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Abstract Phospholipase A2 (PLA2) is a group of enzymes
that hydrolyze the sn-2 position of glycerophospholipids to
yield fatty acids and lysophospholipids. Of many PLA2s or
related enzymes identified to date, secreted PLA2s
(sPLA2s) comprise the largest family that contains 10
catalytically active isozymes. Besides arachidonic acid
released from cellular membranes for eicosanoid synthesis,
several if not all sPLA2s have recently been implicated in
hydrolysis of phospholipids in lipoprotein particles. The
sPLA2-processed low-density lipoprotein (LDL) particles
contain a large amount of lysophospholipids and exhibit the
property of “small-dense” or “modified” LDL, which
facilitates foam cell formation from macrophages. Trans-
genic overexpression of these sPLA2s leads to development
of atherosclerosis in mice. More importantly, genetic
deletion or pharmacological inhibition of particular sPLA2s
significantly attenuates atherosclerosis and aneurysm. In
this article, we will give an overview of current under-
standing of the role of sPLA2s in atherosclerosis, with
recent lipidomics data showing the action of a subset of
sPLA2s on lipoprotein phospholipids.
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Abbreviations
ESI-MS Electrospray ionization-mass spectrometry
HDL High-density lipoprotein
LDL Low-density lipoprotein
LPA Lysophosphatidic acid
LPC Lysophosphatidylcholine
LPE Lysophosphatidylethanolamine
PC Phosphatidylcholine
PG Prostaglandin
PUFA Polyunsaturated fatty acid
SM Sphingomyelin
sPLA2 Secreted phospholipase A2

Classification of sPLA2s

The sPLA2 family represents structurally related, disulfide-
rich, low molecular weight, lipolytic enzymes with a His-
Asp catalytic dyad. sPLA2s occur in a wide variety of
vertebrate and invertebrate animals, plants, bacteria, and
viruses, and 10 catalytically active sPLA2 isozymes (IB,
IIA, IIC, IID, IIE, IIF, III, V, X, and XIIA) are identified in
mammals. Of these, sPLA2s belonging to the group I/II/V/
X collection are closely related 14–19-kDa proteins of
secreted enzymes with a highly conserved Ca2+-binding
loop and a His-Asp catalytic site. In addition to these
elements, there are six absolutely conserved disulfide bonds
and up to two additional unique disulfide bonds, which
contribute to the high degree of stability of these enzymes.
Group III and group XII sPLA2s share little homology with
the I/II/V/X collection of sPLA2s except for the Ca

2+-binding
loop and the catalytic site, thereby representing the distinct
group collections. Unlike intracellular PLA2s, sPLA2s
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hydrolyze glycerophospholipids only in the presence of
millimolar concentrations of Ca2+, suggesting that they
primarily act on “extracellular” substrates. Since individual
sPLA2s display distinct cellular/tissue distributions and
substrate head group/fatty acid specificities, they may play
non-redundant, isoform-specific roles in vivo. The latest
biochemistry and biology of the sPLA2 family have been
detailed in recent reviews [1, 2].

Lipoprotein hydrolysis by sPLA2s: in vitro studies

Lipoprotein modification and atherosclerosis;
a general view

A lipoprotein is a biochemical assembly that contains both
proteins and lipids whose function is to transport water-
insoluble lipids in the water-based bloodstream. Examples
include the high-density (HDL) and low-density (LDL)
lipoproteins, which enable fats to be carried between the
blood and tissues. Since higher levels of LDL particles
promote health problems and cardiovascular disease typically
known as atherosclerosis, they are often called the bad
cholesterol particles, as opposed to HDL particles that are
frequently referred to as good cholesterol or healthy
cholesterol particles. LDL particles vary in size and density,
and studies have shown that high plasma levels of small
dense LDL particles rather than larger and less dense LDL
particles well correlate with a higher risk for coronary heart
disease. The surfaces of LDL and HDL are surrounded by
phospholipids, mainly phosphatidylcholine (PC), which, as a
matter of fact, serves as a very good “extracellular” target of
several if not all sPLA2 isoforms.

It has been believed that a key step of pro-atherogenic
small-dense LDL generation is oxidative modification of the
polyunsaturated fatty acids (PUFAs) in phospholipids on LDL
surface. However, the “oxidation hypothesis of atherosclero-
sis” [3] still remains inconclusive, as oxidation alone cannot
fully explain the accumulation of large amounts of lipids and
lysophosphatidylcholine (LPC) in foam cells and fatty streak
lesion formation [4]. Current knowledge suggests that
sPLA2-mediated modification of lipoproteins plays a role in
the development of atherosclerosis [5, 6]. This idea originally
arose from the following key observations. Hydrolysis of PC
in lipoproteins by sPLA2 produces free fatty acids (typically
unsaturated) and LPC, which can trigger vasoactive, chemo-
tactic, and pro-inflammatory actions leading to the accelera-
tion of atherosclerosis. Hydrolysis of LDL by sPLA2

correlates with production of the more atherogenic, small-
dense, modified LDL with increased net negative charge,
whereas hydrolysis of HDL reduces the capacity of this anti-
atherogenic particle to promote cholesterol efflux from lipid-
rich foam cells. Modified LDL retained in atherosclerotic

lesions contains less PC and more LPC than does circulating
LDL, suggesting that arterial LDL undergoes lipolytic
modification by certain extracellular PLA2 enzyme(s) at
lesion sites. Further, clinical analyses have shown that
elevated plasma PLA2 activity (likely sPLA2-IIA) is an
independent risk factor for cardiovascular disease [7, 8], and
a low content of surface phospholipids often characterizes the
small-dense LDL and HDL subclasses [9].

Hydrolysis of lipoprotein-bound phospholipids by
sPLA2s can give rise to the two pro-atherogenic and pro-
inflammatory lipid products, lysophospholipids and fatty
acids. LPC modulates the expression of a number of
proteins such as cytokines, chemokines, growth factors,
adhesion molecules, inducible nitric oxide synthase and
cyclooxygenase-2 [10]. LPC plays an ethiologic role in
atherosclerosis, is a major constituent of atherogenic
lipoproteins [11], and exhibits pro-inflammatory functions
including activation of macrophages as well as induction of
chemotactic factors and adhesion molecules in endothelial
cells [12]. Lysophosphatidic acid (LPA), an autotaxin-
hydrolyzed product of LPC that elicits numerous effects
on cells of the cardiovascular system, induces the formation
of arterial neointima lesions, a prelude of atherosclerosis,
through the PPARγ-dependent mechanism [13]. LPA
accumulates in the lipid-rich core of human carotid
atherosclerotic plaques [14]. Arachidonate-oxygenated lipid
mediators, including prostaglandins (PGs) and leukotrienes,
also have diverse effects on atherosclerosis, as evidenced
by studies employing knockout mice for their receptors or
biosynthetic enzymes. For instance, gene ablation of
thromboxane A2 receptor or PGE2 synthase ameliorates,
whereas that of PGI2 receptor or PGD2 synthase exacer-
bates, the experimental atherosclerosis in mice [15–17].
Mice lacking 5- or 12/15-lipoxygenase are also partially
protected from the development of atherosclerosis [18, 19].
Thus, increased production of these pro-atherogenic lipid
mediators may account, at least in part, for the pro-atherogenic
action of sPLA2s. A proposed idea for the mechanistic action
of sPLA2s on the development of atheroslcerosis is
illustrated in Fig. 1.

