspects other than those selected are
removed. If a gene is annotated several times by the
same GO term with different ECs, the program retains
the EC having the greatest weight in the list of EC
weights given as parameter. Then, for two input NCBI
gene identifiers, the IntelliGO function (i) retrieves from
the CuratedAnnotation file the list of GO terms anno-
tating the two genes and their associated ECs, (ii) calcu-
lates from the SpeciesIAF file and the list of EC weights,
all the coefficients of the two gene representations in
the IntelliGO VSM, (iii) constructs the pairs of terms
required to calculate the similarity value between the
two vectors, (iv) assigns from the DotProduct file the
corresponding value to each dot product, and (v) finally
calculates the IntelliGO similarity value according to
(20).

2.4 Testing the IntelliGO semantic similarity measure
2.4.1 Benchmarking datasets and testing protocol
We evaluated our method using two different bench-
marks depending on the GO aspect. For the KEGG
benchmark, we selected a representative set of 13 yeast
and 13 human diverse KEGG pathways [47] which
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contain a reasonable number of genes (between 10 and
30). The selected pathways are listed in Table 2. The
genes in these pathways were retrieved from KEGG
using the DBGET database retrieval system [48]. Assum-
ing that genes which belong to the same pathway are
often related to a similar biological process, the similar-
ity values calculated for this dataset should be related to
the BP GO aspect.
For the Pfam benchmark, we selected a set of clans

(groups of highly related Pfam entries) from the Sanger
Pfam database [49]. In order to maximize diversity in
the benchmarking dataset, yeast and human sequences
were retrieved from the 10 different Pfam clans listed in
Table 3. For each selected Pfam clan, we used all the
associated Pfam entry identifiers to query the Uniprot
database [50] and retrieve the corresponding human and

yeast gene identifiers. Assuming that genes which share
common domains in a Pfam clan often have a similar
molecular function, the similarity values calculated for
this second dataset should be related to the MF GO
aspect.
For each set of genes, an intra-set average gene simi-

larity was calculated as the average of all pairwise simi-
larity values within a set of genes. In contrast, an inter-
set average gene similarity was also calculated between
two sets Sa and Sb as the average of all similarity values
calculated for pairs of genes from each of the two sets
Sa and Sb. A discriminating power can then be defined
according to the ratio of the intra-set and inter-set aver-
age gene similarities (see Methods). We compared the
values obtained with the IntelliGO similarity measure
with the four other representative similarity measures

Table 2 List of yeast and human pathways used in this study

KEGG KEGG Yeast Name Nb
genes

Human Name Nb
genes

Category Subcategory Pathway Pathway

01100 Metabolism 01101 Carbohydrate
Metabolism

sce00562 Inositol phosphate
metabolism

15 hsa00040 Pentose and glucuronate
interconversions

26

01102 Energy
Metabolism

sce00920 Sulfur metabolism 13 hsa00920 Sulfur metabolism 13

01103 Lipid Metabolism sce00600 Sphingolipid
metabolism

13 hsa00140 C21-Steroid homone
metabolism

17

01105 Amino Acid sce00300 Lysine biosynthesis 13 hsa00290 Valine, leucine and isoleucine
biosynthesis

11

Metabolism sce00410 Alanine biosynthesis 8

01107 Glycan
Biosynthesis and

Metabolism

sce00514 O-Mannosyl glycan
biosynthesis

13 hsa00563 Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis

23

01109 Metabolism of
Cofactors and Vitamins

sce00670 One carbon pool by
folate

14 hsa00670 One carbon pool by folate 16

01110 Biosynthesis of
Secondary Metabolites

sce00903 Limonene and pinene
degradation

7 hsa00232 Caffeine metabolism 7

01120 Genetic
Information Processing

01121 Transcription sce03022 Basal transcription
factors

24 hsa03022 Basal transcription factors 38

hsa03020 RNA polymerase 29

01123 Folding, Sorting
and Degradation

sce04130 SNARE interactionst in
vesicular Transport

23 hsa04130 SNARE interactions in
vesicular transport

38

01124 Replication and
Repair

sce03450 Non-homologous
end-joining

10 hsa03450 Non-homologous end-
joining

14

hsa03430 Mismatch repair 23

01130 Environmental
Information Processing

01132 Signal
Transduction

sce04070 Phosphatidylinositol
signaling system

15

01140 Cellular Processes 01151 Transport and
Catabolism

sce04140 Regulation of
autophagy

17

01160 Human Diseases 01164 Metabolic
Disorders

hsa04950 Maturity onset diabetes of
the young

25

Total genes number 185 280

Non-IEA:IEA ratio 572:435
(1.3)

