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Abstract

In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with
primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three
analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass
spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human
ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in
energy utilization, altering metabolites associated with glycolysis and b-oxidation of fatty acids—such as carnitine (1.79 fold
in EOC, p,0.001; 1.88 fold in MOC, p,0.001), acetylcarnitine (1.75 fold in EOC, p,0.001; 2.39 fold in MOC, p,0.001), and
butyrylcarnitine (3.62 fold, p,0.0094 in EOC; 7.88 fold, p,0.001 in MOC). There were also significant changes in
phenylalanine catabolism marked by increases in phenylpyruvate (4.21 fold; p = 0.0098) and phenyllactate (195.45 fold;
p,0.0023) in EOC. Ovarian cancer also displayed an enhanced oxidative stress response as indicated by increases in 2-
aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, p,0.001) and several isoforms of tocopherols. We have
also identified novel metabolites in the ovary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in
ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the
human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant
changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of
ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the
diagnosis or clinical management of ovarian cancer patients.

Citation: Fong MY, McDunn J, Kakar SS (2011) Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian
Cancer. PLoS ONE 6(5): e19963. doi:10.1371/journal.pone.0019963

Editor: S. K. Batra, University of Nebraska Medical Center, United States of America

Received March 1, 2011; Accepted April 15, 2011; Published May 19, 2011

Copyright: � 2011 Fong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The funds used to perform this work were supported by a NIH/NCI CA124630 research Grant to SSK. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript. Metabolon was paid for the service peformed in metabolites profiling according to
signed contract.

Competing Interests: JM is an employee of Metabolon, Inc. and was responsible for preliminary analysis of the data and final editing of the manuscript.
However, as part of the University of Louisville’s contract with Metabolon, Inc., he does not have any financial benefit or retention of invention or ownership
rights, patentable or not. This does not affect adherence to PLoS ONE policies on sharing data and material.

* E-mail: sskaka01@louisville.edu

Introduction

Ovarian cancer is the most lethal malignancy of the female

reproductive system and the 5th cause of cancer death in women.

It is estimated that 21,880 women will be diagnosed and 13,850

will die from this disease this year. The five-year survival rate at

Stage I is 93.5% but drops to 27.6% at Stage IV, where a majority

of cases are diagnosed due to a lack of symptoms at the earlier

stages [1]. Current detection strategies include transvaginal

ultrasound and blood CA-125 levels. However, both detection

methods have shortcomings. With ultrasound, cancer could be

mistaken for functional cysts in pre-menopausal women due to the

dynamic nature of the ovarian surface [2]. CA-125 has a high false

positive rate [2] that can arise from a variety of conditions

including endometriosis, fibroids, hemorrhagic ovarian cysts, acute

pelvic inflammatory disease, menstruation, first trimester preg-

nancy, and several other cancer types [3]. In addition, CA-125 is

often not detectable in early stage ovarian cancer [4]. Alternative

methods are being developed for patients who have normal CA-

125 levels but are suspected to having recurrent disease based on

clinical symptoms [5]. These methods include other potential

biomarkers, the most promising being human epydidimus protein

4 (HE4), [6,7,8,9,10] despite detection rates of 50–60% in early

stage ovarian cancer. A comprehensive study comparing the

sensitivity of ovarian cancer biomarkers to discriminate between

benign and malignant masses has been described [11] as well as

the role of molecular markers in prognosis and therapy reviewed

in [12]. It is important that suggested biomarkers have predictive

value as indicated by sensitivity of 75% or greater as well as

specificity of 99.6% to be able to detect early stage cancer when it

is the most treatable [4].

One approach to identify disease biomarkers is to use

information-rich analytical tools such as omics-scale biological

methods to characterize the composition of the target tissue in

health and disease. In this case, it is important to understand the

biochemical alterations that are known to occur during neoplastic

transformation. The first energy metabolism alteration in cancer

cells was described by Otto Warburg, who showed cancer cells
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preference for glycolysis resulting in the generation of lactate for

ATP production over the more efficient process of oxidative

phosphorylation by the mitochondria [13]. This requires the

cancer cells to increase their glucose uptake through the expression

of several isoforms of glucose transporters (GLUT 1 to 9) [14] and

to increase their glucose catabolism to compensate for the energy

production loss, a fact that can be exploited in the clinical

detection of neoplasm by positive emission tomography (PET)

imaging [15].

