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Abstract
Alzheimer’s disease (AD) is a slowly progressing form of dementia characterized in its earliest
stages as a loss of memory. Individuals with amnestic mild cognitive impairment (aMCI) may be
in the earliest stages of the disease and represent an opportunity to identify pathological changes
related to the progression of AD. Synaptic loss is one of the hallmarks of AD and associated with
cognitive impairment. The inferior temporal gyrus (ITG) plays an important role in verbal fluency,
a cognitive function affected early in the onset of AD. Unbiased stereology coupled with electron
microscopy was used to quantify total synaptic numbers in lamina 3 of the ITG from short
postmortem autopsy tissue harvested from subjects who died at different cognitive stages during
the progression of AD. Individuals with aMCI had significantly fewer synapses (36%) compared
to individuals with no cognitive impairment (NCI). Individuals with AD showed a loss of
synapses very similar to the aMCI cohort. Synaptic numbers correlated highly with Mini Mental
State Examination scores and a test of category verbal fluency. These results demonstrate that the
inferior temporal gyrus is affected during the prodromal stage of the disease and may underlie
some of the early AD-related clinical dysfunctions.
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INTRODUCTION
Alzheimer’s disease (AD) is recognized as the most common type of dementia in the aging
population. Recent epidemiologic studies report that approximately 14% of the population
over the age of 65 has AD and this number is a staggering 40% for individuals over the age
of 85. This particular form of dementia appears clinically as a change in recent memory and
some language dysfunction [1] followed by changes in cognition that interfere with
functions of daily living [2]. Individuals with AD show difficulty not only in word finding
but also disturbances in verbal fluency, which appears to be highly sensitive in the clinical
characterization of the disease [3] and appears to be particularly prominent in the early
stages of the disease progression [4, 5]. Some individuals have a slowly progressing
dementia that appears unrelated to an acute or vascular neurologic insult. They present with
a gradual cognitive decline and on neuropsychological testing are determined to have
amnestic mild cognitive impairment (aMCI) [6, 7], which is considered an intermediate or
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prodromal stage of AD [6, 8]. This prodromal stage of dementia occurs in the presence of a
high density of cortical lesions: senile plaques (SP) and neurofibrillary tangles (NFT). Over
the past two decades numerous studies have indicated that synaptic loss in the limbic regions
and neocortex is a consistent pathological defect [9], which correlates best with cognitive
decline in AD [10–12]. Although clinical neuropathologic studies have demonstrated AD
type lesions in the brain of individuals with aMCI [7, 8, 13, 14], relatively few studies have
directly examined synaptic loss in the aMCI neocortex [15–17].

For the most part, studies of changes in synaptic number have focused on the hippocampal
formation, which is associated with memory impairment and is affected early in the disease
process. However, loss of synapses in the hippocampal formation can only account for a
minor part of the AD clinical profile. For example, synaptic dysfunction in the hippocampus
cannot explain the ensuing extensive intellectual decline that appears related to neocortical
dysfunction as the disease progresses. An area of the neocortex that plays an important role
in mediation of verbal fluency, a cognitive function that is affected early in the onset of AD
[18], is important for semantic language and has important neural interconnections with
medial temporal cortex structures especially the parahippocampal gyrus [19] is the inferior
temporal gyrus (ITG; Brodmann area 20). The present study investigated possible changes
in ITG synaptic numbers in a cohort of individuals who came to autopsy with a premortem
clinical diagnosis of aMCI, mild to moderate AD, or no cognitive impairment (NCI).

MATERIALS AND METHODS
Postmortem human brains

Tissue was examined from 27 right handed individuals (mean age 86.4 ± 6.8 years; range 75
to 99 years; Table 1) who were participants in either the Religious Orders Study (ROS), a
longitudinal clinical-pathologic study of aging and Alzheimer’s disease composed of older
Catholic nuns, priests, and brothers [20–22], or the University of Kentucky Alzheimer’s
Disease Center (UKADC) normal aging cohort [23]. The Human Investigations Committee
of Rush University Medical Center and the University of Kentucky College of Medicine
approved the studies. Individuals included in these studies agreed to annual clinical
evaluation and brain donation at the time of death. For all subjects, cognitive test scores
were available within the last year of life; the average interval from last evaluation to time of
death was 7.0 ±3.6 months, with no differences among the three diagnostic groups (p < 0.1).
Subjects were categorized as NCI (n = 9), aMCI (n = 10), or AD (n = 8) based on cognitive
testing prior to death according to well established criteria for each clinical category [6]. The
NCI subjects were without a history of dementia or other neurological disorders. Standard
criteria for exclusion were the presence of 1) significant cerebral stroke regardless of
antemortem date, 2) large cortical infarcts identified in the postmortem neuropathologic
evaluation, 3) significant trauma within 12 months before autopsy, 4) individuals on a
respirator longer than 12 hours before death, 5) individuals in a coma longer than 12 hours
immediately before death, 6) individuals currently undergoing radiation/chemo therapy for
tumors, or 7) individuals with Lewy bodies in the cortex.