560:620
(0.9)

Table 2: The KEGG categories and subcategories are indicated for each pathway as well as its name and the number of genes it contains (KEGG version Dec
2009). The non-IEA:IEA ratio refers to Biological Process GO annotation of the complete set of genes for each species.
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described above, namely the Lord measure which is
based on the Resnick term-term similarity, the Al-
Mubaid measure which considers only the path length
between GO terms [31], a standard vector-based cosine
similarity measure, and the SimGIC measure which is
one of the graph-based methods described above (see
Section 1.2.3). For each dataset, we evaluated our mea-
sure firstly by comparing the intra-set similarity values
with those obtained with other measures, and then by
studying the effect of varying the list of weights assigned
to the ECs. We then compared the discriminating
power of the IntelliGO similarity measure with three
other measures. We also tested our measure on a refer-
ence dataset using a recently available on-line evaluation
tool.
2.4.2 Intra-set similarity
We produced all intra-set similarities with the IntelliGO
similarity measure using EC List1 (all weights set to 1.0,
see Table 1). We also implemented and tested four
other measures, namely Lord-normalized, Al-Mubaid,
the classical weighted-cosine measure, and the SimGIC
measure (see Methods) on the same sets of genes. The
results obtained with the KEGG pathways using BP
annotations are shown in Figure 2. For each KEGG
pathway (x-axis), the intra-set similarity values are
represented as histograms (y-axis). Similarity values vary
from one pathway to another, reflecting variation in the
coherence of gene annotations within pathways. Varia-
tions from one pathway to another are relatively uni-
form for all measures except the Lord measure. For
example, intra-set similarity values of the sce00410 path-
way are smaller than those of sce00300 for all measures
except for the Lord measure. The same is observed
between pathways hsa00920 and hsa00140.
A positive feature of the IntelliGO similarity measure

is that unlike other measures, all intra-set values are

greater than or equal to 0.5. The relatively low values
obtained with the weighted-cosine measure can be
explained by the numerous null pairwise values gener-
ated by this method. This is because this measure
assumes that the dimensions of the space vector are
orthogonal to each other. Hence, whenever two genes
lack a common annotation term their dot product is
null, and so also is their similarity value. Indeed, null
pairwise similarity values are observed in all pathways
except for one in human and three in yeast (details not
shown).

Table 3 List of yeast and human genes and Pfam clans used this study

Pfams clan accession (yeast) Nb genes Pfams clan name Pfams clan accession (human) Nb genes Pfams clan name

CL0328.1 15 2heme_cytochrom CL0099.10 18 ALDH-like

CL0059.12 13 6_Hairpin CL0106.10 8 6PGD_C

CL0092.9 8 ADF CL0417.1 9 BIR-like

CL0099.10 11 ALDH-like CL0165.8 5 Cache

CL0179.11 11 ATP-grasp CL0149.9 7 CoA-acyltrans

CL0255.6 7 ATP_synthase CL0085.11 12 FAD_DHS

CL0378.1 10 Ac-CoA-synth CL0076.9 18 FAD_Lum_binding

CL0257.6 18 Acetyltrans-like CL0289.3 6 FBD

CL0034.12 11 Amidohydrolase CL0119.10 7 Flavokinase

CL0135.8 14 Arrestin_N-like CL0042.9 10 Flavoprotein

Total genes number 118 100

Non-IEA:IEA ratio 121:366 (0.3) 144:309 (0.46)

Table 3: Clans are indicated by their accession identifier in the Sanger Pfam database (October 2009 release) and by the number of genes retrieved either in
yeast (left part) or in human (right part). Each clan contains several Pfam entries listed in the Pfam_C file at [57]. The non-IEA:IEA ratio refers to the Molecular
Function GO annotation of the complete set of genes for each species.

