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Testing for mean and correlation changes in
microarray experiments: an application for
pathway analysis
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Abstract

Background: Microarray experiments examine the change in transcript levels of tens of thousands of genes
simultaneously. To derive meaningful data, biologists investigate the response of genes within specific pathways.
Pathways are comprised of genes that interact to carry out a particular biological function. Existing methods for
analyzing pathways focus on detecting changes in the mean or over-representation of the number of differentially
expressed genes relative to the total of genes within the pathway. The issue of how to incorporate the influence
of correlation among the genes is not generally addressed.

Results: In this paper, we propose a non-parametric rank test for analyzing pathways that takes into account the
correlation among the genes and compared two existing methods, Global and Gene Set Enrichment Analysis
(GSEA), using two publicly available data sets. A simulation study was conducted to demonstrate the advantage of
the rank test method.

Conclusions: The data indicate the advantages of the rank test. The method can distinguish significant changes in
pathways due to either correlations or changes in the mean or both. From the simulation study the rank test out
performed Global and GSEA. The greatest gain in performance was for the sample size case which makes the
application of the rank test ideal for microarray experiments.

Background
DNA microarrays are powerful tools used for the analy-
sis of genome-wide gene expression. The dimensionality
of commercially available platforms has dramatically
increased over the years. The technology has evolved
rapidly and now provides a relatively accurate method
to determine what genes are differentially regulated as a
result of a particular condition. Although the technology
is intended to provide a means to understand the
response of a system as a whole, the interpretation of
DNA microarray data has generally been carried out by
analysis of individual genes for differential expression.
With the broad goal of understanding the biology of the
system, the evaluation of single genes is impractical.
Reducing the dimensionality of microarray data

through the analysis of pathways or gene sets related to

biological functions, instead of analysing individual
genes, will facilitate deriving biologically meaningful
experimental results. However, classical multivariate
approaches are generally not appropriate statistical tools
for the analysis of pathways because the numbers of
samples in microarray experiments are often very small,
generally ranging from three to ten per experimental
condition. As such, it is difficult to ascertain the nature
of the underlying distribution. In 2002, an approach
using Gene Ontology (GO) was proposed that assigns
genes into groups and looks for over-representation of
differentially expressed genes within these sets [1,2].
Since that time over 20 such tools have been developed
[3-10].
The Fisher’s Exact Test is one of the most popular

methods underlying most software investigating over-
representation of genes from a gene list for pathways,
terms or ontologies. However, the assumption that the
probes within pathways are independent is not satisfied
since genes within pathways are highly associated.
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Moreover, an over-representation approach, such as the
Fisher’s Exact Test, focuses only on the number of sig-
nificantly expressed probes, but ignores the magnitude
of changes of the fluorescence intensity.
The Gene set enrichment analysis (GSEA) [5] method

is becoming more commonly used for pathway analysis.
This technique, introduced by Moothe et al. [4] involves
the application of GSEA to pre-determined gene sets to
identify differences in expression between normal and
diseased patients. The methodology was later modified
by Subrammanian et al [5]. GSEA consists of ranking
the genes on the microarray, g1, g2, ..., gM, by their sig-
nal-to-noise ratio(SNR),
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Where ̂ i and ̂ i are the estimated mean and stan-
dard deviations of normalized signal intensity for sample
i, i = 1, 2.
Two empirical cumulative distribution functions are

then calculated for each gene set, G as follows,
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where NG represents the number of genes in the gene
set G.
The difference between the two empirical cumulative

distribution functions is calculated for each gene in the
gene set. The maximum difference across all the genes
in the gene set is taken to be the enrichment score. A
permutation-based p-value is then calculated for each
gene set which is used to identify significant alterations
in expression across experimental conditions. A high
enrichment score is achieved when a gene set contains a
large number of highly ranked genes.
GSEA incorporates the magnitude of the gene fluores-