Clinical Evaluations
Details of the ROS and UKADC methods have been published elsewhere [20, 24]. All
subjects have detailed annual mental status testing as well as neurologic and physical
examinations. Subjects were followed for 3 to 14 years (median 9 years). Once a subject
transitioned to having aMCI or AD, they received the mental status test battery and
neurologic evaluation every 6–9 months. The 10 subjects with aMCI and 8 with AD were
initially without cognitive impairment on enrollment into the longitudinal study and later
developed aMCI and AD during follow-up. Duration in years of final clinical diagnosis prior
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to death is shown in Table 1. All MCI subjects were amnestic without multi domain
involvement. Questionable cases were not included in the study.

Pathologic Evaluation and Electron Microscopy
At autopsy, brains were processed as previously described [13, 22]. The postmortem interval
(PMI) did not differ across groups (p = 0.488; table 1). A neuropathologist conducted a
gross examination of brain neuropathology and cases were excluded if they exhibited non-
AD type pathologic conditions (e.g. brain tumors, encepthalitis, large strokes, etc.). A
pathological diagnosis was made as previously described [25, 26] with the neuropathologist
blinded to the clinical diagnosis. Neuropathological designations were based on the NIA
Reagan criteria [27, 28]. In addition, each case received a Braak score [29]. APOE
genotyping was performed by PCR analysis [30].

The procedure used for ultrastructural assessment of synapses was identical to that described
previously [15, 16]. In brief, at the time of autopsy, the entire left ITG was removed in toto,
and within the first 0.5 cm a random starting point was chosen according to unbiased
stereologic sampling methods [31]. The remaining entire gyrus was subsequently sectioned
into 0.5 cm coronal slabs and every other slab (five to eight slabs per subject) was
immediately immersion fixed for 24 hours in 4% paraformaldehyde with 1% glutaraldehyde.
Slabs were exhaustively sectioned at 100μm with a vibratome (Vibratome Co., St. Louis,
MO), and a random number table used to identify sections for ultrastructural investigation.
Designated sections were postfixed in 1% osmium tetroxide (OsO4), stained en bloc with
0.5% uranyl acetate, dehydrated in a graded series of ethanol, infiltrated with epoxy
embedding resin, and flat embedded in circular molds (Ted Pella, Redding, CA). Sections
immediately adjacent to those used for ultrastructure were designated for determination of
the reference volume and treated as previously described [16]. The analysis was confined to
lamina 3 because previous investigations have shown this lamina to exhibit significant
synaptic loss in various regions of the neocortex [32].

For all subsequent tissue processing and evaluation, the experimenters were blinded to the
clinical diagnosis. On each section that contained the ITG, the length of lamina 3 was
determined with the Bioquant image analysis system and this length portioned into a
minimum of 6 equal segments. A random number table was used to determine which
portions of the lamina 3 length to analyze. Blocks containing the randomly selected portion
of the ITG were trimmed to the appropriate region. Ribbons of six to eight ultrathin sections
(silver-gold interface range) were taken and collected on formvar-coated, carbon-stabilized
slot grids. Sections were stained with uranyl acetate (3%) and Reynolds lead citrate. A total
of 15 to 24 different regions of the ITG were assessed depending on brain size. Larger brains
have a larger ITG and generated more regions.