Figure 2 Intra-set similarities with the KEGG pathway dataset
using BP annotations. The intra-set similarity is calculated as the
mean of all pairwise gene similarities within a KEGG pathway, with
the four measures compared in this study, namely, IntelliGO (using
EC weight List1 ), Lord-normalized, Al-Mubaid, and Weighted-cosine.
A set of thirteen pathways were selected from the KEGG Pathway
database for yeast (top panel) and human (bottom panel) pathways.
Only BP annotations are used here (see also Table 2).
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Very similar results were obtained with the Pfam
benchmarking dataset which was analyzed on the basis
of MF annotations (Figure 3). Here again, the IntelliGO
similarity measure always provides intra-set similarity
values greater than or equal to 0.5, which is not the case
for the other measures. As before, the weighted-cosine
yields the lowest intra-set similarity values for the rea-
son explained above. This inconvenience led us to skip
this measure in later stages of the work. In summary,
our comparison of intra-set similarity values for two
benchmarking datasets demonstrates the robustness of
the IntelliGO similarity measure and its ability to cap-
ture the internal coherence of gene annotation within
predefined sets of genes.
2.4.3 Influence of EC weight lists
The second part of our evaluation is the study of the
effect of varying the weights assigned to ECs in the
IntelliGO similarity measure. As a first experiment, we
used four lists of EC weights (see Table 1). In List1, all
EC weights are equal to 1.0, which makes all ECs
equivalent in their contribution to the similarity value.
List1 was used above to compare the IntelliGO measure
with the four other similarity measures (Figure 2 and 3)
because these measures do not consider varying ECs
weights in the calculation. In List2, the EC weights have
been arbitrarily defined to represent the assumption that
the Exp category of ECs is more reliable than the Comp
category, and that the non-supervised IEA code is less
reliable than Comp codes. List3 excludes IEA code in
order to test the similarity measure when using only
supervised annotations. Finally, List4 represents the

opposite situation by retaining only the IEA code to test
the contribution of IEA annotations.
These four lists were used to calculate IntelliGO intra-

set similarity values on the same datasets as before. For
each dataset, the distribution of all pairwise similarity
values used to calculate the intra-set averages is shown
in Figure 4 with each weight list being shown as a histo-
gram with a class interval of 0.2. On the left of each his-
togram a Missing Values bar (MV) shows the number of
pairwise similarity values that cannot be calculated with
List3 or List4 due to the complete absence of annota-
tions for certain genes. As expected, since intra-set simi-
larity values with the IntelliGO measure are greater than
0.5, the highest numbers of pairwise values are found in
the intervals 0.6-0.8 and 0.8-1.0 for all weight lists con-
sidered here. For List1 and List2, the distribution of
values looks similar for all datasets. The effect of exclud-
ing the IEA code (List3 ) or considering it alone (List4 )
differs between the KEGG pathways and Pfam clans, i.e.
between the BP and MF annotations. It also varies
between the yeast and human datasets, reflecting the
different ratios of IEA versus non-IEA annotations in
these two species (see Figure 1 and Table 2 and 3). For
the yeast KEGG pathways, the most striking variation is
observed with List4 which gives a marked decrease in
the number of values in the 0.8-1.0 class interval, and a
significant number of missing values.
This means that for this dataset, using only IEA BP

annotations yields generally lower similarity values and

Figure 3 Intra-set similarities with the Pfam clan dataset using
MF annotations. The intra-set similarity is calculated for all genes
of a given species within a Pfam clan using MF annotations. Two
collections of ten Pfam clans were selected from the Sanger Pfam
database to retrieve yeast (top panel) and human (bottom panel)
genes belonging to these clans (see also Table 3).

Figure 4 Influence of various EC weight lists on the
distribution of pairwise similarity values obtained for intra-set
similarity calculation. KEGG pathway datasets are handled with BP
annotations, and Pfam clans with MF annotations. The MV bar is for
Missing Values and represents the number of pairwise similarity
values that cannot be calculated using List3 or List4 due to the
missing annotations for certain genes. Pairwise similarity intervals
are displayed on the × axis of the histograms, while values on the y
axis represent the number of pairwise similarity values present in
each interval.
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excludes from the calculation those genes without any
IEA annotation (11 genes). This reflects the relatively
high ratio (1.3) of non-IEA to IEA BP annotations in
this dataset, and in yeast in general (2.0). A similar
behavior is observed with the human KEGG pathways,
not only with List4 but also with List3. The higher Miss-
ing Values bars in this dataset results from the high
number of genes having either no IEA BP annotations
(49 genes) or only IEA BP annotations (68 genes). This
type of analysis shows that for such a dataset, IEA anno-
tations are useful to capture intra-set pairwise similarity
but they are not sufficient per se.
For the yeast and human Pfam clans, the distribution