cence intensity values into its model. However, as dis-
cussed by Damian and Gorfine [11], GSEA is hindered
by several factors. The primary concern is that the
power of the test is a function of the number of genes
in the pathway. Thus the method may not work well
with small gene sets.
An alternative approach to examine pathway-asso-

ciated effects is the Global test. This method was origin-
ally proposed to test correlation structures due to
familial aggregation in pedigrees by Houwelingen et al.
in 1995 [12,13]. This methodology applies a goodness-
of-fit test for a generalized linear model having a

canonical link function with a known dispersion para-
meter. In 2003, familial aggregation testing was adapted
by Goeman et al. for microarray data analysis [8] and
was designed to determine whether the common expres-
sion pattern of genes within a pre-defined set is signifi-
cantly related to experimental condition. A generalized
linear model is used to estimate a statistic for each gene
set,
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where Y represents the binary variable indicating the
presence or absence of the treatment condition, h is a
link function, for example the logit function, and inter-
cept a. The xij represents an element of the expression
matrix of samples i and genes j and the regression coef-
ficient bj for gene j (j = 1, 2, ..., NG). The Q-statistic for
a gene set is given by
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where R is the covariance matrix of the expression
data and μ2 is the second central moment of Y under
the null hypothesis. A high Q value is achieved when at
least one bj is significantly different than zero. However,
the Global Test makes a distributional assumption that
the regression coefficients are from the same normal
distribution which is unlikely to be true.
In this paper we develop a rank based test, the Rank

Test that takes into account the magnitude of the inten-
sity value as well as the correlation between genes
within a specific pathway. The advantage of these tests
is that no assumptions on distribution or independence
are made. Genes in a pathway are first aligned by sub-
tracting the median expression value for the combined
treatment and control groups. The aligned expression
values are then ranked within each subject and the vec-
tor of average ranks is calculated for each treatment.
The distance between the two treatments is calculated
and a permutation analysis is used to obtain a p-value
for each pathway. The R Code for the Rank Test will be
made available upon request. We also investigate a re-
standardized version of the Rank Test (Modified Rank
Test) where the observed distance is centered and scaled
based on the mean and standard deviation from random
subsets of genes of equal size.
Using two publicly available microarray datasets, we

empirically evaluated Global and GSEA with the Rank
Test and the Modified Rank Test. We also generated
simulated data to test the reliability of each of the
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pathway analysis applications. Both real and simulated
data were used to demonstrate that the rank based test
has the highest, or nearly the highest power among the
various techniques evaluated, especially when changes in
the correlation structure of the pathway occurred. The
rank based tests are robust and perform well under a
wide range of assumptions.

Results and Discussion
Data Description
The Rank Test and the re-standardized Rank Test were
compared with the Global test and with GSEA using
two publicly available data sets. The first expression set
is a mouse developmental toxicology experiment con-
ducted by Dong et al. [14] using Agilent high-density
oligonucleotide chips. The objective of the study was to
investigate the effects of a thyroid disrupting chemical
on the livers of developing pups. Pregnant dams were
treated with 6-propyl-2-thiouracil (PTU) to produce
hypothyroid pups. Livers were collected from control
and PTU treated pups and RNA was labelled and hybri-
dized to Agilent 22K arrays against a universal mouse
reference RNA. The expression data for this experiment
are available from the European Bioinformatics Institute
(EBI) repository (accession number E-MEXP-1091). In
the second dataset, Halappanavar et al. [15] investigated
the effects of mainstream tobacco smoke (MTS) on glo-
bal transcription in the mouse lung. Male C57B1/CBA
mice were exposed to MTS from two cigarettes per day,
5 days/week, for 6 or 12 weeks. Agilent high density
DNA microarrays were used to characterize global gene
expression changes in whole lung. The data were
retrieved from the National Centre for Biotechnology
Information (NCBI) database (accession number
GSE12930). We used Agilent arrays in the present
experiment because this is the technology that we use in
our facility. However, the findings of this work, and the
algorithms developed, should apply to data from other
DNA microarray platforms using different probe
technologies.