The physical disector method [33] was used to approximate the total number of synapses per
unit volume (Nv). Electron micrographs were taken with a Zeiss EM-902 (Oberkochen,
West Germany) at X4,400 and photographically enlarged to approximately X20,000. Every
synaptic profile on each micrograph was identified by the presence of the postsynaptic
density in association with the postsynaptic element and synaptic vesicles in a presynaptic
terminal and labeled (Figure 1). An unbiased counting frame was randomly superimposed
over the micrographs. Only those synaptic profiles observed on the reference micrograph
within the counting frame that did not violate the counting frame rules [31] and were not on
the look-up micrograph were counted [34]. To increase efficiency, the look-up and reference
sections were reversed, and the counting frame was again applied in a random fashion.
There were between 30 and 48 disectors (38 ± 6) for each ITG. The thickness of the
ultrathin sections was estimated with the Small method of minimal folds [35].
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The numerical density of synapses per unit volume, Nv, was calculated using the following
formula: Nv = Q−/Vdis, where Q− is the mean number of synapses counted in each disector
and Vdis is the mean disector volume. The total number of synapses, Nsyn, was calculated
for each case using the following formula Nsyn = Nv • Vref, where Vref is the reference
volume.

Statistical Analysis
The relationship between dependent variables and clinical group was examined with an
analysis of variance (ANOVA) using Statview 5.0 (SAS Institute, Cary, NC). If a significant
ANOVA was found, post-hoc tests (Student Newman-Keuls) controlling for multiple
comparisons were used to identify pairs of diagnostic groups that differed significantly.
Because the diagnostic groups were heterogeneous in their clinical features, the relationship
between total synaptic counts and performance on neuropsychological tests at last clinical
evaluation was examined using Spearman correlation with the InStat program (GraphPad,
San Diego, CA). Level of significance was set at p < 0.05.

RESULTS
Demographics

Table 1 shows characteristics of the sample population by diagnostic group. The NCI,
aMCI, and AD groups were found to be similar in age, PMI, and brain weight (p > 0.05). An
ANOVA revealed an expected difference in Mini Mental State Examination (MMSE)
between groups [F(2,24) = 25.701; p < 0.0001]. Post hoc analysis showed no difference
between NCI and aMCI groups (p > 0.05) but did reveal a difference between AD and the
other two diagnostic groups (p < 0.05). An ANOVA [F(2,24) = 5.631; p < 0.01] revealed a
significant difference in level of education between the groups. The AD group had
significantly less (p < 0.05) years of education (14 ± 2.6) compared to NCI (17.9 ± 2.0) and
aMCI (17.1 ± 1.2), which did not differ from each other.

ITG Total Synaptic Number and Volume in Lamina 3
The total synaptic counts for lamina 3 of the ITG for each subject in each of the three
diagnostic groups are shown in Figure 2A. An ANOVA revealed a significant difference
between group means [F(2,24) = 13.265; p < 0.0001]. Post hoc analyses showed that the
synaptic counts for the AD (−42%) and aMCI (−36%) groups were significantly lower than
the NCI cases (p < 0.005). Post hoc analysis showed no difference in total synaptic numbers
between aMCI and AD groups (p > 0.05). An ANOVA revealed a significant difference in
group means for the volume of lamina 3 of the ITG [F(2,24) = 23.033; p < 0.0001]. Post hoc
analysis showed that both the aMCI (−15%) and AD (−44%) groups had a significantly (p <
0.05, p < 0.005) smaller volume (Figure 2B) compared to the NCI group. The analyses also
revealed that the aMCI and AD were significantly different (p < 0.005).

Neuropsychological Test Scores and Lamina 3 Synaptic Counts
We evaluated the association between the total number of synapses in lamina 3 of the ITG
and scores achieved on neuropsychological tests obtained during the subject’s last clinical
evaluation. As total synaptic counts in lamina 3 declined, we observed a significant decline
in MMSE scores (r = .554; p < 0.005) (Figure 3A). There was also a significant association
between total synaptic numbers and both word recognition (r = .444; p < 0.05) and animal
naming (r = .552; p < 0.005) (Figure 3B). Other standard neuropsychological scores failed to
demonstrate a significant relationship: immediate word list recall (r = .371; p > 0.05),
delayed word list recall (r = .282; p > 0.1); Boston Naming Test (BNT) (r = .027; p > 0.1).
The subjects’ years of education (r = .307; p > 0.1) was not significantly associated with
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total synaptic numbers or with the neuropsychological test scores (r = .237; p > 0.1).
Correlational analysis revealed a significant association between age at time of death and
total synaptic number (r = .615; p < 0.005) (Figure 4).