of values obtained with List3 is clearly shifted towards
lower class intervals and Missing Values bars. This
reflects the extent of the IEA MF annotations, and their
important role in capturing intra-set similarity in these
datasets (the ratios between non-IEA and IEA MF anno-
tations are 0.3 and 0.46 for the yeast and human Pfam
clan datasets, respectively). A total of 19 genes are anno-
tated only with an IEA code in yeast, and 29 in human.
Concerning List4, using only IEA MF annotations does
not lead to large changes in the value distribution when
compared to List1 and List2. This suggests that these
annotations are sufficient to capture intra-set pairwise
similarity for such datasets. However, a significant num-
ber of missing values is observed in the yeast Pfam clan
dataset, with 20 genes lacking any IEA MF annotations.
In summary, using customized weight lists for evi-

dence codes in the IntelliGO measure is a useful way to
highlight the contribution that certain types of annota-
tions make to similarity values, as shown with the Pfam
clan datasets and IEA MF annotations. However, this
contribution clearly depends on the dataset and on the
considered GO aspect. Other weight lists may be worth
considering if there is special interest for certain ECs in
certain datasets. In this study, we decided to continue
our experiments with List2 since this weight list
expresses the commonly shared view about the relative
importance of ECs for gene annotation.
2.4.4 Discriminating power
The third step of our evaluation consisted of testing the
Discriminating Power (DP ) of the IntelliGO similarity
measure and comparing it with three other measures
(Lord-normalized, Al-Mubaid, and SimGIC). The calcu-
lation of a discriminating power is introduced here to
evaluate the ability of a similarity measure to distinguish
between two functionally different sets of genes. The DP
values for these three measures for the two benchmark-
ing datasets are plotted in Figure 5 and 6. For the
KEGG pathways and BP annotations (Figure 5), the
IntelliGO similarity measure produces DP values greater
than or equal to 1.3 for each tested pathway, with a
maximum of 2.43 for the hsa04130 pathway. In contrast,

the DP values obtained with the normalized Lord mea-
sure oscillate around 1.0 (especially for the yeast path-
ways), which is not desirable. The Al-Mubaid and
SimGIC measures generate rather heterogeneous DP
values ranging between 1.0 and 2.5, and 0.2 and 2.3,
respectively. Such heterogeneity indicates that the discri-
minative power of these measures is not as robust as
the IntelliGO measure.
The results are very similar and even more favorable

for the IntelliGO similarity measure when using Pfam
clans and MF annotations as the benchmarking dataset

Figure 5 Comparison of the inter-set discriminating power of
four similarity measures using KEGG pathways and BP
annotations. The DP values obtained with the IntelliGO, Lord-
normalized, Al-Mubaid, and SimGIC similarity measures are plotted
for each KEGG pathway (top panel for yeast and bottom panel for
human).

Figure 6 Comparison of the inter-set discriminating power of
four similarity measures using Pfam clans and MF annotations.
The DP values obtained with the IntelliGO, Lord-normalized, Al-
Mubaid, and SimGIC similarity measures are plotted for each Pfam
clan (yeast genes on top and human genes at bottom).
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(Figure 6). In this case, all of the IntelliGO DP values
are greater than 1.5, and give a maximum of 5.4 for
Pfam clan CL0255.6. The three other measures give
either very non discriminative values (e.g. Lord-normal-
ized for yeast Pfam clans) or quite heterogeneous pro-
files (all other values). Overall, these results indicate that
the IntelliGO similarity measure has a remarkable ability
to discriminate between distinct sets of genes. This pro-
vides strong evidence that this measure will be useful in
gene clustering experiments.
2.4.5 Evaluation with the CESSM tool
A complementary evaluation was performed using the
recent Collaborative Evaluation of GO-based Semantic
Similarity Measures (CESSM) tool. This on-line tool
[51] enables the comparison of a given measure with
previously published measures on the basis of their
correlation with sequence, Pfam, and Enzyme Classifi-
cation similarities [52]. It uses a dataset of 13,430 pro-
tein pairs involving 1,039 proteins from various
species. These protein pairs are characterized by their
sequence similarity value, their number of common
Pfam domains and their degree of relatedness in the
Enzyme Classification, leading to the so-called SeqSim,
Pfam and ECC metrics. Semantic similarity values, cal-
culated with various existing methods, are then ana-
lyzed against these three biological similarity
indicators. The user is invited to upload the values cal-
culated for the dataset with his own semantic similarity
measure. The CESSM tool processes these values and
returns the corresponding graphs, a table displaying
the Pearson correlation coefficients calculated using
the user’s measure as well as 11 other reference mea-
sures along with calculated resolution values for each
measure.
We present in Table 4 only the results obtained for