The molecular mechanisms involved in the hyperactive

glycolysis have been analyzed and some of key factors identi-

fied—including Akt, nuclear factor-kB (NF-kB), hypoxia-inducible

factor-1 (HIF1), and p53 [14,16,17,18,19,20]. The products of

these genes are involved in cellular activation, nutrient import, and

protection from apoptosis. These genes are known to interact in

complex hierarchical webs. For example, HIF-1 can be modulated

by other oncogenes such as Akt [14], K-Ras [21], and Her-2 [22]

to increase the expression of several glycolytic enzymes. Other

molecular mechanisms include transcriptional regulation by Myc

to increase expression of transporters and glycolytic enzymes—in

particular GLUT, hexokinase 2, and lactate dehydrogenase

[14,23]—as well as by the phosphoinositol-3-kinase (PI3K)/Akt/

mammalian target of rapamycin (mTOR) pathway [24,25], which

is commonly overactive in carcinomas [26]. In addition, tumor

metabolism differentially expresses glycoltyic isoenzymes, such as

pyruvate kinase (PKM2), which can shift between a dimer and a

tetramer to adapt to the energy requirements of the cells [27,28].

However, PKM2 can also be by-passed by the accumulation of

phosphoenolpyruvate (PEP) resulting in PEP-dependent phos-

phorylation and activation of phosphoglycerate mutase which

produces pyruvate directly from 3-phosphoglycerate [29]. Vander

Heiden et al. [29] hypothesized that this uncouples pyruvate

production from ATP generation, maintaining an ATP/AMP

ratio that does not inhibit glycolysis, and provides a significant

pool of pyruvate as an anabolic precursor. Most of the research on

tumor cell metabolism has focused on glucose utilization. When

glucose is limited, solid tumors are forced to catabolize alternative

substrates such as fatty acids, and amino acids as an alternative

energy source.

However, oncogenesis can result in a diverse panel of metabolic

alterations that could be tissue specific or generic across human

cancers. Therefore, a comprehensive metabolic analysis of solid

tumors could reveal valuable metabolites for both early diagnosis

of cancer as well as to monitor disease progression and/or

recurrence to inform clinical management of cancer patients.

These biomarkers could conceivably be used as surrogate

endpoints in clinical trials and could suggest new metabolic

targets for cancer management as well as provide complementary

targets for chemotherapy treatment. Metabolomics is a systematic

analytical tool used for identification of biochemical metabolites

from cellular processes, a term that includes several types of

analyses ranging for nuclear magnetic resonance spectroscopy

(NMR), mass spectrometry (MS), tracer-based studies, and

metabolic footprinting [30]. While each of these methods has

unique advantages, MS has established itself as the high-

throughput and industrially stable approach to assess both the

composition of diverse sample types as well as changes to that

composition following perturbation. Although metabolomics has

been around for decades, more recently it has garnered attention

as a translational tool for the identification and treatment of cancer

in the clinical setting, as well as for drug target development [31].

In a previous study, Denkert et al. [32] used gas chromatography

MS/time-of flight (GC-MS/TOF) to compare borderline ovarian

tumors to ovarian carcinomas. They identified 114 of 291 (39.1%)

compounds and found an increased in proteinogenic amino acids,

purines, pyrimides, and lipid membrane precursors in ovarian

carcinomas vs. borderline tumors and interpreted these data to

mean that carcinomas have higher cell proliferation rates. In

addition to tumor metabolic analysis, urine samples from ovarian

cancer patients have also been studied. Woo et al. [33] conducted a

metabolomic-based study to find urinary biomarkers for ovarian

and breast cancer using GC/MS. Two known biomarkers for

breast cancer and 3 new biomarkers for ovarian cancer were

identified: 1-methyladenosine, 3-methyluridine, and 4-androstene-

3,17-dione. The ovarian cancer biomarkers were related to

oxidative DNA damage and DNA methylation. Similarly, Slupsky

et al. [34] collected urine samples from patients with early- and

late-stage breast or ovarian cancer, as well as from healthy women,

to obtain a metabolic profile using NMR. The concentration of

specific metabolites decreased in patients with cancer, resulting in

a unique profile. Alterations in intermediates of the tricarboxylic

acid cycle (TCA) as well as molecules relating to energy

metabolism and amino acids were observed.