Data from EBI: E-MEXP-1091
In the Dong et al. [14] experiment, pregnant dams
were rendered hypothyroid by treatment with 0.1%
PTU in drinking water, from day 13 post-conception
until weaning. Livers were collected from control and
PTU treated pups at post-natal day (PND) 15. Each
treatment group contained 5 males and 5 females.
Treating gender as a block factor, we obtain two data
sets, one for males and one for females. Analysis of the
Agilent array consisted of 20651 probes which yielded
194 KEGG (Kyoto Encyclopedia of Genes and Gen-
omes) pathways [16,17]. Pathways were constructed
using the mgug4121a.db R library and consisted of

only those pathways containing two or more genes
with no missing expression values.
Using a MAANOVA [18] with an FDR corrected p-

value of 0.10, Dong et al. [14] discovered 96 differen-
tially regulated genes. Of these, 72 genes encoded pro-
teins of known function. Approximately 50% (34 genes)
belonged to various metabolism pathways (as expected
as liver is the primary site of metabolism). A second
large group of genes were part of development pathways
(10 genes), as expected as the treatment was delivered
across a broad developmental time frame. Using ONTO
express [19], Dong et al. [14] found the most affected
biological processes included metabolism, cell growth
and maintenance, development, immune response, tran-
scription, and signal transduction. However, no specific
KEGG pathways were presented in the paper as affected
by the treatment.
We used the Dong et al. data to investigate the KEGG

pathways that may be affected by the treatment. For the
male and female expression sets, Global, GSEA, Rank
and Modified Rank tests were applied to identify differ-
ences between the control and exposed groups for the
194 KEGG pathways. VENN diagrams using VENNY
[20] were generated to compare the results within gen-
der. The 0.01 significance level was chosen so that the
Pre-Family Error Rate (PFE), i.e. the expected number of
errors in the family, would be 1.94 for each method.
Within males, a total of 41 pathways were significant,
and 24 were unique to one of the 4 methods with only
one common pathway (C21-Steroid hormone metabo-
lism, Additional file 1: Table S1). Females exhibited 26
differential pathways, 12 of which were significant at the
0.01 level (Additional file 1: Table S1). The results for
the male and female data are summarized in Figures 1
and 2.
Assuming no gender differences with respect to the

identified pathways, VENN diagrams were generated.
The striking observation is that GSEA had no common
differential pathways for males and females, where the
Global, Rank and Modified Rank methods had 7, 9, and
6 common pathways respectively. Of the 9 common
pathways for the Rank test five contained at least one
gene that was validated by RT-PCR in the Dong et al.
study. For the Global method two of the seven pathways
contained genes that were validated. For the Modified
Rank test four of the six pathways contained at least
one gene that was validated. Thus, a fair proportion of
these pathways contain at least one gene validated by an
alternative technology, providing some degree of confi-
dence in the involvement of these pathways in response
to PTU exposure.
The Endocrine signalling pathway, labelled GnRH was

in Top 5 pathways ranked by p-value for GSEA in the
male results. The liver is not the site of GnRH
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production and thus we don’t expect that this pathway
is affect per se. However, many of the genes that are
found in this pathway are involved in numerous other
signal transduction pathways. For example, the gene
Egfr (epidermal growth factor receptor) is part of 12
other KEGG pathways, Protein Kinase C (Prkca) is a
node in 23 other KEGG pathways, Ras is part of 20 (not
including pathways related to human disease), Jun is
part of 9, and various genes in the GnRH pathway that
were differentially expressed are part of MAPK signal-
ling pathways. This, in combination with the lack of
change in the GnRH receptor itself, suggest that this
pathway was found because of a broad level of change
in signal transduction pathways, rather than a direct
effect on GnRH signalling. Thus, the identification of
this pathway is a good example demonstrating that
responsive pathways need to be carefully scrutinized and
biologically validated.
We generally observed two types of differences