correlation coefficients as they are the most useful for
comparison purposes. The values obtained with the
IntelliGO measure using the MF annotation and includ-
ing or excluding GO terms with IEA evidence codes are

shown in the last column. When the whole GO annota-
tion is considered (first three lines), the correlation coef-
ficients range from 0.40 for the SeqSim metrics to 0.65
for ECC metrics. The value obtained with the ECC
metrics is higher than all other values reported for this
comparison, the best being the SimUI measure (0.63).
For the Pfam and SeqSim metrics, the correlation coeffi-
cients obtained with the IntelliGO measure are lower
than the best values obtained from five and seven other
measures, respectively, the best values being obtained
from the SimGIC measure (0.63 and 0.71, respectively).
When IEA annotations are excluded (the final three
lines), the IntelliGO correlation coefficients are lower
for the ECC and Pfam metrics, as observed with most
other measures, but slightly higher for the SeqSim
metrics. This limited increase or absence of decrease is
observed with two other measures (SimUI, JA), whereas
much larger increases are seen for the three Max var-
iants of the Resnick, Lord, and Jaccard methods (RM,
LM, JM). Hence, it appears that in this evaluation, the
IntelliGO measure gives correlation values that are
intermediate between those obtained with poor (RA,
RM, LA, LM, JA, JM) and high (SimGIC, SimUI, RB,
LB, JB) performance methods.

3 Discussion
Considering the growing number of semantic similarity
measures, an important aspect of this study is the pro-
posal of a method for estimating and comparing their
performance. So far, rather heterogeneous and non-
reproducible strategies have been used to validate new
semantic similarity measures [9]. For example, it is gen-
erally assumed that gene products displaying sequence
similarity should display similar MF annotations. This
hypothesis was used by Lord et al. to evaluate their
semantic similarity measure by exploring the correlation
between gene annotation and sequence similarity in a
set of human proteins [2]. They found a correlation
between annotation and sequence similarity when using

Table 4 Evaluation results obtained with the CESSM evaluation tool

Metrics Method

SimGIC SimUI RA RM RB LA LM LB JA JM JB IntelliGO

ECC 0.62 0.63 0.39 0.45 0.60 0.42 0.45 0.64 0.34 0.36 0.56 0.65

Pfam 0.63 0.61 0.44 0.18 0.57 0.44 0.18 0.56 0.33 0.12 0.49 0.48

All EC SeqSim 0.71 0.59 0.50 0.12 0.66 0.46 0.12 0.60 0.29 0.10 0.54 0.40

ECC 0.58 0.57 0.37 0.47 0.48 0.38 0.51 0.51 0.37 0.46 0.51 0.48

Pfam 0.58 0.55 0.43 0.44 0.52 0.42 0.42 0.51 0.33 0.34 0.45 0.43

Non-IEA EC SeqSim 0.66 0.59 0.46 0.48 0.65 0.41 0.40 0.59 0.31 0.36 0.52 0.43

Table 4: Pearson linear correlation coefficients are displayed for the ECC (Enzyme Classification Comparison), Pfam, and sequence similarity metrics (SeqSim). The
Molecular Function GO annotation is used including (first three rows) or excluding (last three rows) annotation terms with IEA evidence codes. The column
headings are listed as: SimUI: Union Intersection similarity; RA: Resnick Average; RM: Resnick Max; RB: Resnick Best match; LA: Lord Average; LM: Lord Max; LB:
Lord Best match; JA: Jaccard Average; JM: Jaccard Max; JB: Jaccard Best match.