However, a series of initial studies describing the
relationship among sPLA2, lipoprotein hydrolysis and
atherosclerosis have some concerns that should be inter-
preted more carefully. First, many studies using sPLA2s
from snake or bee venom could be misleading, since the
properties of venom sPLA2s are distinct from those of
mammalian sPLA2s. Second, even if mammalian sPLA2s
were used, their concentrations employed were often very
high (>100 nM) that could be out of the physiological level.
Third, many investigators had an incorrect recognition that
all or most mammalian sPLA2s are induced during
inflammation and can exist in the plasma. However, it is
only sPLA2-IIA that is strongly induced under pathologic
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conditions associated with inflammation, tissue injury or
infection, and actually there have been no convincing
reports that other sPLA2 isoforms are present in the
circulation [1, 2]. Fourth, although LPC released by sPLA2s
from lipoprotein particles has been proposed to be a critical
inducer of atherosclerotic cellular events, LPC already
exists in the plasma at a very high level (as much as
hundreds μM). Finally, considering the recent concept that
atherosclerosis is a mild and chronic inflammation in the
arterial wall [20], pro-inflammatory changes, in addition to
modification of lipoproteins, in the plaques should be taken
into consideration as a causal factor in which sPLA2s might
be involved. Nevertheless, the physiological relevance of
the potential contribution of sPLA2s to atherosclerosis is
recently being elucidated by several elegant studies
employing sPLA2 gene-manipulated mice as well as an
sPLA2-targeted small molecule inhibitor, as described later.

Application of mass spectrometry in analyzing sPLA2

hydrolysis of lipoprotein-bound phospholipids

In the past five years, several studies have examined the
hydrolytic activity of human sPLA2s toward LDL- or HDL-
associated phospholipids using mass spectrometry (MS).
These approaches have delineated the fundamental differences
in lipoprotein hydrolysis by distinct human sPLA2s. Several
quantitative analyses have shown that sPLA2-Vand -X are 20

~30 times more reactive on PC in HDL and LDL than
sPLA2-IB and -IIA [21–23]. Interestingly, sPLA2-X hydro-
lyzes arachidonate- and linoleate-containing PC species
preferentially, group V hydrolyzes oleoyl- and linoleate-PC
in preference to arachidonate-PC, and sPLA2-IIA hydrolyzes
randomly all diacyl molecular species. The hydrolysis of
minor phospholipid species (e.g. phosphatidylinositol and
phosphatidylserine) in HDL and LDL by sPLA2-V and -X is
low relative to that of PC [24]. As a result, these acidic
phospholipids remain at higher levels in both LDL and HDL,
thereby increasing the acidity of the modified particles.
Although the activity of sPLA2-IIA on lipoproteins is
relatively weak (also see below), it can hydrolyze acute phase
HDL 2~3-fold more efficiently than normal HDL, with
preferential attack on PC with oxygenated PUFAs [25]. LDL
hydrolysis by sPLA2s is also affected by the contents of other
lipid components such as sphingomyelin (SM) and neutral
lipids, since higher percentages of SM interfere with LDL
hydrolysis by sPLA2-IIA and -V [22] and since LDL from
patients with type 2 diabetes is more susceptible than that
from normal subjects to sPLA2-V hydrolysis [26, 27].

We performed electrospray ionization MS (ESI-MS) to
directly compare the hydrolytic activity of six human
sPLA2 isoforms, IIA, IIE, IIF, III, V and X, on PC in
human LDL and HDL particles (for more details, please see
[28]). Both LDL and HDL particles contained three major
PC molecular species (C16:0–18:2, C18:0–18:2 and
C18:0–20:4) and only trace levels of LPC molecular species

Fig. 1 A proposed role of sPLA2 in the development of atheroscle-
rosis. In the arterial wall, multiple sPLA2s are present in macrophages
and smooth muscle cells as well as in the extracellular matrix. LDL
captured by the extracellular matrix proteoglycan is hydrolyzed by
proteoglycan-bound (IIA and V) or -unbound (III and X) sPLA2s to be
converted to small-dense LDL, which in turn facilitates macrophage

foam cell formation and thereby atherosclerosis development. Free
fatty acids (FFA) and LPC or their metabolites, released by sPLA2s
from LDL, can activate macrophages and smooth muscle cells and
promote collagen deposition in the atherosclerotic plaques. Additional
effects of sPLA2s within the plaques should also be considered. For
details, please see the text
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(C16:0 and C18:0). When LDL was treated with a low
concentration (10 nM) of sPLA2s for 4 h, three sPLA2s,
namely III, V and X, robustly increased both LPC species
(Fig. 2a). The capacities of these three enzymes to produce
LPC and lysophosphatidylethanolamine (LPE) from LDL
were nearly comparable (Fig. 2b). Marked increases of LPC
species were also observed when HDL was incubated with
10 nM sPLA2-V or -X, whereas the activity of sPLA2-III on
HDL-bound PC at this concentration was modest even
though significant (Fig. 3a). Notably, all PC species were
dramatically reduced by sPLA2-X, linoleate-containing PC
species were reduced in preference to arachidonate-containg
PC by sPLA2-V, and arachidonate-containing PC was
preferentially reduced by sPLA2-III, revealing differences
in the potency and fatty acid selectivity of these three
sPLA2s on HDL-associated PC. In addition to LPC, LPE
was also greatly increased when HDL was treated with
sPLA2-V or sPLA2-X, and to a lesser extent with sPLA2-III
(Fig. 3b). The ability of sPLA2-IIA and -IIE to hydrolyze
PC in LDL and HDL was minimal even at 50 nM, while
sPLA2-IIF at this concentration showed significant activity
with hydrolysis of arachidonate-PC to produce C16:0-LPC
in LDL and to produce both C16:0- and C18:0-LPC in HDL
(Fig. 4).

Taking these results altogether, the rank order of the
hydrolytic potency of various human sPLA2s, as evaluated
by ESI-MS, is X > V > III > IIF > IIA, IIE for both LDL
and HDL. This order appears to roughly correlate with their
ability to interact with PC-rich vesicles and with PC-rich
cellular plasma membranes [1, 2]. Note that, although
sPLA2-IIA did not show a detectable level of activity in our
experimental setting (see above), previous studies employing
very high concentrations of sPLA2-IIA have shown that it
could hydrolyze lipoprotein-bound PC to some extents,
particularly oxidized lipoproteins [25, 29, 30]. Since the
expression level of sPLA2-IIA is considerably higher than
those of other sPLA2s and it is the only sPLA2 isoform
detected in the circulation of mammals (except mice) [1, 2],
it is still plausible that sPLA2-IIA participates in atheroscle-
rotic lipoprotein hydrolysis in vivo, as discussed below.