between control and treatment groups that affected
gene rankings within pathways. Most gene set methods
detected changes in mean intensities. For the C21-Ster-
oid hormone metabolism pathway (Figure 3) of the 13

genes in the pathway, Akr1c18 and Hsd3b1 have fold
changes less than -2.5 for both genders and for the
males, Hsd11b1 and Hsd3b2 have fold changes greater
than 1.6. This pattern implies that rankings of genes in
these pathways diverge between control and treatment
groups. However, the changes in this pathway in the
female dataset were not of sufficient magnitude to be
found significant by the GSEA test. Previous work has
shown a significant increase in progesterone in the
plasma of female rats that were rendered hypothyroid
by chemical treatment (e.g., Tohei [21]). The primary
gene involved in the maintenance of progesterone
homeostasis is Akr1c18 (also known as 20-alpha-hydro-
xysteroid dehydrogenase). Dong et al.’s data indicate a
6-7 fold down-regulation in both males and females for
this gene in hypothyroid livers of developing mice (Fig-
ure 1). Akr1c18 is specific to the C21 steroid hormone
metabolism pathway. The other gene that shows consis-
tent down-regulation in both sexes is 3-beta-hydroxy-
delta 5-steroid dehydrogenase (Hsd3b1/Hsd3b2), which
also participates in the maintenance of progesterone
homeostasis. Additional genes in the C21 steroid hor-
mone metabolism pathway are altered by the treatment,

Figure 1 Summary of the results from the male data for the 4 methods.
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but show smaller fold changes or exhibit differences
between males and females. However, two strong hits in
this pathway in combination with published evidence in
the literature demonstrating disruptions in progesterone
levels as a result of altered thyroid hormone levels pro-
vide evidence to suggest that genes operating in this
pathway are affected by the treatment either directly or
indirectly in the livers of developing mice. Thus, we
argue that the GSEA may have failed to identify C21
steroid hormone metabolism as an affected pathway.
A second type of difference between groups is due to

change in the correlation between genes within a path-
way. To examine the correlation between genes, the
ranks of relative expression for each gene is established.
Any two genes can be positively or negatively correlated
or not correlated. One would expect that genes within a
pathway to be correlated. If there is a shift in these cor-
relations as a result of treatment this may affect this
relationship among the genes. One example is the
alpha-Linolenic acid metabolism pathway (Figure 4).
The distribution of gene correlations for the control
samples has two modes approximately at -0.5 and at 0.4.
The distribution of gene correlations for the treated

samples is different having a single mode close to 0.
This suggests that there are more genes that are now
correlated compared to the control distribution. The
Rank Test identified a significant difference for the male
and female datasets and the Global Test identified a sig-
nificant difference for the males, but the other statistics
failed to detect a significant difference. In both genders,
Fads2 was greater than 2 fold down-regulated and
Pla2g12a was greater than 1.5 up-regulated. Also, Acox1
for males was greater than 1.5 up-regulated. In terms of
changes in correlations, Pla2g2c and Pla2g12b for the
males samples had a spearman correlation of -0.8 for
the controls and 0.6 for the treated samples, whereas for
the females genes Pla2g4a and Pla2g2e had correlations
of -0.9 and 0.8 for treated and controls. In all, there
were 13 of 91 comparisons that had differences in corre-
lation greater than 1.4. The distribution of correlations
for the females also exhibited a similar pattern as in Fig-
ure 4 providing additional validation for disruption of
this pathway. Disruptions in TH levels are known to
result in alterations in fatty acid metabolism. A relation-
ship between TH and alpha linolenic acid in the liver
has previously been established [22,23]. Thus, the

Figure 2 Summary of the results from the female data for the 4 methods.
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identification of this pathway is likely to be biologically-
relevant.
The aim of the test that we have developed is to gen-

erate hypotheses based on microarray experimental data
to assist in prioritizing follow-up experiments. Without
extensive biological validation it is not possible to com-
ment on whether these pathways have been correctly
identified. Thus, we argue that the above pathways may
be promising candidates for additional research. We
describe one further biological investigation below, but a
more powerful validation exercise is the simulation ana-
lysis described in the last section of this paper.