Benabderrahmane et al. BMC Bioinformatics 2010, 11:588
http://www.biomedcentral.com/1471-2105/11/588

Page 12 of 16



the MF aspect of GO annotations, and this was later
confirmed by Schlicker et al. [28] using a different simi-
larity measure. These authors also tested their similarity
measure for clustering protein families from the Pfam
database on the basis of their MF annotations. They
showed that Pfam families with the same function did
form rather well-defined clusters. In this frame of mind,
the CESSM tool used in this study (Section 2.4.5) is a
valuable initiative towards standardizing the evaluation
of semantic similarity measures.
Another group of evaluation techniques relies on the

hypothesis that genes displaying similar expression
profile should share similar functions or participate in
similar biological processes. This was used by Chabalier
et al. [41] to validate their similarity measure. These
authors were able to reconstitute networks of genes pre-
senting high pairwise similarity based on BP annotations
and to characterize at least some of these networks with
a particular transcriptional behavior and/or some
matching with relevant KEGG pathways.
Using pathways as established sets of genes displaying

functional similarity has also become an accepted way
to validate new similarity measures. The analyses per-
formed by Guo et al. [35] showed that all pairs of pro-
teins within KEGG human regulatory pathways have
significantly higher similarity than expected by chance
in terms of BP annotations. Wang et al. [29] and Al-
Mubaid et al. [26] have tested their similarity measure
on yeast genes belonging to some pathways extracted
from the Saccharomyces Genome Database. In the for-
mer study, only MF annotations were considered and
the authors’ similarity measure led to clustering genes
with similar functions within a pathway much more effi-
ciently than a measure based on Resnik’s similarity
between GO terms. In the latter study, the values
obtained for pairwise gene similarity using BP annota-
tions within each studied pathway were also more con-
sistent than those obtained with a measure based on
Resnik’s similarity.
In our study, two benchmarking datasets of KEGG

pathways and Pfam clans were used to test the perfor-
mance of the IntelliGO similarity measure. Expres-
sions for intra-set similarity and inter-set
discriminating power were defined to carry out this
evaluation. The testing hypotheses used here are that
genes in the same pathway or Pfam clan should share
similar BP or MF annotations, respectively. These
datasets contain 465 and 218 genes, respectively,
which is less then the CESSM evaluation dataset
(1,039 proteins). However, the calculation of intra-set
and inter-set similarities led to 67,933 pairwise

comparisons which is larger than in the CESSM data-
set (13,340 protein pairs).

4 Conclusions and perspectives
This paper presents IntelliGO, a new vector-based
semantic similarity measure for the functional compari-
son of genes. The IntelliGO annotation vector space
model differs from others in both the weighting scheme
used and the relationships defined between base vectors.
The definition of this novel vector space model allows
heterogeneous properties expressing the semantics of
GO annotations (namely annotation frequency of GO
terms, origin of GO annotations through evidence
codes, and term-term relationships in the GO graph) to
be integrated in a common framework. Moreover, the
IntelliGO measure avoids some inconveniences encoun-
tered with other similarity measures such as the pro-
blem of aggregating at best term-term similarities. It
also solves rigorously the problem of multiple depth
values for GO terms in the GO rDAG structure.
Furthermore, the effect of annotation heterogeneity
across species is reduced when comparing genes within
a given species thanks to the use of IAF coefficients
which are constrained to the given species. Our results
show that the IntelliGO similarity measure is robust
since it copes with the variability of gene annotations in
each considered set of genes, thereby providing consis-
tent results such as an intra-set similarity value of at
least 0.50 and a discriminative power of at least 1.3.
Moreover, it has been shown that the IntelliGO similar-
ity measure can use ECs to estimate the relative contri-
butions of GO annotations to gene functional similarity.
In future work, we intend to use our similarity measure
in clustering experiments using hierarchical and K-
means clustering of our benchmarking datasets. We will
also test co-clustering approaches to compare functional
clustering using IntelliGO with differential expression
profiles [24,53].