Prior to this study, however, the metabolome of the normal

ovary has not been studied, nor the changes that occur with

neoplastic transformation and metastatic disease progression. In

the present study, for the first time we report the metabolic profile

of the normal human ovary and compare it to the metabolic

profile of primary epithelial ovarian cancer (EOC) and metastatic

tumors resulting from initial EOC (MOC) using GC/MS and LC/

MS/MS.

Results

Identification of metabolites, statistical analysis, and
pathway analysis

In samples from our three groups (normal, EOC, and MOC),

364 molecules were identified (Table S1) when compared to the

Metabolon library containing 1,700 molecules. Identification was

based on retention time, charge (m/z), preferred adducts, and

fragmentation pattern of the molecule. The comprehensive library

allowed for rapid identification with a high fidelity. These

compounds included a large variety of classes, ranging from

simple amino acids and peptides to carbohydrates, lipids,

nucleotides, cofactors and vitamins, and xenobiotics (Fig. 1).

Data is a summation of individuals belonging to a group. Using

one-way ANOVA with a Tukey post-test to identify differentially

abundant metabolites across the three classes of tissue analyzed, 95

biochemicals were statistically significant and furthermore had a

p#0.05 in at least one of the pairwise comparisons (EOC vs.

Figure 1. Class distribution of identified metabolites. n = num-
ber of metabolites in each class.
doi:10.1371/journal.pone.0019963.g001
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normal; MOC vs. normal; MOC vs. EOC). The identities of these

metabolites are given in Table S2. Using the abundance profiles of

these metabolites, supervised principal components analysis (PCA)

was performed, yielding good separation of the three groups (Fig. S1).

Using Ingenuity Pathway Analysis (IPA), we identified the top

15 canonical pathways involved in EOC (Table S3) and MOC

(Table S4). In almost all cases, these were related to amino acid

metabolism and biosynthesis. Also of note, pyrimidine metabolism,

purine metabolism, and glycoxylate and decarboxylate metabo-

lism pathways only appeared in the case of MOC.

Metabolic profile of the normal ovary and loss of
function upon transformation

The first principal component separated the non-transformed

ovarian samples from the transformed tissues (both EOC and

MOC), while the second principal component identified a further

set of biochemical alterations that corresponded with metastasis

(Figure S1). Evaluation of the loadings plot further classified the

compounds into loss/gain-of-function with either transformation

or metastasis. Four metabolites were in high abundance in the

ovary prior to neoplastic transformation: 1-methylimidazole

acetate (22.06 fold, p,0.001 in EOC; 22.18 fold, p,0.001 in

MOC), taurine (21.75 fold, p,0.001 in EOC, 21.97 fold,

p,0.001 in MOC), phenol sulfate (22.22 fold, p = 0.0535 in EOC;

23.0 fold, p = 0.0217 in MOC), and 6-phosphogluconate (21.64

fold, p = 0.0538 in EOC, 21.92 fold, p = 0.0264; Fig. 2). These

biochemicals have a significant drop in abundance upon

transformation. Two of these metabolites (methylimidazoleacetate

and 6-phosphogluconate) have previously been associated with

normal ovarian function and the drop in their abundance can be

considered a loss-of-function associated with transformation.

Methylimidazoleacetate is the main metabolite of histamine.

This end product of histamine catabolism is formed by N-

methylation in the imidazole ring to methylhistamine by histamine

methyltransferase and a subsequent oxidative deamination in the

side chain by type B monoamine oxidase. From studies it is known

that as much as 70–80% of the histamine metabolized in the body

is excreted in the urine as methylimidazoleacetate [35]. Thus,

urinary methylimidazoleacetate being the major and specific

histamine metabolite is a clear marker of any changes in histamine

metabolism in the body. Ovarian histamine production occurs by

tissue resident mast cells and has been shown to coordinate with

ovulation [36].

Taurine is not involved in protein synthesis and/or has limited

participation in biochemical pathways outside of peroxisomal

formation of N-acyl lipid conjugates, such as bile acids and fatty

acids. However, several functions have been demonstrated for

taurine—such as osmoregulation, membrane stabilization, detox-

ification, antioxidation, modulation of ion flux, and as an

inhibitory neurotransmitter or neuromodulator [37,38,39,40,41].