Data from NCBI: GSE12930
Halappanavar et al. [15] used DNA microarrays to
examine global transcriptional changes in whole lung
tissues derived from mice exposed to mainstream
tobacco smoke (MTS) for 6 or 12 weeks. From the
MAANOVA analysis, 79 genes were either up- or
down-regulated following MTS exposure. Among the 79
statistically differentially expressed genes cytochrome
P450, family 1 (Cyp1a1), heme oxygenase (decycling)1
(Hmox1) and NAD(P)H dehydrogenase, quinine 1
(Nqo1) were validated using RT-PCR. In addition, cyto-
kine interleukin 6 (IL-6) mRNA was upregulated along-
side its antagonist, suppressor of cytokine signalling
(SOCS3). These genes had also been reported in

Figure 3 C21-Steroid hormone metabolism pathway. Parallel co-ordinate plots of the genes in the C21-Steroid hormone metabolism
pathway are displayed. The genes Akr1c18 and Hsd3b1 are identified by red lines.

Figure 4 Changes in gene correlations in the Alpha-Linolenic
acid metabolism pathway. Histograms of the gene correlations for
the control and treated samples are presented with the histogram
of the differences in correlation between the controls and treated.
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previous smoke-exposure studies. The authors examined
IL-6 protein levels to confirm the finding, as well as
some of its downstream targets. In this study, Pathway
Studio (version-5, Ariadne Genomics Inc.) was used to
identify pathways. From their analysis they identified a
network of two core modules relating to the xenobiotic
response pathway, and inflammation, cell survival and
proliferation pathway.
The pathways identified at the 0.01 significance level

by either the Rank Test, Global Test, GSEA and the
Modified Rank test for the six week exposure were also
identified by the respective methods in the twelve week
exposure (Additional file 2: Table S2), with the excep-
tion of four pathways (Global: Basal transcription fac-
tors; Modified Rank Test: Glutamate metabolism, PPAR
signalling pathway and Glioma). The Global test was the
most sensitive statistic identifying 7 and 22 significant
pathways followed by the Rank Test with 1, 17 and the
Modified Rank Test with 6 and 11 significant pathways
for the six and twelve week exposure respectively. The
GSEA method did not identify any significant pathways.
Of the 29 pathways declared significant, five pathways
(Metabolism of xenobiotics by cytochrome P450, Tryp-
tophan metabolism, Porphyrin and chlorophyll metabo-
lism, Biosynthesis of steroids and Arachidonic acid
metabolism) contained at least 1 gene that was RT-PCR
validated in the Halappanavar et al. [15]. The gene Ptgs2
in the Arachidonic acid metabolism pathway was the
only pathway that was unique to one method, the Glo-
bal Test.
Thus, the general findings of the reanalysis of these

publicly-available experimental data provide compelling
support to the advantages of rank and global methods.
However, without extensive RT-PCR validation, it is not
possible to know if these methods identify more path-
ways, or are more accurate than the GSEA approach. As
such, in the following sections we apply a simulation
experiment to test these statistics.