Cellular actions of sPLA2-treated LDL

Atherosclerosis, and the resulting coronary heart disease
and cerebral stroke, represent one of the most common
causes of death in industrial nations. Cholesterol-engorged
macrophages and their detritus following cell death comprise
a major volume of early fatty streak plaques as well as the
most typical advanced lesions of arteries. Unregulated uptake
of cholesterol by macrophages results in the accumulation of
multiple lipid droplets leading to the aptly named “foam cell”
phenotype [31]. Numerous studies have described a variety

of foam cell responses that would contribute to the growth
and rupture of the vessel wall plaques of atherosclerosis, and
the cholesterol-loaded macrophages appear to contribute to
the inception of the process, the lethal conclusion in plaque
rupture, and the triggering of the occlusive thrombosis [32].
Oxidized LDL, a generally recognized form of modified
LDL, is believed to bring about in the sub-endothelial space
where circulating anti-oxidant defense are less effective.
Mildly oxidized LDL can stimulate the release of chemo-
kines by endothelial cells, increase the adherence and
penetration of monocytes, and induce scavenger receptor A
(SR-A) and CD36 expression in macrophages [33–35].
Extensively oxidized LDL becomes a ligand for SR-A and
other scavenger receptors that contribute to foam cell
formation by facilitating uptake of lipoprotein particles.

The sPLA2-hydrolyzed LDL particles, with increased
LPC contents and small diameter, can potently promote
lipid droplet accumulation in macrophages, a process
reminiscent of foam cell formation [28, 36, 37]. Indeed,
as does oxidized LDL, sPLA2-modified LDL shows some
typical features of pro-atherogenic particles, such as
increased affinity for matrix proteoglycans and propensity
of aggregation [36, 38]. Association of sPLA2-IIA or -V
with matrix proteoglycans increases the hydrolysis of
LDL-associated PC [39–41]. Furthermore, treatment with
sPLA2-IIA renders LDL more susceptible to oxidative
modification and increases its affinity for matrix proteo-
glycans. Conceivably, the close spatial contact between
sPLA2-IIA and LDL on proteoglycans may allow their
efficient interaction, and sPLA2-IIA can promote aggre-
gation and fusion of the proteoglycan-bound LDL, leading
to progressive deposition of lipids within the extracellular
matrices of the arterial intima, a central feature of
atherosclerosis [39–41]. Uptake of sPLA2-V-treated LDL
by macrophages depends on binding to syndecan 4, a
cellular proteoglycan, rather than to the scavenger receptors
SR-A and CD36 [41, 42]. LDL lipolysis by sPLA2-V results
in production of free fatty acids such as oleic and linoleic
acids, which augment TNFα and IL-6 secretion by macro-
phages [43]. Lipolytic modification of HDL by sPLA2-V
or -X reduces its capacity to promote cholesterol efflux
from lipid-loaded macrophages, thereby reducing its anti-
atherogenic function [44]. The sPLA2-modified LDL can
also affect the function of endothelial cells. The pan-sPLA2

Fig. 2 Hydrolysis of human LDL by recombinant human sPLA2-III, -V
and –X in vitro. After LDL (1 mg/ml) was incubated with or without 10
or 50 nM sPLA2 for 4 h at 37°C, lipids were extracted and applied to
ESI-MS (4000Q TRAP; Applied Biosystems), as described previously
[75, 76]. Representative results of ESI-MS for choline-containing
phospholipids on a positive ion mode (a) and lysophospholipids on a
negative ion mode (b) are shown. Major peaks of PC, LPC, LPE and
SM molecular species are indicated. Asterisks indicate the peaks that
were significantly changed by addition of each sPLA2. Top-right graphs
show quantified data of LPC and LPE. For more details, please see [28]
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inhibitor, indoxam, suppresses LDL modification and asso-
ciated inflammatory responses (such as NF-κB activation
and chemokine production) in TNFα-stimulated human
endothelial cells, which express sPLA2-V [45]. Also, LDL
modified by sPLA2-X increases the endothelial expression of
leukocyte adhesion molecules [46].

Although these studies emphasize the pro-inflammatory
(and thereby pro-atherosclerotic) aspects of sPLA2s, the
opposite, anti-inflammatory aspect of these enzymes should
also be taken into account. Indeed, the biological actions of
sPLA2-V, -X and -IID in vivo can often be associated with
anti-inflammatory events [47–49], and activation of PPARδ
in endothelial cells by snake venom PLA2-released PUFAs
can switch on the anti-inflammatory (rather than pro-
inflammatory) program [50]. However, it remains unclear
whether PUFAs released by mammalian sPLA2(s) from
lipoprotein particles would play an anti-inflammatory or
anti-atherosclerotic role.

sPLA2s and Atherosclerosis: in vivo studies

Expression of sPLA2s in atherosclerotic plaques

sPLA2-IIA is located in macrophage-rich regions, lipid
cores of atheromas, and the extracellular matrix of the
diseased intima in association with collagen fibers in
human atherosclerotic lesions [51]. sPLA2-V is also
enriched in atherosclerotic lesions of humans and experi-
mental animals, in which it is associated with smooth
muscle cells and also surrounding foam cells in lipid core
areas [52, 53]. A hyperlipidemic high-fat diet up-regulates
sPLA2-V expression in the aorta, and apoE−/− x Ldlr−/−

mice, in which atherosclerosis develops spontaneously,
show elevated aortic sPLA2-V expression [52]. sPLA2-X
is also immunohistochemically detected in atherosclerotic
lesions in both humans and apoE−/− mice [37, 46]. In
humans, sPLA2-X is detected in the intima where it is
localized in the majority of foam cells and in phenotypi-
cally de-differenciated smooth muscle cells resembling
myofibroblasts as well as in the extracellular matrix, but
not detectable in T-lymphocytes and in the lesion-free areas.
sPLA2-III is focally expressed in advanced lesions of
atheroma in human and apoE−/− mice, mainly in macro-
phages and smooth muscle cells [28]. Other sPLA2s (IID,

IIE, IIF) are also detected by immunohistochemistry and in
situ hybridization in human atheroslcerotic plaques, with
sPLA2-IIF exhibiting the most notable induction in accor-
dance with the developmental process of atherosclerosis
[54].

sPLA2-IIA

The principal experimental evidence for the potential role
of mammalian sPLA2 in atherosclerosis has arisen from
studies employing transgenic mice overexpressing human
sPLA2-IIA (PLA2G2A-Tg) [55], beyond the fact that the
C57BL/6 mouse strain intrinsically lacks sPLA2-IIA as a
result of a natural mutation of its gene [56]. PLA2G2A-Tg
mice maintained on high-cholesterol atherogenic diet
exhibit increased atherosclerotic lesions [55]. In these mice,
sPLA2-IIA is present in atherosclerotic lesions in the aorta,
and the plasma level of HDL is lower and that of LDL is
slightly higher in PLA2G2A-Tg mice than those in control
mice. Of importance, transplantation of bone marrow cells
from PLA2G2A-Tg mice into recipient Ldlr−/− mice results
in a significant increase in the extent of atherosclerosis in
the aortic arch and sinus despite the absence of alteration in
lipoprotein composition, suggesting that macrophage-
derived sPLA2-IIA can exert a local pro-atherogenic effect
with enhancement of collagen deposition by a process
independent of systemic lipoprotein metabolism [57]. Thus,
even though the hydrolytic action of sPLA2-IIA on PC in
LDL and HDL is relatively low, it is still possible that only
local modification of lipoproteins by this enzyme within
vascular walls is sufficient for development of atherosclerosis.