The roles of taurine in the reproductive system are multiple and

complex. Taurine is the predominant amino acid in genital

secretions—including seminal, uterine, and oviduct fluids [42,43].

It has been demonstrated that the ovary contains the mRNA of a

Figure 2. Significant metabolites present in the normal ovary and are reduced upon neoplastic transformation. 1-
methylimidazoleacetate and taurine analyzed by LC/MS positive ion spray; phenol sulfate and 6-phosphogluconate analyzed by LC/MS negative
ion spray. Box legend: + inside box represents mean value, bar inside box represents median value, upper bar represents maximum of distribution,
lower bar represents minimum of distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g002
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taurine transporter [44] and that the rat oviduct contains up to

10 mmol taurine/g tissue [45]. Taurine is also present in high

concentrations in the rat and human uterus, and its concentration

decreases with pregnancy [46,47]. Despite all these data, the roles

of taurine in the female reproductive system are largely unknown

and there are no previous studies about its localization in these

organs.

Phenol sulfate is a hepatically processed gut microfloral

metabolite, and 6-phosphogluconate is an intermediate in the

utilization of glucose within the pentose phosphate pathway,

potentially signifying that glucose is restricted from entry into the

pentose phosphate pathway in the healthy ovary and that upon

transformation there is a higher affinity mechanism in place for

this mechanism. This interpretation makes sense given that the

pentose phosphate pathway produces both ribose for nucleotide

biosynthesis, as well as two molar equivalents of NAD(P)H that

could mitigate oxidative stress and aid in glutathione recycling.

Six compounds differentiated transformed ovarian tissue

independent of whether the cancer was localized or metastatic

(PC1.0; PC2 = 0). These compounds included several quaternary

amines (betaine, carnitine, and erogthionine), the TCA cycle

intermediates malate and fumarate and N-acetylglycine. Increased

tissue quaternary amine concentrations are typically due to tissue

demand for either choline or carnitine as the transporters for

quaternary amines are selective but not specific [48]. In all,

thirteen compounds containing quaternary amines were found to

have increased tissue abundance in one or both of the ovarian

cancer groups compared to the non-transformed ovarian tissue

and two choline-containing lysolipids had significantly reduced

abundance in the transformed ovarian tissue.

Cancer cells have altered carbohydrate metabolism
One of the signature hallmarks of cancer is an altered glucose

metabolism. In 1929, Otto Warburg first proposed that cancer

cells utilized glucose differently than normal cells, preferring

glucose for anaeroblic glycolysis instead of oxidative phosphory-

lation for the generation of ATP [13], resulting in increased lactate

production and a lower pH than normal tissue, which in turn

impairs DNA repair mechanisms [49]. Our results showed an

increase in lactate in both EOC and MOC with a fold change of

1.46 (p,0.001) and 1.37 (p = 0.0076), respectively, when compared

to normal ovarian tissue. Only MOC showed an increase in

glucose-6-phosphate (2.91 fold, p = 0.0029). There were no

significant changes in glucose, pyruvate, acetylphosphate, phos-

phate, pyrophosphate, or citrate between groups (Fig. 3). The

increase in lactate coupled with no significant changes in citrate

levels, indicate that glycolysis was not impeded but rather

oxidative phosphorylation. Interestingly, another aspect of War-

burg metabolism, hexose phosphate abundance, was only elevated

in the MOC samples (data not shown).

The other carbohydrate with a significant increase in abun-

dance in transformed ovarian tissue was fucose (2.75 fold, p,0.001

in EOC; 1.81 fold, p = 0.0103 in MOC). This finding may be due

to a loss of function of specific ovarian glycosylation pathways

since it has been demonstrated that normal ovarian tissue

expresses a specific protein fucosylation pathway that results in

the fucose moiety being directly coupled to the protein through

Ser/Thr [50]. This ovary-specific glycosylation pathway is also

unique in that the fucose is not the terminal sugar, but an internal

sugar in the O-linked oligosaccharide.