APOE Genotype and Lamina 3 Synaptic Counts
The apolipoprotien E (APOE) genotype (ε2/2, ε2/3, ε3/3, ε3/4, ε4/4) was determined for
each of the subjects and the number of synapses in each group analyzed (Table 2). An
ANOVA showed no statistically significant difference between groups [F(3,23) = 1.112, p >
0.3]. Total synaptic counts were further grouped by whether or not the individual had any
APOEε4 allele. An unpaired t-test failed to detect a significant difference between these two
groups [t(25) = 1.754, p > 0.05]. These results indicate that in the present study APOE
genotype did not influence total synaptic numbers in lamina 3 of the ITG.

NIA-Reagan Criteria, Plaques, Braak Score and Lamina 3 Synaptic Counts
The present study examined the possible relationship between neuropathological diagnosis
by the NIA-Reagan criteria [36] (no AD, low, intermediate, or high likelihood of AD) in the
different clinical diagnostic groups and the total number of synapses in lamina 3 of the ITG
(Table 3). Most cases in the NCI group were either low likelihood or “not AD” (89%) with
only a single case being rated as high likelihood of AD. In contrast, the AD group was rated
as either high or intermediate likelihood (88%). An ANOVA failed to reveal a difference in
synaptic numbers as a function of the NIA-Reagan classification [F(3,23) = 1.654, p > 0.1].
The packing density (#/mm2) of plaques (diffuse and neuritic) was determined for lamina 3
of the ITG using Bielschowsky stained sections. The analysis revealed a very weak and non-
significant association between the packing density of plaques and synapses in the ITG (r = .
122, p > 0.1). Overall Braak staging was not significantly (r = .166, p > 0.1) associated with
total number of synapses. We also evaluated a possible relationship by grouping the data
into three different levels of Braak stages (0-II; III-IV; V-VI). An ANOVA showed no
statistically significant difference between these different Braak groupings and total synaptic
numbers [F(2,23) = .236, p > 0.5].

DISCUSSION
This is the first study to estimate the total number of synapses in the human ITG lamina 3
using unbiased stereology coupled with quantitative electron microscopy. All individuals
used in these studies were followed longitudinally and initially enrolled as cognitively
normal. Compared to age- and PMI-matched individuals with no cognitive impairment,
subjects who transitioned to aMCI demonstrated a statistically significant 36% loss of
synaptic contacts in the ITG. This decline in cortical connectivity was very similar to the
42% loss observed in the mAD cohort. These results support the idea that synaptic loss in
the ITG is an important pathological defect in the early stages of the disease process. The
total number of synapses strongly associated not only with the subject’s MMSE but also
animal naming, a direct test of semantics access suggesting an underlying mechanism for
some verbal fluency dysfunction in early AD. The present findings have both clinical and
theoretical implications.

Previous studies assessing synaptic loss [9] have focused primarily on the hippocampus and
the more prominent areas of the frontal, temporal, and parietal lobes. Very few
investigations have assessed synaptic change in the early progression of the disease such as
aMCI [15–17]. Most descriptions of neuropathological alternations have concentrated on the
loss of neurons [37–39] and the presence of NFT [13, 14, 24, 40]. Masliah and colleagues
reported the loss of synaptophysin staining in the frontal cortex of individuals with a CDR of
0.5 [41]. Counts et al [17] reported a decline in the postsynaptic marker drebrin in the
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temporal lobe in aMCI. Two previous AD studies evaluated changes in synaptophysin as a
marker of synaptic connectivity in the ITG. The earliest study [42] reported a significant
AD-related loss of staining, while the second study [43] failed to find a difference between
individuals with AD and a cohort of controls. The excessively long PMI of the tissue used in
that study may account for the observed differences. The decline in synaptic connectivity in
the aMCI cohort observed in the present study is very striking considering previous
investigations that evaluated possible synaptic loss early in the disease process.
Ultrastructral data derived from the hippocampus shows an area in transition with many of
the aMCI subjects within the lower range of the NCI cohort [15, 16]. By contrast, only a
single aMCI subjects in the present ITG study was within the NCI range with most of the
aMCI cohort overlapping with the mAD values, supporting the idea that this cortical
structure is involved early in the disease. Several investigators have suggested that the ITG
should be included in the routine assessment of cortical involvement in the CERAD
determination of AD [44, 45] along with other heavily involved structures [18] because of
the accumulation of AD-related lesions in this region of the temporal lobe.