sPLA2-V

The findings that sPLA2-V can hydrolyze LDL- and HDL-
associated PC far more efficiently than does sPLA2-IIA and
that the LDL modified by sPLA2-V efficiently induces
macrophage foam cell formation, as described above, have
led to the idea that this enzyme is more important than
sPLA2-IIA for the promotion of atherosclerosis [58].
Importantly, Ldlr−/− mice subjected to retrovirus-mediated
gene transfer of Pla2g5 cDNA have increased lesion area in
the ascending aortic root with a concomitant elevation of
regional collagen deposition, whereas mice transplanted
with bone marrow cells from Pla2g5−/− mice show reduced
atherosclerosis in the aortic arch and thoracic aorta [53].
This result clearly indicates that sPLA2-V exerts a pro-
atherogenic function in vivo. Surprisingly, however, reduction
of atherosclerotic lesion size is not evident in apoE−/− mice
reconstituted with Pla2g5−/− bone marrow cells, probably
because the lipoprotein lipid compositions are distinct

Fig. 3 Hydrolysis of human HDL by recombinant human sPLA2-III, -V
and –X in vitro. After HDL (1 mg/ml) was incubated with or without 10
or 50 nM sPLA2 for 4 h at 37°C, lipids were extracted and applied to
ESI-MS. Representative results of ESI-MS for choline-containing
phospholipids on a positive ion mode (a) and lysophospholipids on a
negative ion mode (b) are shown. Major peaks of PC, LPC, LPE and
SM molecular species are indicated. Asterisks indicate the peaks that
were significantly changed by addition of each sPLA2. Top-right graphs
show quantified data of LPC and LPE. For more details, please see [28]
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between the Ldlr−/− and apoE−/− backgrounds [59]. Never-
theless, the collagen content of the plaques is significantly
reduced in lesions of apoE−/− mice lacking sPLA2-V. It
should be noted, however, that these bone marrow transplan-
tation approaches could assess the role of sPLA2-V expressed
only in macrophages or other hematopoietic cells. Hence, the
impact of sPLA2-V expressed in non-hematopoietic cells on
atherosclerosis still remains unknown. Of note, a recent
tagging single nucleotide polymorphism analysis has demon-
strated an association of the human PLA2G5, but not
PLA2G2A, gene haplotype with the plasma levels of LDL
and oxidized LDL in patients with type 2 diabetes [26].

sPLA2-X

sPLA2-X also potently hydrolyzes phospholipids in LDL
and HDL in vitro, with an effect even superior to that of
sPLA2-V (see above). A recent study has demonstrated that
the deficiency of sPLA2-X on the ApoE−/− background
significantly reduces the incidence and severity of angio-
tensin II-induced abdominal aortic aneurysm and athero-
sclerosis, accompanied by reduction of pro-inflammatory
mediators [60]. Moreover, another study using Pla2g10−/−

macrophages has provided an additional view that sPLA2-X
negatively regulates cholesterol efflux from macrophages
through altering the liver X receptor (LXR)-dependent
expression of ABC transporters [61]. These results support
the idea that sPLA2-X has a pro-atherogenic role in vivo. In
humans, however, non-synonymous polymorphism in the
PLA2G10 gene, which leads to a profound change in the
expression and activity of sPLA2-X, has no detectable
impact on cardiovascular disease risk, whereas another
polymorphism located in the 5′-untranslated region is
associated with a decreased, rather than increased, risk of
recurrent cardiovascular events [62]. Considering that
sPLA2-X can also exert an anti-inflammatory function
probably through producing anti-inflammatory PUFAs or
their metabolites [48], the mechanistic action of sPLA2-X
in atherosclerosis could not be simply explained only by
alterations in the lipoprotein modification. Further investi-
gation should be needed to elucidate the role of sPLA2-X.

To assess whether sPLA2-X has the capacity to hydro-
lyze lipoprotein PC in vivo, we examined the lipoprotein

profiles in plasma of transgenic mice overexpressing human
sPLA2-X (PLA2G10-Tg) [63] in comparison with littermate
wild-type (WT) mice. Plasma PLA2 activity, as evaluated
by release of [14C]linoleic acid from 1-palmitoyl-2-[14C]
linoleoyl-phosphatidylethanolamine, was dramatically elevated
in PLA2G10-Tg mice over WT mice (Fig. 5a). sPLA2-X is
synthesized as an inactive pro-enzyme, and cleavage of the
N-terminal propeptide gives rise to a mature active enzyme,
which further undergoes N-glycosylation [64, 65]. Accord-
ingly, sPLA2-X proteins (mature, pro- and glycosylated
forms) were detected in the plasma of PLA2G10-Tg mice,
as assessed by immunoblotting using anti- sPLA2-X antibody
(Fig. 5b). Lipids were extracted from LDL and HDL of these
mice and subjected to ESI-MS for phospholipid analysis
(Fig. 5c–e). In both LDL and HDL, there were robust
increases in C16:0- and C18:0-LPC (Fig. 5d and e), with a
concomitant decrease in all PC molecular species (Fig. 5c), in
PLA2G10-Tg mice relative to WT mice. These results suggest
that sPLA2-X overexpressed in PLA2G10-Tg mice hydro-
lyzed LDL- and HDL-associated PC robustly in vivo.

It should be noted, however, that endogenous sPLA2-X
was undetectable in the plasma of WT mice (Fig. 5b), and
that we observed no difference in the lipoprotein compo-
sition between Pla2g10−/− and littermate Pla2g10+/+ mice
under physiological conditions [66]. Therefore, even
though the above study employing PLA2G10-Tg mice has
pointed that sPLA2-X has the capacity to hydrolyze
lipoprotein PC in vivo, its physiological importance
remains unclear. Presumably, under certain pathological
conditions, the expression level or proteolytic processing of
sPLA2-X is increased locally (e.g. in atherosclerotic
lesions), where it could contribute to hydrolysis of
lipoprotein PC. Indeed, a study using PLA2G10-Tg mice
has provided evidence that the proteolytic processing of
sPLA2-X is facilitated at inflamed sites [63].

sPLA2-III

sPLA2-III can efficiently hydrolyze PC in LDL and to a
lesser extent in HDL (see above). sPLA2-III-modified LDL,
like sPLA2-V- or sPLA2-X-treated LDL, facilitates the
formation of foam cells from macrophages ex vivo [28].
After intake of an atherogenic diet, aortic atherosclerotic
lesions are more severe in mice with transgenic over-
expression of human sPLA2-III (PLA2G3-Tg) than in
control mice on an apoE−/− background [28]. In these
mice, plasma LDL and HDL are significantly hydrolyzed
by the enzyme, and peritoneal macrophages readily store
lipid droplets in the cytoplasm after exposure to LDL ex
vivo. Lipidomics studies demonstrate the elevation of LPC
as well as thromboxane A2 and 12-hydoxyeicosaenic acid,
which are arachidonate-derived products by activated

Fig. 4 Hydrolysis of human LDL and HDL by recombinant human
sPLA2-IIA, -IIE and –IIF in vitro. After LDL or HDL (1 mg/ml) was
incubated with or without 50 nM sPLA2 for 4 h at 37°C, lipids were
extracted and applied to ESI-MS. (a) Representative results of ESI-MS
for choline-containing phospholipids on a positive ion mode are shown.
Major peaks of PC, LPC, and SM molecular species are indicated on
the top. Asterisks indicate the peaks that were significantly changed by
addition of each sPLA2. (b) Quantified data of LPC in LDL (left) and
HDL (right) after incubation with each sPLA2 are shown. For more
details, please see [28]
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platelets, in plasma of PLA2G3-Tg mice relative to WT mice.
Interestingly, PLA2G3-Tg mice also develop systemic
inflammation [67], suggesting that the elevated inflammatory
state in the vascular wall may have an additional impact on
the promotion of atherosclerosis in these mice. Although
these observations suggest a potential functional link
between sPLA2-III and atherosclerosis, its pathological
relevance awaits further study employing Pla2g3−/− mice.