Increased fatty acid oxidation in EOC and MOC
As an alternative to oxidative phosphorylation for ATP

production, EOC and MOC prefer to utilize fatty acids as

indicated by an increase in several fatty acids (Fig. 4) involved in

fatty acid and carnitine metabolism—particularly carnitine (1.79

fold in EOC, p,0.001; 1.88 fold in MOC, p,0.001), acetylcarni-

tine (1.75 fold in EOC, p,0.001; 2.39 fold in MOC, p,0.001),

butyrylcarnitine (3.62 fold, p = 0.0094 in EOC; 7.88 fold, p,0.001

in MOC), and propionylcarnitine increased 5.7 fold (p = 0.0047) in

MOC only (Fig. 5). Carnitine has been recognized as a transport

protein that delivers fatty acids into the mitochondria for b-

oxidation. Endogenous acetylcarnitine has been used as an

indicator of mitochondrial health through the balance of acetyl-

CoA:CoA by transferring the acetyl group to carnitine to form

acetylcarnitine and thus provide acetyl groups for the synthesis of

sterols, fatty acids, and ketone bodies [51].

The ketone body 3-hydroxybutyrate (BHBA) was upregulated

8.63 fold (p = 0.0056) in MOC compared to normal (Fig. 5). In

addition, the cytosolic pool of acetyl-CoA is essential of de novo

lipogenesis [52]. The excess production of cytoplasmic acetyl-coA

compared to the mitochondrial capacity for its incorporation into

the TCA cycle is demonstrated by the increased abundance of a

panel of N-acetyl amino acids in the cancerous tissues—including

N-acetylglutamate, N-acetylglycine, N-acetylthreonine, the neuro-

active amino acids N-acetylaspartate (NAA) and N-acetyl-

aspartylglutamate (NAAG), the polyamine degradation product

N-acetylputrescine, and even N-acetylglucosamine-6-phosphate.

Interestingly, we also found that the recently described

oncometabolite, 2-hydroxyglutarate had increased abundance in

EOC (3.06 fold, p = 0.0114 in EOC; Fig. 5) [53].

Enhanced phenylalanine catabolism
Phenylalanine catabolism also results in the production of

ketones, namely phenylpyruvate and 4-hydroxypyruvate. Major

metabolites of phenylalanine catabolism were significantly in-

creased in EOC compared to normal (Fig. 6). Phenylpyruvate

increased 4.21 fold (p = 0.0098) in EOC only compared to normal

but decreased 23.68 fold (p = 0.036) in MOC compared to EOC.

Phenyllactate (PLA) increased 195.45 fold (p,0.0023) in EOC, a

finding which is typically attributed to insufficient activity of

phenylalanine hydroxylase [54]. Phenylacetate increased 1.93 fold

(p = 0.0203) in EOC compared to normal only, whereas 4-

hydroxyphenylpyruvate was increased 17.82 fold (p = 0.0069) in

EOC compared to normal. Phenylalanine, tyrosine, phenylace-

tylglutamine, and 4-hydroxyphenylacetate were not significantly

changed. Phenylalanine and its major metabolites—phenylpyru-

vate, PLA, and phenylacetate—induce oxidative stress in the

hippocampus and cerebral cortrex via generation of reactive

oxygen species, which was mitigated by a-tocopherol [55].

Phenylacetate has also been shown to have an inhibitory growth

effect in ovarian cancer cell lines [56], whereas PLA can promote

growth [57]. Therefore, it seems reasonable that ovarian cancer

would favor the production of PLA over other alternative

metabolites, consistent with our results. These metabolites are

generated by transamination of phenylalanine and subsequent

oxidation of the phenylpyruvate.

Increased levels of tocopherols in MOC
There are four main isoforms of tocopherols: a, b, d, and c, with

a-tocopherol being the most biologically active form, accounting

for approximately 90% of the Vitamin E found in animal tissues,

where it serves as an antioxidant to quench free radicals and

terminate lipid peroxidation [58,59]. Hence it serves as an

effective defense against radiation, which generates free radicals

from water or biomolecules [60]. Metabolomic analysis showed a

significant increase in a-, d-, and c-tocopherol levels in MOC. a-

tocopherol increased 1,160.41 fold (p,0.001) compared to normal

Metabolites in Ovary and Ovarian Cancer
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and 627.67 fold (p = 0.0023) compared to EOC. d-tocopherol

increased 1,775.51 fold (p,0.001) compared to normal and

1,950.08 fold (p,0.001) compared to EOC. c-tocopherol

increased 95.74 fold (p,0.001) compared to normal and 83.79

fold (p,0.001) compared to EOC (Fig. 7). As tocopherols are fat

soluble, they are carried in the blood packaged in lipoproteins,

mainly LDL and HDL, whereupon they are be transported to

tissue and undergo uptake by the same mechanism by which lipids

are delivered [58]. Uptake in the normal ovary is regulated by

lipoprotein receptors [59]. Tocopherols have also been implicated

in suppression of the immune system responsiveness by decreasing

the reactive oxygen species and/or altering arachidonic acid

metabolites [61]. Therefore, it seems reasonable that metastatic

cancer would accumulate them to suppress the immune response

and provide a defense against radiation treatment for cancer.