Studies in primates have demonstrated interconnections between the inferior and superior
temporal gyrus and also between the ITG and perirhinal and parahippocampal cortex [46].
While it is clear that the ITG projects to entorhinal cortex, whether or not there are
reciprocal connections is unclear [47]. The ITG can be considered as a tertiary visual
association cortex as part of the pathway that originates in the primary visual cortex (BA17)
and progresses through secondary visual areas BA18, 19 and BA37 and then B20, with
some information relayed to the prefrontal cortex [48]. Ablation studies in primates have
identified B20 as being involved in learning tasks that require visual recognition of objects
[49, 50]. Several studies have linked regions of the ITG to the amygdala and nucleus
accumbens suggesting the addition of an emotional tone to learning of cognitive tasks [51,
52]. The temporal lobe is strongly associated with language [53] with its anterior regions
implicated in semantic memory [54]. Language deficits are important manifestations of
cognitive disability associated with AD with verbal fluency (semantic/category)
performance a key indicator of the progression of dementia [55].

Tests of language dysfunction, in particular those of verbal fluency, are one of the most
commonly used diagnostic tools for the assessment of neurologic damage. Both semantic
and phonemic fluency are often tested, with semantic fluency more impaired following
damage to the temporal lobes [55]. The semantic fluency test used in the present study
required individuals to name as many different animals as they could within 60 seconds. The
total number of novel animal names generated consisted of that individual’s score. This
particular test appears to be resistant to the influence of practice in MCI and early AD [56].
Impairment in animal fluency is strongly associated with early stages of AD [1, 57]. AD
patients that develop semantic memory dysfunction also develop significant neuropathology
in neocortical association areas linked with semantic language function. Individuals with
semantic dementia (SD) differ from AD subjects in that they have preserved episodic
memory and perform well on tests such as the BNT. Among the neocortical regions most
severely affected in SD is the anterior inferior temporal lobe [58]. In the present study, there
was a greater association between animal naming than the BNT, supporting previous
findings that deficits in confrontation naming may be linked to a more advanced stage of AD
[55]. The connectivity of the ITG appears to be strongly associated not only with semantic
fluency but also MMSE and word recognition scores.

The current literature suggests that AD-associated decline in cognition may be an inevitable
consequence of the age-associated changes not only in neuron number but synaptic loss.
While careful unbiased evaluation of cortical neuronal numbers have failed to support this
idea [59, 60], there does appear to be a significant age-related decline in white matter,
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indicative of a loss of brain connectivity and synapses [61–64]. In the present study, we
found a significant age-related decline in total synaptic contacts in lamina 3 of the ITG when
all subjects were included. This correlation may not necessarily reflect normal age-related
associations since both cognitively normal and demented subjects were included in the
analysis. How this impacts on the present loss of synapses in the aMCI and AD groups is
unclear since there was no significant difference in the mean age of the groups (see Table 1).
Immunohistochemical studies have previously reported an age-related loss of synaptic
markers in the ITG and other neocortical regions [42, 65, 66]. This is in contrast to previous
ultrastructural studies that demonstrated a preservation of synapses in the superior frontal
[67] and the postcentral gyrus [66] across a wide age spectrum in cognitively normal
individuals. A previous study that included both NCI and AD subjects investigating the
superior and middle temporal cortical regions also failed to find an age-related change in
synaptic numbers [68]. The disparity among these studies supports a heterogeneous view of
the neocortex and cautions against global statements concerning age-related morphological
cortical changes.

Currently, neuroimaging appears to be the easiest way to evaluate possible atrophy in a
region of interest and has been limited to estimating gross changes. In the present study, we
were able to directly evaluate possible changes in the volume of lamina 3 of the ITG from
histological sections coupled with unbiased stereology. We found a significant decline not
only in mAD but also in aMCI, although the decline was not as robust as the loss in
synapses. This finding also differs from previous hippocampal aMCI studies that evaluated
subregion volumetric changes and failed to show a change in either the outer molecular
layer of the dentate gyrus [16] or stratum radiatum of the hippocampal region superior [15].
The overall significance of this difference may represent subtle differences in
cytoarchitecture between the ITG and hippocampus [69]. As AD progresses, various regions
of the neocortex are functionally disconnected from each other due to a loss of
corticocortical projections [70]. Numerous studies suggest that some of the neocortical
association areas are the most vulnerable in the progression of AD and it may be the case
that the dramatic loss of synapses observed in the present study signals the onset of dementia
as suggested by others [18, 71–73].