5 Methods
The C++ programming language was used for develop-
ing all programs. The extraction of the LCAs and the
SPLs of pairs of GO terms was performed by querying
the GO relational database with the AmiGO tool [54].

5.1 Reference Similarity Measures
The four measures compared in our evaluation were
implemented using the following definitions. Let g1 and
g2 be two gene products represented by collections of
GO terms g1={t1,1, ..., t1,i, ..., t1,n} and g2 = {t2,1, ..., t2,i, ...,
t2,m}. The first measure is Lord’s similarity measure [2],
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which is based on Resnik’s pairwise term similarity. For
each pair of terms, ti and tj, the Resnik measure is
defined as the information content (IC) of their LCA:

SIM t t IC LCA t tnik i j i jRes ( , ) ( ( , )).= (21)

Then, the Lord similarity measure between g1 and g2
is calculated as the average of the Resnik similarity
values obtained for all pairs of annotation terms:

SIM g g
SIM t t

n mLord

nik i j
j

m

i

n

( , )
( , )

*
.

, ,

1 2

1 2
11= == ∑∑ Res (22)

Because this measure yields values greater than 1.0, we
normalize the values obtained for a set of genes or for a
collection of sets by dividing by the maximal value.
The second measure used here was introduced by Al-

Mubaid et al. [31]. This method first calculates the
shortest path length (PL) matrix between all pairs of
GO terms annotating the two genes, i.e. PL (t1,i,t2,j), ∀i
Î[1,n], ∀j Î[1,m]. It then calculates the average of all
PL values in the matrix, which represents the average
PL between the two gene products:

PL g g
PL t t

n m

i j
j

m

i

n

( , )
( , )

*
.

, ,

1 2

1 2
11= == ∑∑ (23)

Finally, a transfer function is applied to this PL value
to convert it into a similarity value. As this similarity
monotonically decreases when the PL increases, the
similarity value is obtained by:

SIM g g eAl Mubaid
f PL g g

−
−=( , ) ,* ( , )

1 2
1 2 (24)

with f = 0.2 according to the authors.
The third measure used here is the classical weighted-

cosine measure, whereby each gene is represented by its
annotation vector in an orthogonal VSM. Each compo-
nent represents a GO term and is weighted by its own
IAF value (wi = IAF (ti)) if the term annotates the gene,
otherwise the weight is set to 0.0. Then, the weighted-
cosine measure is defined in (20) but with the classical

dot product expression in which
 
g g wii1 2

2⋅ = ∑ , for

all terms ti present in both annotation vectors.
The last measure used here is SimGIC (Graph Infor-

mation Content), which is also known as the Weighted
Jaccard measure [36]. This measure is available in the
csbl.go package within R Bioconductor [55], [56]. Given
two gene products g1 and g2 represented by their two
extended annotation sets (terms plus ancestors), the
semantic similarity between these two gene products is
calculated as the ratio between the sum of the

information contents of GO terms in the intersection
and the sum of the information contents of GO terms
in the union:

SimGIC g g
IC t

IC t

t g g

t g g
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∑
∑

(25)

5.2 Intra-Set and Inter-Set Similarity
Consider S, a collection of sets of genes where S = {S1,
S2, ..., Si} (a set Sk can be a KEGG pathway or a Pfam
clan). For each set Sk, let {gk1, gk2, ....., gkn} be the set of
n genes comprised in Sk. Let Sim(g, h) be a similarity
measure between genes g and h. The intra-set similarity
value is defined for a given set of genes Sk by:

Intra Set Sim S
Sim g g

n
k

ki kj
j

n

i

n

− −
===
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( )

( , )
.11

2
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For two sets of genes Sk and Sl composed of n and m
genes respectively, we define the inter-set similarity
value by:

Inter Set Sim S S
Sim g g

n mk l

ki lj
j
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n
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*
.11 (27)

Note that when the Sim function takes values in the
interval 0[1], so do the Intra_Set_Sim and Inter_Set_Sim
functions. Finally, for a given collection S composed of
p sets of genes, the discriminative power of the semantic
similarity measure Sim with respect to a given set Sk in
S will be defined as:

DP S
p Intra Set Sim S

Inter Set Sim S S
Sim k

k

k i
i i

( )
( ) ( )

( , )
,

= − − −

− −= ≠

1

1 kk

p∑
. (28)
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