Pharmacologic effect of sPLA2 inhibitor
on atherosclerosis

Accumulating evidence as mentioned above suggests that
sPLA2 may represent a novel target for atherosclerosis and
associated cardiovascular diseases. The potent sPLA2

inhibitors, which broadly inhibits sPLA2s in the group I/
II/V/X branch at low nM potency in vitro, include the

Fig. 5 Altered lipoprotein profiles in PLA2G10-Tg mice. (a and b)
PLA2 enzymatic activity was markedly elevated (mean ± S.D., n=4,
*p<0.05) (a) and sPLA2-X proteins (mature, precursor- and glycosy-
lated forms) were detectable by immunoblotting with anti-sPLA2-X
antibody (b) in 8-wk-old PLA2G10-Tg (X-Tg) mice. Top panel in (a)
shows the expression of the PLA2G10 transgene in PLA2G10-Tg
mice, as assessed by RT-PCR using a primer set that amplified the
full-length PLA2G10. (c–e) ESI-MS analysis of choline-containing

phospholipids in lipoprotein particles from WT and X-Tg mice.
Individual PC molecular species in HDL of PLA2G10-Tg and WT
mice were quantified (c). Representative ESI-MS spectra of LDL (d)
and HDL (e) particles purified from WT (left) and X-Tg (right) mice
are shown. Major peaks of PC, LPC, and SM molecular species are
indicated on the top. In both LDL and HDL, peaks of LPC species
were markedly increased in X-Tg mice compared with WT mice
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functionalized indole scaffolds, such as indoxam, methyl-
indoxam and LY315920, from Eli Lilly and Shionogi [68].
The development of these compounds involves structure-
guided improvement of binding capacity starting with a
lead compound obtained through high-throughput screening
and making use of the X-ray structure of human sPLA2-IIA
[69]. Interestingly, A-002 (1-H-indole-3-glyoxamide or
varespladib), a lead compound of this pan-sPLA2 inhibitor
series, can decrease the area of atherosclerotic lesions
dramatically, accompanied by a 1.4-fold increase in HDL,
in apoE−/− mice fed a high-fat diet [70–72]. Combinational
treatment of animals with pravastatin (a member of the drug
class of statins (HMG-CoA reductase inhibitors)) and A-002
decreases the lesion area and plasma cholesterol level even
more, suggesting a synergistic effect between the two agents
in amelioration of atherosclerosis through decreased levels of
systemic inflammation or circulating lipids. A-002 treatment
also stabilizes the plaque architecture. Because apoE−/− mice
(C57BL/6 background) intrinsically lack sPLA2-IIA due to a
natural mutation [56], the anti-atherosclerotic effect of A-002
could be attributable to the inhibition of other sPLA2

isoforms, probably sPLA2-V or –X (note that A-002 does
not inhibit sPLA2-III, an atypical sPLA2). Furthermore, a
phase II double-blind, randomised, placebo-controlled trial
to assess the effects of A-002 in human patients with
coronary heart disease has demonstrated that the serum
concentration of sPLA2 (most likely sPLA2-IIA), as well as
the levels of vascular (oxidized LDL) and general (C-
reactive protein) inflammation markers, decreases progres-
sively to nearly an order of magnitude less than the baseline,
with no increase in adverse events [73]. A-002 also reduces
the concentration of LDL cholesterol and the number of
LDL particles, mainly by reducing small-dense LDL. Thus,
A-002 shows promising reduction of biomarkers and effects
on surrogate endpoints, encouraging further investigation of
whether it can reduce cardiovascular disease events without
any other off-target toxicity. Although it is uncertain whether
A-002 exerts its anti-atherosclerotic effect in humans by
inhibiting circulating sPLA2-IIA, plaque-associated sPLA2-
V and -X, or both, these animal and early-phase clinical
studies nevertheless suggest that sPLA2s could be exciting
therapeutic targets for atherosclerosis.

Concluding Remarks

In this article, we have highlighted a current view of the role of
sPLA2s in lipoprotein hydrolysis and atherosclerosis. Need-
less to say, MS-based lipidomics has greatly contributed to
expanding our understanding of sPLA2-mediated hydrolysis
of lipoprotein phospholipids. sPLA2s have also been
implicated in various biological processes, such as asthma,

arthritis, cancer, antimicrobial defense and reproduction,
among others [1, 2]. However, therapeutic or prophylactic
efficacies of the sPLA2 inhibitors should be carefully
evaluated, since gene targeting of several sPLA2s have
revealed that distinct isoforms often display opposite
functions in a given pathology [47]. In this sense, inhibition
of multiple sPLA2s altogether could inhibit both offensive
and defensive sPLA2 isozymes and thereby cancel the
therapeutic effect resulting from the inhibition of the pro-
inflammatory one(s), as has been seen for human rheumatoid
arthritis in which a pan-sPLA2 inhibitor had no beneficial
effect [74]. Thus, using an inhibitor that specifically blocks
only the offensive sPLA2 may be a more desirable strategy
than using the currently tested pan-sPLA2 inhibitors that
block group I/II/V/X sPLA2s altogether. Nonetheless, all the
above knowledge, together with application of lipidomics to
in vivo systems, should help proper identification of certain
PLA2s and their target phospholipids or their metabolites as
therapeutic targets or as novel biotherapeutic molecules in
various diseases including atherosclerosis.

Acknowledgments We thank for Drs. R. Taguchi, K. Ikeda (University
of Tokyo) and T. Kobayashi (Ochanomizu University) for ESI-MS
analysis, and for Dr. Yokoyama (The Tokyo Metropolitan Institute of
Medical Science) for English edition. This work was supported by grants-
in-aid for Scientific Research and for Young Scientists from the Ministry
of Education, Culture, Sports, Science and Technology of Japan.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G
(2010) Emerging roles of secreted phospholipase A2 enzymes:
lessons from transgenic and knockout mice. Biochimie 92:561–582

2. Lambeau G, Gelb MH (2008) Biochemistry and physiology of
mammalian secreted phospholipases A2. Annu Rev Biochem
77:495–520

3. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL
(1989) Beyond cholesterol. Modifications of low-density lipopro-
tein that increase its atherogenicity. N Engl J Med 320:915–924

4. Quinn MT, Parthasarathy S, Steinberg D (1988) Lysophosphatidyl-
choline: a chemotactic factor for human monocytes and its potential
role in atherogenesis. Proc Natl Acad Sci USA 85:2805–2809

5. Webb NR (2005) Secretory phospholipase A2 enzymes in
atherogenesis. Curr Opin Lipidol 16:341–344

6. Murakami M, Kudo I (2003) New phospholipase A2 isozymes with
a potential role in atherosclerosis. Curr Opin Lipidol 14:431–436