Simulation
The issues with empirical evaluations of methods are
that we often do not know the underlying distributions
of the data, i.e., the truth. Simulation is a tool often
used to test new methodologies. Simulating data from
known distributions allows us to measure how one
method performs compared to another method under
different scenarios.
The simulation conducted in this paper provides

further evidence to support the ranking approach as a
more sensitive method. In the proceeding sections we
demonstrated that when the treatment and control sam-
ples come from the same population, the power of the
rank test is higher. As well, we will evaluate the

methods with respect to their ability to detect differ-
ences in mean, correlation or both.
For this simulation study only one pathway was gener-

ated. The number of probes in the pathway was set to
46 genes which is the average pathway size based on the
E-MEXP-1091 dataset. Control samples were generated
from a standard multivariate normal distribution N(0, I).
We considered a variety of changes to characterize the
treatment groups:

1) Mean change: the data were generated from the
same distribution as the control samples except that
the mean of the first three genes of the pathway was
set to equal 2;
2) Correlation change: the data were simulated from
a multivariate normal distribution N(0, Σ). The cov-
ariances between gene pairs in a pathway were set
equal to 0.9 and the variances equal to 1;
3) Correlation and mean change.

For each of the above conditions, sample sizes of 5,
20, and 30 per group were used. The simulation was
conducted as follows:

1) Data for the control and treated conditions for a
given scenario and sample size were generated and
then centered using the median.
2) The GSEA, Global and Rank Test tests were
applied and p-values were obtained using 1000 ran-
dom permutations (note that here the Modified
Rank Test is equivalent to the Rank Test).
3) Significance was determined if the p-value from
the test was less than or equal to 0.1.

For each scenario and sample size the above proce-
dure was repeated 1000 times and the estimated power
for each test was recorded in Table 1. A sample size of
five was chosen as this is a typical sample size for most
microarray experiments, while 20 and 30 replicates pro-
vide large sample properties of the statistic.
All three methods provide an error rate of approxi-

mately 0.1 in the no change case. The mean change
condition the Global Test had the largest observed
power (0.853) for a sample size of 5, followed by the
Rank Test with a power of 0.739. The Rank and Global
Test converged to a power of 1 at the 20 and 30 sample
size. The GSEA method had the lowest power for this
test case. Under the correlation change case, the Rank
test out-performed the Global and GSEA methods. The
Rank test achieved a power of 0.972 for the small sam-
ple size case whereas the other two methods had power
estimates that resemble the no change test case for the
small and large sample scenarios. When changes in the
mean and correlation occurred, the power for the Rank
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Test was 1 for all sample sizes. The Global test outper-
formed GSEA and the power of the test approached 1
with increasing sample size. GSEA did not perform well
when changes in correlation occurred, obtaining power
estimates one would expect by chance. Considering the
simulated conditions and sample sizes used the Rank
Test was the most powerful test.

Conclusions
Dimension reduction is critical in order to decipher
underlying biological phenomena in microarray studies.
Gene sets based on pathways or GO ontology provide
an ideal approach to reduce the dimensionality through
biological meaning. Working with pathways and gene
sets that cover the probe sets on the microarray plat-
form, rather than the individual probes, can dramatically
reduce dimensionality and aid in biological interpreta-
tion. Using this approach, the investigator can evaluate
datasets more readily compared to interpreting poten-
tially long lists of differentially expressed genes.
We describe a non-parametric methodology to test

whether or not a pathway exhibits a significant change
compared to a control. The method revealed a large
number of significantly changed pathways that were
identified more efficiently and potentially more accu-
rately than can be achieved by manually mining gene
lists derived from standard analyses. Results for interest-
ing pathways from this method are not impacted by
their environments or surroundings, which happen in
other existing methods (e.g. Fisher Exact’s Test and
GSEA). Moreover, our method takes into account
changes in both the mean and in the correlation. The
Rank and Modified Rank test demonstrate good perfor-
mance on real as well as on simulated microarray data
sets. However, the low degree of overlap between the

approaches suggests that the use of more than one tech-
nique may be beneficial when conducting analyses of
gene sets to avoid missing a novel result. In addition,
the investigator is urged to continue to use alternative
technologies (e.g., RT-PCR, protein analysis, etc.) to vali-
date findings.

Methods
Normalization
For the empirical evaluation using the E-MEXP-1091
and GSE12930 datasets, the lowess approach [24] was
used to normalize the data. Per-gene normalization was
then performed centering the expression data by the
median. Analysis was carried out on all genes regardless
of flags.