Finally, it is important to note that the present set of experiments consisted of a cross-
sectional picture of a relatively small sample size that may reduce the significance when
applied to a larger and more diverse population. The present cohort of subjects was well
educated and consisted exclusively of white Caucasians and caution should be maintained
when extrapolating the results to a more diverse population. Moreover, the MCI subjects we
examined were amnestic and may not reflect the clinical and pathology of other types of
MCI individuals.
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Figure 1.
Representative electron micrographs of lamina 3 of the inferior temporal gyrus showing
synaptic complexes (arrows) in tissue from the three different clinical groups A) no
cognitive impairment (NCI), B) amnestic mild cognitive impairment (MCI), C) Alzheimer
disease (AD). In all tissue, the synaptic complexes appeared normal with synaptic vesicles
observed in the presynaptic component and a synaptic density observed in the postsynaptic
component. Calibration bar = 1.0 μm.
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Figure 2.
Estimate of the total number of synapses (A) in lamina 3 of the inferior temporal gyrus.
Subjects were categorized clinically as no cognitive impairment (NCI), amnestic mild
cognitive impairment (aMCI), or mild to moderate Alzheimer’s disease (AD). Estimates
were obtained using unbiased stereology coupled with electron microscopic imaging of
synapses. The total volume (B) of lamina 3 of the inferior temporal gyrus was estimated
with the Cavalieri method directly from tissue sections immediately adjacent to regions used
for synaptic counts. Single points represent individual subjects. Horizontal lines indicates
group median. *p < 0.05; **p < 0.005 compared to NCI; #p < 0.005 compared to aMCI.
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Figure 3.
Relationship between estimates of total number of synapses in lamina 3 of the inferior
temporal gyrus and the subjects score on the Mini Mental Status Examination (MMSE) (A)
and a test of verbal fluency using an animal naming test (B). Subjects were categorized
clinically as no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI), or
mild to moderate Alzheimer’s disease (AD). As the total number of synapses increased, so
did the subjects’ performance on these two cognitive tests. Lines are used to represent the
direction of the association and do not indicate a line of regression. Single points represent
individual subjects’ scores for each group. **p < 0.005
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Figure 4.
Relationship between estimates of the total number of synapses in lamina 3 of the inferior
temporal gyrus and an individual’s age at the time of death. Subjects were categorized
clinically as no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI), or
mild to moderate Alzheimer’s disease (AD). There was a significant association with
decreased synaptic numbers with increased subject’s age. Lines are used to represent the
direction of the association and do not indicate a line of regression. Single points represent
individual subjects’ scores for each group. **p < 0.005

Scheff et al. Page 15

J Alzheimers Dis. Author manuscript; available in PMC 2011 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Scheff et al. Page 16

Ta
bl

e 
1

C
ha

ra
ct

er
is

tic
s o

f N
C

I, 
aM

C
I, 

A
D

 su
bj

ec
ts

Su
bj

ec
ts

A
ge

 (y
)

G
en

de
r

B
ra

in
 w

t (
g)

E
du

ca
tio

n 
(y

)
M

M
SE

C
E

R
A

D
B

ra
ak

PM
I (

h)
L

as
t D

X
 (y

)

N
C

I
90

M
13

10
18

30
N

on
e

0
4.

0
14

N
C

I
90

F
11

10
16

29
N

on
e

2
4.

0
6

N
C

I
75

M
12

40
16

28
Pr

ob
ab

le
5

4.
0

8

N
C

I
80

F
11

50
16

27
Po

ss
ib

le
1

4.
8

5

N
C

I
85

F
12

00
20

30
Po

ss
ib

le
3

6.
3

5

N
C

I
76

F
13

60
20

28
N

on
e

3
8.

0
10

N
C

I
86

M
11

60
21

27
N

on
e

5
7.

0
9

N
C

I
75

M
11

50
16

30
N

on
e

1
4.

0
7

N
C

I
87

M
11

70
18

27
N

on
e

1
6.

2
10

M
ea

n 
± 

SD
82

.7
 ±

 6
.2

12
05

 ±
 8

3
17

.9
 ±

 2
.0

28
.4

 ±
 1

.3
5.

4 
± 

1.
5

aM
C

I
90

F
11

50
18

30
D

ef
in

ite
5

4.
6

2

aM
C

I
79

M
11

40
18

23
Po

ss
ib

le
3

4.
9

4

aM
C

I
97

M
13

08
16

22
N

on
e

1
4.