7. Kugiyama K, Ota Y, Takazoe K, Moriyama Y, Kawano H, Miyao
Y, Sakamoto T, Soejima H, Ogawa H, Doi H, Sugiyama S, Yasue
H (1999) Circulating levels of secretory type II phospholipase A2

predict coronary events in patients with coronary artery disease.
Circulation 100:1280–1284

8. Mallat Z, Steg PG, Benessiano J, Tanguy ML, Fox KA, Collet JP,
Dabbous OH, Henry P, Carruthers KF, Dauphin A, Arguelles CS,

Secreted phospholipase A2 1839



Masliah J, Hugel B, Montalescot G, Freyssinet JM, Asselain B,
Tedgui A (2005) Circulating secretory phospholipase A2 activity
predicts recurrent events in patients with severe acute coronary
syndromes. J Am Coll Cardiol 46:1249–1257

9. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P (2001)
Phospholipase A2 in vascular disease. Circ Res 89:298–304

10. Schmitz G, Ruebsaamen K (2010) Metabolism and atherogenic
disease association of lysophosphatidylcholine. Atherosclerosis
208:10–18

11. Kume N, Cybulsky MI, Gimbrone MA Jr (1992) Lysophospha-
tidylcholine, a component of atherogenic lipoproteins, induces
mononuclear leukocyte adhesion molecules in cultured human and
rabbit arterial endothelial cells. J Clin Invest 90:1138–1144

12. Murugesan G, Sandhya Rani MR, Gerber CE, Mukhopadhyay C,
Ransohoff RM, Chisolm GM, Kottke-Marchant K (2003) Lyso-
phosphatidylcholine regulates human microvascular endothelial
cell expression of chemokines. J Mol Cell Cardiol 35:1375–1384

13. Zhang C, Baker DL, Yasuda S, Makarova N, Balazs L, Johnson
LR, Marathe GK, McIntyre TM, Xu Y, Prestwich GD, Byun HS,
Bittman R, Tigyi G (2004) Lysophosphatidic acid induces
neointima formation through PPARγ activation. J Exp Med
199:763–774

14. Rother E, Brandl R, Baker DL, Goyal P, Gebhard H, Tigyi G,
Siess W (2003) Subtype-selective antagonists of lysophosphatidic
Acid receptors inhibit platelet activation triggered by the lipid core
of atherosclerotic plaques. Circulation 108:741–747

15. Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H,
Murayama T, Arai H, Oida H, Yurugi-Kobayashi T, Yamashita
JK, Katagiri H, Majima M, Yokode M, Kita T, Narumiya S (2004)
Roles of thromboxane A2 and prostacyclin in the development of
atherosclerosis in apoE-deficient mice. J Clin Invest 114:784–794

16. Wang M, Zukas AM, Hui Y, Ricciotti E, Puré E, FitzGerald GA
(2006) Deletion of microsomal prostaglandin E synthase-1 aug-
ments prostacyclin and retards atherogenesis. Proc Natl Acad Sci
USA 103:14507–14512

17. Ragolia L, Palaia T, Hall CE, Maesaka JK, Eguchi N, Urade Y
(2005) Accelerated glucose intolerance, nephropathy, and athero-
sclerosis in prostaglandin D2 synthase knock-out mice. J Biol
Chem 280:29946–29955

18. Mehrabian M, Allayee H, Wong J, Shi W, Wang XP, Shaposhnik
Z, Funk CD, Lusis AJ (2002) Identification of 5-lipoxygenase as a
major gene contributing to atherosclerosis susceptibility in mice.
Circ Res 91:120–126

19. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF,
Funk CD (1999) Disruption of the 12/15-lipoxygenase gene
diminishes atherosclerosis in apo E-deficient mice. J Clin Invest
103:1597–1604

20. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–
874

21. Ishimoto Y, Yamada K, Yamamoto S, Ono T, Notoya M, Hanasaki
K (2003) Group V and X secretory phospholipase A2s-induced
modification of high-density lipoprotein linked to the reduction of
its antiatherogenic functions. Biochim Biophys Acta 1642:129–
138

22. Gesquiere L, Cho W, Subbaiah PV (2002) Role of group IIa and
group V secretory phospholipases A2 in the metabolism of
lipoproteins. Substrate specificities of the enzymes and the
regulation of their activities by sphingomyelin. Biochemistry
41:4911–4920

23. Pruzanski W, Lambeau L, Lazdunsky M, Cho W, Kopilov J,
Kuksis A (2005) Differential hydrolysis of molecular species of
lipoprotein phosphatidylcholine by groups IIA, V and X secretory
phospholipases A2. Biochim Biophys Acta 1736:38–50

24. Pruzanski W, Lambeau G, Lazdunski M, Cho W, Kopilov J,
Kuksis A (2007) Hydrolysis of minor glycerophospholipids of

plasma lipoproteins by human group IIA, V and X secretory
phospholipases A2. Biochim Biophys Acta 1771:5–19

25. Pruzanski W, Stefanski E, de Beer FC, de Beer MC, Vadas P,
Ravandi A, Kuksis A (1998) Lipoproteins are substrates for
human secretory group IIA phospholipase A2: preferential
hydrolysis of acute phase HDL. J Lipid Res 39:2150–2160

26. Wootton PT, Arora NL, Drenos F, Thompson SR, Cooper JA,
Stephens JW, Hurel SJ, Hurt-Camejo E, Wiklund O, Humphries SE,
Talmud PJ (2007) Tagging SNP haplotype analysis of the secretory
PLA2-V gene, PLA2G5, shows strong association with LDL and
oxLDL levels, suggesting functional distinction from sPLA2-IIA:
results from the UDACS study. Hum Mol Genet 16:1437–1444

27. Pettersson C, Fogelstrand L, Rosengren B, Ståhlman S, Hurt-
Camejo E, Fagerberg B, Wiklund O (2008) Increased lipolysis by
secretory phospholipase A2 group V of lipoproteins in diabetic
dyslipidaemia. J Intern Med 264:155–165

28. Sato H, Kato R, Isogai Y, Saka G, Ohtsuki M, Taketomi Y,
Yamamoto K, Tsutsumi K, Yamada J, Masuda S, Ishikawa Y, Ishii
T, Kobayashi T, Ikeda K, Taguchi R, Hatakeyama S, Hara S,
Kudo I, Itabe H, Murakami M (2008) Analyses of group III
secreted phospholipase A2 transgenic mice reveal potential
participation of this enzyme in plasma lipoprotein modification,
macrophage foam cell formation, and atherosclerosis. J Biol Chem
283:33483–33497

29. Hurt-Camejo E, Andersen S, Standal R, Rosengren B, Sartipy P,
Stadberg E, Johansen B (1997) Localization of nonpancreatic
secretory phospholipase A2 in normal and atherosclerotic arteries.
Activity of the isolated enzyme on low-density lipoproteins.
Arterioscler Thromb Vasc Biol 17:300–309

30. Eckey R, Menschikowski M, Lattke P, Jaross W (1997) Minimal
oxidation and storage of low density lipoproteins result in an
increased susceptibility to phospholipid hydrolysis by phospholi-
pase A2. Atherosclerosis 132:165–176

31. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the
macrophage: implications for cholesterol deposition in atheroscle-
rosis. Annu Rev Biochem 52:223–261