GSEA and Global
All analysis was conducted in R [25]. The Bioconductor
[26] library and the GSEA 1.0 R package [5] were used.
For the Global methodology, the Global test function in
the Global test library was used to identify significant
pathways.

Rank Test
Assume that there are M genes belonging to a pathway.
Subtract from each gene expression value, the median
expression value obtained from the combined treatment
and control groups. This process aligns the data thereby
inducing subsequent analyses to be sensitive to changes
in the mean. Next, for the jth subject in group i, let ωij,
represent the vector of ranks of the aligned intensity
values of the M genes in the pathway. Set

m m
n nC T j

j

n

j

j

n

  
 
 1

1

1

2
1

1

2

1

1 2

 

The use of ranks serves two purposes. First, it cap-
tures for each subject, the correlation pattern of the
aligned expression values. Second, it allows for a subse-
quent nonparametric analysis.
Motivated by the methods of Feigin and Alvo [27], we

propose the test statistic

S m m m mC T C T    
where prime indicates the transpose of the vector.

Under the hypothesis that there is no change between
the two groups, the statistic S should be small in magni-
tude. Let Sobs be the value of the observed statistic.
Next, we propose a permutation test based on S.

Under the null hypothesis that no change has occurred,
the subjects in the two groups are interchangeable.
Hence, we compute for each selection of n1 subjects

Table 1 Power calculations from the simulation study

Sample Sizes per Group

Simulated Difference Method 5 20 30

No Change Rank 0.117 0.102 0.095

Global 0.107 0.051 0.056

GSEA 0.092 0.120 0.112

Mean Change Rank 0.739 1.000 1.000

Global 0.853 1.000 1.000

GSEA 0.230 0.777 0.950

Correlation Change Rank 0.972 0.997 1.000

Global 0.131 0.102 0.107

GSEA 0.119 0.095 0.109

Mean and Correlation Change Rank 1.000 1.000 1.000

Global 0.422 0.993 1.000

GSEA 0.075 0.053 0.050

Presented is the estimated power of the test for each method at varying
sample sizes.
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from n a value of the statistic S. The nominal p-value is
then given as

p value
S Sobs

n

n

 
 










#

1

When the total number of possible permutations

n

n1









 is large, we randomly choose 1000 permutations

among them.

Modified Rank Test
The Rank test is defined independently of the other
genes contained in the microarray. Efron and Tibshirani
[28] considered two different hypotheses in connection
with the problem of assessing the statistical significance
of a pathway. The random null hypothesis states that
the M genes in the pathway of interest have been cho-
sen at random from the array. Hence, the null distribu-
tion of the test statistic is obtained by considering its
value over all the possible sets of M genes in the array.
On the other hand, to each subject corresponds an M-
vector of expression values. The permutation hypothesis
in that case states that the vectors are independent and
identically distributed and hence, the distribution of the
test statistic is obtained by permuting the vectors. As
Efron and Tibshirani [28] point out, both hypotheses
have shortcomings. The first tends to ignore correlations
among the genes whereas the second does not take into
account the array from which the genes are drawn.
Instead, they proposed an adjusted statistic which re-
standardizes the observed statistic Sobs with mean m*
and standard deviation s* as follows:

S m
Sobs ms

s

* * *  











where m*, s* are the mean and standard deviation
obtained by randomly selecting gene sets from the entire
microarray and ms and ss are the mean and standard
deviation obtained by permutation of the labels for the
specific pathway.

Additional file 1: Table 1 Significant Pathways identified in the E-
MEXP-1091 Data sets. A pathway is considered significant if the p-value
of the test statistic is less than or equal to 0.01.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
60-S1.XLS ]

Additional file 2: Table 2 Significant Pathways discovered in
GSE12930 Data Sets. A pathway is considered significant if the p-value
of the test statistic is less than or equal to 0.01.
Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
60-S2.XLS ]
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