Enhanced oxidative stress response
Ophthalmate is an analog of the reduced form of glutathione

(GSH) with the thiol group of GSH replaced with a methyl group.

Ophthalmate can be synthesized from 2-aminobutyrate and

glutamate by the enzyme c-glutamyl cysteine synthetase (GCS)

to form c-glutamyl-2-aminobutyrate [62], which can be catalyzed

by glutathione synthetase (GS) to form ophthalmate [63] (Fig. 7).

Ophthalmate has been indicated as a biomarker of oxidative stress

as insufficient levels of GSH results in ophthalmate synthesis

through activation of GCS. GSH is one of the most abundant

intracellular antioxidants that protects the mitochondria from

endogenous oxygen radicals [64] and also keeps enzymes and

other cellular compounds in a reduced state [65], making it one of

the most important cellular antioxidants, as its depletion leads to

cell death. GSH has also been implicated in chemotherapy

resistance through the activation of multi-drug resistant transport-

er 1 (MDR-1) [66,67].

The oxidized form of glutathione (GSSG), GSH, c-glutamyl-2-

aminobutyrate, and ophthalmate can be detected in the serum in

mice [67] so all have the potential for biomarkers. However, to

date 2-aminobutyrate and ophthalmate have not been investigated

in ovarian cancer. Here we report of the first time, significant

increases of 2-aminobutyrate in both EOC (1.46 fold, p = 0.0316)

and MOC (2.25 fold, p,0.001), suggesting an enhanced oxidative

Figure 3. The glycolytic pathway converting glucose to pyruvate for anaerobic fermation to produce lactate or aerobic respiration
of the citric acid for oxidative phosphorylation. Glucose, glucose-6-phosphate, fructose-6-phosphate, 3-phosphoglycerate, phosphoenolpyr-
uvate (PEP), pyruvate, lactate, and citrate analyzed by GC/MS. Box legend: + inside box represents mean value, bar inside box represents median
value, upper bar represents maximum of distribution, lower bar represents minimum of distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g003
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response. Ophthalmate increased 2.94 fold in MOC (p = 0.0128;

Fig. 8). However, there were no significant changes in glutathione

(reduced and oxidized states) or glutamate.

Increased production of NAA and NAAG
N-acetylasparate (NAA) is a free amino acid found in the brain

at very high concentrations that functions as an osmolyte in fluid

balance to protect neurons against osmotic stress [68,69]. It is also

thought to serve as a source of acetate for lipid and myelin

synthesis [70] and contribute glutamate for energy production in

the neuronal mitochondria through a series of reactions [71,72].

NAA is synthesized from L-asparate and acetyl-CoA by the

enzyme L-asparate-N-acetyl transferase and hydrolyzed by the

enzyme aspartoacylase II. NAA serves as a precursor for N-

ascetyl-aspartyl-glutamate (NAAG) using the enzyme NAA

synthetase (Fig. 8). Due to its packaging with glutamate, the

physiological role for NAAG has been difficult to identify,

however, it fulfills the criteria of a neurotransmitter as it is

packaged into synaptic vesicles and released in a Ca2+-dependent

manner from nerve terminals [73]. It has been proposed to serve

as a shuttle for glutamate to activate the glutamate receptor

mGluR3 due to the cytotoxic nature of glutamate [74,75]. More

recently, it has been used to diagnose brain disorders. Moreover,

NAA concentrations have been found in a patient with ovarian

mucinous cystadenoma [76] and in ovarian cyst fluid of serous

ovarian tumors [77], although a physiological role in the ovary has

not been determined. Here we report that NAA and NAAG, two

free amino acids, were detected in the normal ovary with

significantly increased levels in EOC showing a fold change of

3.50 (p = 0.0301) and 2.19 (p = 0.0352), respectively, with further

increases in MOC with a fold change of 85.60 fold (p,0.001) and

8.09 (p,0.001), respectively (Fig. 9).