32. Ross R (1993) The pathogenesis of atherosclerosis: a perspective
for the 1990 s. Nature 362:801–809

33. Shiffman D, Mikita T, Tai JT, Wade DP, Porter JG, Seilhamer JJ,
Somogyi R, Liang S, Lawn RM (2000) Large scale gene
expression analysis of cholesterol-loaded macrophages. J Biol
Chem 275:37324–37332

34. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M,
Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990)
Minimally modified low density lipoprotein induces monocyte
chemotactic protein 1 in human endothelial cells and smooth
muscle cells. Proc Natl Acad Sci USA 87:5134–5138

35. Yoshida H, Quehenberger O, Kondratenko N, Green S, Steinberg
D (1998) Minimally oxidized low-density lipoprotein increases
expression of scavenger receptor A, CD36, and macrosialin in
resident mouse peritoneal macrophages. Arterioscler Thromb Vasc
Biol 18:794–802

36. Wooton-Kee CR, Boyanovsky BB, Nasser MS, de Villiers WJ,
Webb NR (2004) Group V sPLA2 hydrolysis of low-density
lipoprotein results in spontaneous particle aggregation and
promotes macrophage foam cell formation. Arterioscler Thromb
Vasc Biol 24:762–767

37. Hanasaki K, Yamada K, Yamamoto S, Ishimoto Y, Saiga A, Ono
T, Ikeda M, Notoya M, Kamitani S, Arita H (2002) Potent
modification of low density lipoprotein by group X secretory
phospholipase A2 is linked to macrophage foam cell formation. J
Biol Chem 277:29116–29124

38. Hakala JK, Oörni K, Pentikäinen MO, Hurt-Camejo E, Kovanen
PT (2001) Lipolysis of LDL by human secretory phospholipase
A2 induces particle fusion and enhances the retention of LDL to

1840 K. Yamamoto et al.



human aortic proteoglycans. Arterioscler Thromb Vasc Biol
21:1053–1058

39. Sartipy P, Johansen B, Camejo G, Rosengren B, Bondjers G,
Hurt-Camejo E (1996) Binding of human phospholipase A2 type
II to proteoglycans. Differential effect of glycosaminoglycans on
enzyme activity. J Biol Chem 271:26307–26314

40. Sartipy P, Johansen B, Gâsvik K, Hurt-Camejo E (2000)
Molecular basis for the association of group IIA phospholipase
A2 and decorin in human atherosclerotic lesions. Circ Res
86:707–714

41. Boyanovsky BB, van der Westhuyzen DR, Webb NR (2005)
Group V secretory phospholipase A2-modified low density
lipoprotein promotes foam cell formation by a SR-A- and
CD36-independent process that involves cellular proteoglycans.
J Biol Chem 280:32746–32752

42. Sun B, Boyanovsky BB, Connelly MA, Shridas P, van der
Westhuyzen DR, Webb NR (2007) Distinct mechanisms for
OxLDL uptake and cellular trafficking by class B scavenger
receptors CD36 and SR-BI. J Lipid Res 48:2560–25670

43. Boyanovsky BB, Li X, Shridas P, Sunkara M, Morris AJ, Webb NR
(2010) Bioactive products generated by group V sPLA2 hydrolysis
of LDL activate macrophages to secrete pro-inflammatory cyto-
kines. Cytokine 50:50–57

44. Ishimoto Y, Yamada K, Yamamoto S, Ono T, Notoya M, Hanasaki
K (2003) Group V and X secretory phospholipase A2s-induced
modification of high-density lipoprotein linked to the reduction of
its antiatherogenic functions. Biochim Biophys Acta 1642:129–
138

45. Sonoki K, Iwase M, Sasaki N, Ohdo S, Higuchi S, Takata Y, Iida M
(2008) Secretory PLA2 inhibitor indoxam suppresses LDL modifi-
cation and TNFα-stimulated human endothelial cells. Br J
Pharmacol 153:1399–1408

46. Karabina SA, Brochériou I, Le Naour G, Agrapart M, Durand H,
Gelb M, Lambeau G, Ninio E (2006) Atherogenic properties of LDL
particles modified by human group X secreted phospholipase A2 on
human endothelial cell function. FASEB J 20:2547–2549

47. Boilard E, Lai Y, Larabee K, Balestrieri B, Ghomashchi F, Fujioka
D, Gobezie R, Coblyn JS, Weinblatt ME, Massarotti EM,
Thornhill TS, Divangahi M, Remold H, Lambeau G, Gelb MH,
Arm JP, Lee DM (2010) A novel anti-inflammatory role for
secretory phospholipase A2 in immune complex-mediated arthritis.
EMBO Mol Med 2:172–187

48. Curfs DM, Ghesquiere SA, Vergouwe MN, van der Made I,
Gijbels MJ, Greaves DR, Verbeek JS, Hofker MH, de Winther
MP. (2008) Macrophage secretory phospholipase A2 group X
enhances anti-inflammatory responses, promotes lipid accumula-
tion, and contributes to aberrant lung pathology. J Biol Chem
283:21640–21648

49. von Allmen CE, Schmitz N, Bauer M, Hinton HJ, Kurrer MO,
Buser RB, Gwerder M, Muntwiler S, Sparwasser T, Beerli RR,
Bachmann MF (2009) Secretory phospholipase A2-IID is an
effector molecule of CD4+CD25+ regulatory T cells. Proc Natl
Acad Sci USA 106:11673–11678

50. Namgaladze D, Morbitzer D, von Knethen A, Brune B (2010)
(2010) Phospholipase A2-modified low-density lipoprotein activates
macrophage peroxisome proliferator-activated receptors. Arterios-
cler Thromb Vasc Biol 30:313–320

51. Romano M, Romano E, Bjorkerud S, Hurt-Camejo E (1998)
Ultrastructural localization of secretory type II phospholipase A2

in atherosclerotic and nonatherosclerotic regions of human
arteries. Arterioscler Thromb Vasc Biol 18:519–525

52. Rosengren B, Peilot H, Umaerus M, Jönsson-Rylander AC,
Mattsson-Hultén L, Hallberg C, Cronet P, Rodriguez-Lee M,
Hurt-Camejo E (2006) Secretory phospholipase A2 group V:
lesion distribution, activation by arterial proteoglycans, and

induction in aorta by a Western diet. Arterioscler Thromb Vasc
Biol 26:1579–1585

53. Bostrom MA, Boyanovsky BB, Jordan CT, Wadsworth MP,
Taatjes DJ, de Beer FC, Webb NR (2007) Group V secretory
phospholipase A2 promotes atherosclerosis: evidence from geneti-
cally altered mice. Arterioscler Thromb Vasc Biol 27:600–606

54. Kimura-Matsumoto M, Ishikawa Y, Komiyama K, Tsuruta T,
Murakami M, Masuda S, Akasaka Y, Ito K, Ishiguro S, Morita H,
Sato S, Ishii T (2008) Expression of secretory phospholipase A2s
in human atherosclerosis development. Atherosclerosis 196:81–91

55. Ivandic B, Castellani LW, Wang XP, Qiao JH, Mehrabian M, Navab
M, Fogelman AM, Grass DS, Swanson ME, de Beer MC, de Beer F,
Lusis AJ (1999) Role of group II secretory phospholipase A2 in
atherosclerosis: 1. Increased atherogenesis and altered lipoproteins
in transgenic mice expressing group IIa phospholipase A2.
Arterioscler Thromb Vasc Biol 19:1284–1290

56. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD,
Buchberg AM (1995) The secretory phospholipase A2 gene is a
candidate for the Mom1 locus, a major modifier of ApcMin-induced
intestinal neoplasia. Cell 81:957–966

57. Webb NR, Bostrom MA, Szilvassy SJ, van der Westhuyzen DR,
Daugherty A, de Beer FC (2003) Macrophage-expressed group
IIA secretory phospholipase A2 increases atherosclerotic lesion
formation in LDL receptor-deficient mice. Arterioscler Thromb
Vasc Biol 23:263–268

58. de Beer FC, Webb NR (2006) Inflammation and atherosclerosis:
Group IIa and Group V sPLA2 are not redundant. Arterioscler
Thromb Vasc Biol 26:1421–1422

59. Boyanovsky B, Zack M, Forrest K, Webb NR (2009) The capacity
of group V sPLA2 to increase atherogenicity of ApoE−/− and
LDLR−/− mouse LDL in vitro predicts its atherogenic role in vivo.
Arterioscler Thromb Vasc Biol 29:532–538

60. Zack M, Boyanovsky BB, Shridas P, Bailey W, Forrest K, Howatt
DA, Gelb MH, de Beer FC, Daugherty A, Webb NR (2010)
Group X secretory phospholipase A2 augments angiotensin II-
induced inflammatory responses and abdominal aortic aneurysm
formation in apoE-deficient mice. Atherosclerosis 214:58–64

61. Shridas P, Bailey WM, Gizard F, Oslund RC, Gelb MH,
Bruemmer D, Webb NR (2010) Group X secretory phospholipase
A2 negatively regulates ABCA1 and ABCG1 expression and
cholesterol efflux in macrophages. Arterioscler Thromb Vasc Biol
30:2014–2021

62. Gora S, Perret C, Jemel I, Nicaud V, Lambeau G, Cambien F,
Ninio E, Blankenberg S, Tiret L, Karabina SA (2009) Molecular
and functional characterization of polymorphisms in the secreted
phospholipase A2 group X gene: relevance to coronary artery
disease. J Mol Med 87:723–733

63. Ohtsuki M, Taketomi Y, Arata S, Masuda S, Ishikawa Y, Ishii T,
Takanezawa Y, Aoki J, Arai H, Yamamoto K, Kudo I, Murakami
M (2006) Transgenic expression of group V, but not group X,
secreted phospholipase A2 in mice leads to neonatal lethality
because of lung dysfunction. J Biol Chem 281:36420–36433

64. Cupillard L, Koumanov K, Mattei MG, Lazdunski M, Lambeau G
(1997) Cloning, chromosomal mapping, and expression of a novel
human secretory phospholipase A2. J Biol Chem 272:15745–15752

65. Masuda S, Murakami M, Takanezawa Y, Aoki J, Arai H, Ishikawa
Y, Ishii T, Arioka M, Kudo I (2005) Neuronal expression and
neuritogenic action of group X secreted phospholipase A2. J Biol
Chem 280:23203–23214

66. Sato H, Isogai Y, Masuda S, Taketomi Y, Miki Y, Kamei D, Hara
S, Kobayashi T, Ishikawa Y, Ishii T, Ikeda K, Taguchi R, Ishimoto
Y, Suzuki N, Yokota Y, Hanasaki K, Yamamoto T, Yamamoto K,
Murakami M. (2011) Physiological roles of group X secreted
phospholipase A2 in reproduction, gastrointestinal phospholipid
digestion, and neuronal function. J Biol Chem 286:11616-11631

Secreted phospholipase A2 1841



67. Sato H, Taketomi Y, Isogai Y,Masuda S, Kobayashi T, Yamamoto K,
Murakami M (2009) Group III secreted phospholipase A2 transgenic
mice spontaneously develop inflammation. Biochem J 421:17–27

68. Dillard RD, Bach NJ, Draheim SE, Berry DR, Carlson DG, Chirgadze
NY, Clawson DK, Hartley LW, Johnson LM, Jones ND, McKinney
ER, Mihelich ED, Olkowski JL, Schevitz RW, Smith AC, Snyder
DW, Sommers CD, Wery JP (1996) Indole inhibitors of human
nonpancreatic secretory phospholipase A2. 2. Indole-3-acetamides
with additional functionality. J Med Chem 39:5119–5136

69. Schevitz RW, Bach NJ, Carlson DG, Chirgadze NY, Clawson DK,
Dillard RD, Draheim SE, Hartley LW, Jones ND, Mihelich ED et
al (1995) Structure-based design of the first potent and selective
inhibitor of human non-pancreatic secretory phospholipase A2.
Nat Struct Biol 2:458–465

70. Rosenson RS, Hislop C, McConnell D, Elliott M, Stasiv Y, Wang
N, Waters DD, Investigators PLASMA (2009) Effects of 1-H-
indole-3-glyoxamide (A-002) on concentration of secretory
phospholipase A2 (PLASMA study): a phase II double-blind,
randomised, placebo-controlled trial. Lancet 373:649–658

71. Shaposhnik Z, Wang X, Trias J, Fraser H, Lusis AJ (2009) The
synergistic inhibition of atherogenesis in apoE−/− mice between
pravastatin and the sPLA2 inhibitor varespladib (A-002). J Lipid
Res 50:623–629

72. Fraser H, Hislop C, Christie RM, Rick HL, Reidy CA, Chouinard
ML, Eacho PI, Gould KE, Trias J (2009) Varespladib (A-002), a
secretory phospholipase A2 inhibitor, reduces atherosclerosis and
aneurysm formation in ApoE−/− mice. J Cardiovasc Pharmacol
53:60–65

73. Karakas M, Koenig W (2009) Varespladib methyl, an oral
phospholipase A2 inhibitor for the potential treatment of coronary
artery disease. IDrugs 12:585–592

74. Bradley JD, Dmitrienko AA, Kivitz AJ, Gluck OS, Weaver
AL, Wiesenhutter C, Myers SL, Sides GD (2005) A random-
ized, double-blinded, placebo-controlled clinical trial of
LY333013, a selective inhibitor of group II secretory phospho-
lipase A2, in the treatment of rheumatoid arthritis. J Rheumatol
32:417–423

75. Houjou T, Yamatani K, Nakanishi H, Imagawa M, Shimizu T,
Taguchi R (2004) Rapid and selective identification of molecular
species in phosphatidylcholine and sphingomyelin by conditional
neutral loss scanning and MS3. Rapid Commun Mass Spectrum
18:3123–3130

76. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M,
Imagawa M, Shimizu T (2005) Focused lipidomics by tandem
mass spectrometry. J Chromatogr B Analyt Technol Biomed Life
Sci 823:26–36

1842 K. Yamamoto et al.


	Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics
	Abstract
	Classification of sPLA2s
	Lipoprotein hydrolysis by sPLA2s: in vitro studies
	Lipoprotein modification and atherosclerosis; a general view

	Application of mass spectrometry in analyzing sPLA2 hydrolysis of lipoprotein-bound phospholipids
	Cellular actions of sPLA2-treated LDL
	sPLA2s and Atherosclerosis: in vivo studies
	Expression of sPLA2s in atherosclerotic plaques

	sPLA2-IIA
	sPLA2-V
	sPLA2-X
	sPLA2-III
	Pharmacologic effect of sPLA2 inhibitor on atherosclerosis
	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