0
3

aM
C

I
95

F
11

30
18

26
Po

ss
ib

le
0

4.
0

1

aM
C

I
99

F
93

0
18

21
Po

ss
ib

le
5

2.
0

4

aM
C

I
82

M
14

95
18

26
N

on
e

3
7.

3
1

aM
C

I
88

F
10

80
16

28
D

ef
in

ite
5

3.
0

3

aM
C

I
93

F
10

50
18

27
Pr

ob
ab

le
3

4.
0

3

aM
C

I
83

M
10

60
15

22
N

on
e

3
7.

6
2

aM
C

I
87

M
12

00
16

24
D

ef
in

ite
4

3.
0

3

M
ea

n 
± 

SD
89

.3
 ±

 6
.7

11
54

 ±
 1

56
17

.1
 ±

 1
.2

24
.9

 ±
 3

.0
4.

4 
± 

1.
8

A
D

89
F

11
90

20
3

Pr
ob

ab
le

5
7.

3
5

A
D

97
M

10
80

12
9

Pr
ob

ab
le

4
4.

8
4

A
D

91
F

10
50

12
9

D
ef

in
ite

5
5.

0
4

A
D

88
F

11
90

15
21

Po
ss

ib
le

4
4.

0
3

A
D

90
M

12
30

14
21

D
ef

in
ite

4
5.

0
5

A
D

86
F

10
70

16
14

D
ef

in
ite

6
5.

0
3

J Alzheimers Dis. Author manuscript; available in PMC 2011 May 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Scheff et al. Page 17

Su
bj

ec
ts

A
ge

 (y
)

G
en

de
r

B
ra

in
 w

t (
g)

E
du

ca
tio

n 
(y

)
M

M
SE

C
E

R
A

D
B

ra
ak

PM
I (

h)
L

as
t D

X
 (y

)

A
D

78
F

10
80

16
11

D
ef

in
ite

6
4.

0
3

A
D

78
F

11
90

13
23

D
ef

in
ite

5
4.

0
3

M
ea

n 
± 

SD
87

.1
 ±

 6
.5

11
35

 ±
 7

1
14

.8
 ±

 2
.7

13
.9

 ±
 7

.2
2.

4 
± 

0.
9

N
C

I (
no

 c
og

ni
tiv

e 
im

pa
irm

en
t);

 a
M

C
I (

am
ne

st
ic

 m
ild

 c
og

ni
tiv

e 
im

pa
irm

en
t);

 A
D

 (A
lz

he
im

er
’s

 d
is

ea
se

); 
M

 (M
al

e)
; F

 (F
em

al
e)

; M
M

SE
 (M

in
i M

en
ta

l S
ta

te
 E

xa
m

in
at

io
n)

; C
ER

A
D

 (C
on

so
rti

um
 to

 E
st

ab
lis

h
a 

R
eg

is
try

 fo
r A

lz
he

im
er

’s
 D

is
ea

se
); 

PM
I (

Po
st

 m
or

te
m

 in
te

rv
al

); 
D

X
 (F

in
al

 c
lin

ic
al

 d
ia

gn
os

is
); 

SD
 (s

ta
nd

ar
d 

de
vi

at
io

n)

J Alzheimers Dis. Author manuscript; available in PMC 2011 May 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Scheff et al. Page 18

Table 2

Distribution of APOE categories by diagnosis

APOE NCI aMCI AD

ε2/2 0 0 0

ε2/3 3 (33%) 2 (20%) 0

ε3/3 6 (67%) 5 (50%) 4 (50%)

ε3/4 0 3 (30%) 3 (38%)

ε4/4 0 0 1 (12%)

NCI (no cognitive impairment); aMCI (amnestic mild cognitive impairment); AD (Alzheimer’s disease)
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Table 3

Distribution of clinical diagnoses by NIA-Reagan criteria

Clinical Diagnosis NCI aMCI AD

1. High likelihood 1 (11%) 1 (11%) 5 (63%)

2. Intermediate likelihood 0 2 (22%) 2 (25%)

3. Low likelihood 6 (67%) 5 (56%) 1 (12%)

4. Not AD 2 (22%) 1 (11%) 0

NCI (no cognitive impairment); aMCI (amnestic mild cognitive impairment); AD (Alzheimer’s disease)
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