NAAG is broken down by N-acetylated alpha-linked acidic

dipeptidase (NAALADase), a NAAG-specific catabolic enzyme

[78]. NAALADase is composed of three family members:

NAALADase I, NAALADase L, and NAALADase II. NAALA-

Dase II has been found to be highly expressed in the ovary when

identified by Northern blot and reverse-transcription PCR [79].

Figure 4. Upregulated fatty acids in EOC and/or MOC compared to normal ovarian tissue.
doi:10.1371/journal.pone.0019963.g004
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Discussion

Metabolomics has been widely used to identify biomarkers for

various disease states—including diabetes [80] and atherosclerosis

[81]—using blood, urine, cells, and tissue. Of import, metabo-

lomics has provided a comprehensive technique to identify

biomarkers for cancer—including breast [82,83,84,85], ovarian

[32,33,86], prostate [87,88], colorectal [89,90,91], and gastric

cancer [92]. Identification of biomarkers is of the utmost

importance as it can help diagnose diseases at an earlier stage,

leading to a better prognostic outcome, when used in conjunction

with existing methods, such as transvaginal ultrasound in the case

of ovarian cancer.

In this study, the comprehensive metabolic profile of normal

ovaries, EOC, and MOC were compared using GC/MS or LC/

MS/MS. Significant changes in energy utilization were detected as

well as an enhanced oxidative stress response. Similar to the study by

Denkert et al. [32], we have found increased levels of amino acids in

EOC and MOC vs. normal. However, contrary to their study, the

lysolipid levels were either not significantly changed or downregulated

in EOC and/or MOC. Woo et al. [33] found urinary biomarkers for

ovarian cancer using GC/MS related to DNA oxidative damage and

DNA methylation: 1-methyladenosine, 3-methyluridine, and 4-

androstene-3,17-dione. We found no significant changes in N1-

methyladenosine or 4-androstene-beta,17beta diol disulfate based on

tissue samples, perhaps due to the high amount of GSSG found in our

Figure 5. Carnitine and fatty acid metabolites. Carnitine, acetylcarnitine, butrylcarnitine, and propionylcarnitine analyzed by LC/MS positive ion
spray. 2-hydroxyglutarate and 3-hydroxybutyrate analyzed by GC/MS. Box legend: + inside box represents mean value, bar inside box represents
median value, upper bar represents maximum of distribution, lower bar represents minimum of distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g005
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samples coupled with a reduced amount of GSH, protecting the tissue

from oxidative damage or from a more efficient excretion of the

metabolites in these patients. We also found increased tocopherols in

MOC, which are best known for their antioxidant properties. More

recently, urine metabolite profiling in breast and ovarian cancer

showed that metabolite concentrations correlated with both cancers

compared to healthy individuals [34]. Consistent with the aforemen-

tioned study, Odunsi et al. [86] were able to separate sera from

healthy individuals from that of EOC patients using (1)H-NMR

spectroscopy. Applying unsupervised PCA analysis as well as

Figure 6. Phenylalanine metabolic pathway. Phenylalanine and tyrosine analyzed by LC/MS pos.; phenylpyruvate, phenyllacetate,
phenylacetylglutamine, phenylactate, and 4-hydroxyphenylpyruvate via LC/MS negative ion spray; 4-hydroxyphenylacetate via GC/MS. Box legend:
+ inside box represents mean value, bar inside box represents median value, upper bar represents maximum of distribution, lower bar represents
minimum of distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g006

Figure 7. Three of the main tocopherol levels in normal, EOC, and MOC. Tocopherols analyzed via GC/MS. Box legend: + inside box
represents mean value, bar inside box represents median value, upper bar represents maximum of distribution, lower bar represents minimum of
distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g007
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Figure 8. Ophthalmate biosynthesis pathway. 2-hydroxybutyrate and 2-aminobutyrate analyzed via GC/MS. Box plot of glutamate and
ophthalmate analyzed by LC/MS positive ion spray. Box legend: + inside box represents mean value, bar inside box represents median value, upper
bar represents maximum of distribution, lower bar represents minimum of distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g008

Figure 9. NAA and NAAG biosynthesis pathway. NAA and NAAG analyzed via LC/MS negative and LC/MS positive ion spray, respectively. Box
legend: + inside box represents mean value, bar inside box represents median value, upper bar represents maximum of distribution, lower bar
represents minimum of distribution, circle represents extreme data points.
doi:10.1371/journal.pone.0019963.g009
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supervised Soft Independent Modeling of Class Analogy (SIMCA)

allowed for pattern recognition. They were able to correctly identify

increases in alanine, valine, glucose, and 3-hydroxybutyrate (a ketone

body) in EOC sera. In our samples, we showed an increase of 3-

hydroxybutyrate in MOC with a borderline significant increase in

EOC. However, the other metabolites were not significantly altered.

Additional metabolic analysis in colorectal tissue [89,91] and in

gastric cancer metastases [92] samples showed increases in glycolysis

shown by the increase in lactate and fatty acid metabolism, and

decreases in TCA intermediates. Lactate and phenylalanine have

yielded satisfactory sensitivity and accuracy in differentiating oral

squamous cell carcinoma from oral leukoplakia [93]; however, these

metabolites could be generic across multiple cancers.

One of the proposed biomarkers for tumor progression and

invasiveness in prostate cancer is sarcosine, also known as N-

methylglycine [94], although there is some debate whether

sarcosine can be detected in the serum [95] or urine [96]. Sarcosine

can be synthesized from glycine by the enzyme glycine N-

methylransferase or from dimethylglycine by the enzyme dimethyl-

glycine dehydrogenase, which in turn is demethylated from betaine.

In our samples, we found a significant increase in betaine in both

EOC and MOC compared to normal. However, dimethylglycine

and sarcosine were not significantly different, possibly due to a high

biological variability between samples, which could be clarified with

an increased sample size.

Based on the data we have collected, we have identified possible

candidates for biomarker analysis for both preliminary cancer

diagnosis and metastatic disease progression. The dramatic

increase of tocopherols in MOC makes these molecules attractive

candidates for aggressiveness and/or progression. Further inves-

tigation is needed to determine the potential utility of these initial

findings.

Materials and Methods

Histopathology
For metabolic profiling, 30 patient tissues were obtained from

University of Alabama, Birmingham, Comprehensive Cancer

Center and stored at 280uC. Type and stage was determined by

evaluation by a pathologist. Tissues included 12 normal ovarian

samples (mean age 48.667.6 years), 11 primary ovarian

adenocarcinomas ranging from Stage I through Stage IIIC (mean

age 56.569.8 years), and 7 metastatic tumors in the omentum

resulting from initial ovarian adenocarcinomas ranging from Stage

IIIC through Stage IV (mean age 6268.2 years). Patients with

previous diseases and treatments were excluded from the study.

Metabolic Profiling
100 mg of frozen biopsy tissue was submitted to Metabolon, Inc.

(Durham, NC) for sample extraction and analysis. In brief,

Metabolon performed cold methanol extraction of mechanically

disaggregated tissue samples and these extracts were split into

three aliquots. The reproducibility of the extraction protocol was

assessed by the recovery of xenobiotic compounds spiked into

every tissue sample prior to extraction. These aliquots were

processed and characterized by one of the three analytical

methods previously described: UHPLC-ESI-MS/MS in the

positive ion mode, UHPLC-ESI-MS/MS in the negative ion

mode and sialylation followed by GC-EI-MS. Chromatographic

timelines were standardized using a series of xenobiotics that elute

at specified intervals throughout each chromatographic run. The

technical variability of each analytical platform was assessed by

repeated characterization of a pooled standard that contained an

aliquot of each sample within the study. The platform for sample

analysis has been described in detail [97,98]. However, the

combination of the Metabolon platform with ovarian tissue is

novel.

Supporting Information

Figure S1 Supervised PCA separated normal ovarian tissue

from ovarian cancer (PC1; blueRgreen and purple) and localized

tumor from metastasis (PC2; greenRpurple).

(TIF)

Table S1 List of metabolites identified through mass spectrom-

etry.

(XLS)

Table S2 ANOVA analysis of metabolites grouped by class of

compound.

(XLS)

Table S3 Ingenuity pathway analysis for the top 15 canonical

pathways for EOC.

(XLS)

Table S4 Ingenuity pathway analysis for the top 15 canonical

pathways for MOC.

(XLS)
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