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Abstract
This paper presents grammatical evolution (GE) as an approach to select and combine features for
detecting epileptic oscillations within clinical intracranial electroencephalogram (iEEG)
recordings of patients with epilepsy. Clinical iEEG is used in preoperative evaluations of a patient
who may have surgery to treat epileptic seizures. Literature suggests that pathological oscillations
may indicate the region(s) of brain that cause epileptic seizures, which could be surgically
removed for therapy. If this presumption is true, then the effectiveness of surgical treatment could
depend on the effectiveness in pinpointing critically diseased brain, which in turn depends on the
most accurate detection of pathological oscillations. Moreover, the accuracy of detecting
pathological oscillations depends greatly on the selected feature(s) that must objectively
distinguish epileptic events from average activity, a task that visual review is inevitably too
subjective and insufficient to resolve. Consequently, this work suggests an automated algorithm
that incorporates grammatical evolution (GE) to construct the most sufficient feature(s) to detect
epileptic oscillations within the iEEG of a patient. We estimate the performance of GE relative to
three alternative methods of selecting or combining features that distinguish an epileptic gamma
(~65-95 Hz) oscillation from normal activity: forward sequential feature-selection, backward
sequential feature-selection, and genetic programming. We demonstrate that a detector with a
grammatically evolved feature exhibits a sensitivity and selectivity that is comparable to a
previous detector with a genetically programmed feature, making GE a useful alternative to
designing detectors.
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Introduction
The intracranial electroencephalogram (iEEG) is a very valuable diagnostic tool for surgical
treatment of epilepsy. An electroencephalogram (EEG) measures the electrical activity of
neuronal populations in the brain using a metallic electrode, and the iEEG is an invasive
application of an EEG in which EEG electrodes are placed on top of or deep within the
surface of the brain. For patients with epilepsy, the iEEG is reserved for preoperative
evaluation of epileptic seizures prior to invasive treatment (e.g., surgery) and purposed to
locate the area(s) of the brain from which epileptic seizures are generated and actually arise
((Diehl & Lüders, 2000; Engel, 1996)). Ultimately, with information about an estimated
epileptic focus (i.e. the nucleus or nuclei for epileptic seizures), a neurosurgeon can excise
the portion of brain that is putatively responsible for dysfunction without damaging
important functional parts of brain ((Luders & Comair, 2000)). However, a means to reliably
estimate the epileptic focus is obviously necessary for accurate and precise surgical
treatment.

Recent studies suggest that an epileptic focus is possibly reliably identifiable according to
particular pathological patterns in the epileptic brain, finding that certain electrographic
signatures seemingly distinguish areas in which seizures do and do not occur in human
epilepsy ((J. Jacobs, Chander, Dubeau, & Gotman, 2007; J. Jacobs, et al., 2008; Julia Jacobs,
et al., 2009; Staba, Wilson, Bragin, Fried, & Engel, 2002; Worrell, et al., 2008; Worrell, et
al., 2004)). For instance, oscillatory epileptic activity between 60-100 Hz, formerly called
high-frequency epileptiform oscillations ((Worrell, et al., 2004)) but we call slow ripples
((Firpi, et al., 2007)), 100-200 Hz, called ripples ((Bragin, Engel, Wilson, Fried, & Buzsaki,
1999)), or 200–500 Hz, called fast ripples ((Bragin, et al., 1999)), in human iEEG are
reported to spatially coincide with the location of epileptic seizures. Although, this
information requires further study, especially a correlative analysis that contrasts the
location of pathological biomarkers and surgically removed brain against the results of
surgery, to determine any true usefulness, optimistically these findings make evident a
potential biomarker that either alone or in combination with other relevant biomarkers may
reveal the cause of epileptic seizures ((Engel Jr., Bragin, Staba, & Mody, 2009)) or improve
the effectiveness of surgical treatment for patients with epilepsy. Consequently, there exists
considerable value in designing an appropriate algorithm to automatically detect
pathological oscillations within iEEG, which would provide an objective means to precisely
pinpoint epileptic brain.

The detection of pathological oscillations is simply an application of classical binary
classification. That is, a pathological oscillation must be quantitatively distinguished from
noise (or normal background) with at least one feature in three basic stages: some
improvement of the signal-to-noise ratio (e.g. band-pass filtering) for the iEEG, extraction of
feature(s); and binary classification, which permits detection of the beginning and ending of
an oscillation. Furthermore, we take the position that the success in classification highly
depends upon the success in finding the best feature(s) that probabilistically separate(s) the
two classes (refs), which would greatly simplify the task of a classifier. Previous approaches
to automatically discriminate pathological oscillations and background from iEEG include
techniques that rely on either an arbitrary manual selection of features ((Gardner, Worrell,
Marsh, Dlugos, & Litt, 2007; O. L. Smart, Worrell, Litt, & Vachtsevanos, 2005; Staba, et
al., 2002)), an automated selection of features using genetic programming ((Firpi, et al.,
2007; O. Smart, Firpi, & Vachtsevanos, 2007)), or automatic creation of a feature directly
from iEEG signals using particle swarm optimization ((Firpi, et al., 2007)). While manually
selecting features—usually from intuition or some understanding of the problem—provides
a means to detect pathological oscillations, it is usually not the best approach as
demonstrated recently when compared against evolutionary algorithms ((Firpi, et al., 2007;
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O. Smart, et al., 2007)). On the other hand, evolutionary algorithms such as genetic
programming (GP) or particle swarm optimization (PSO) may provide a better means to
detect pathological oscillations, but there is still room to improve their usage. Therefore, we
introduce an alternate evolutionary algorithm (EA), called grammatical evolution (GE), for
selecting and combining features to distinguish pathological oscillations and normal activity
within recorded iEEG signals. We propose GE rather than modifying the previously
published applications of evolutionary algorithms (EAs) because GE can circumvent the
technical limitations of the earlier EAs while constructing features that possibly improve
detection over the state of the art.

Theory
Grammatical Evolution—Grammatical evolution ((O’Neill & Ryan, 2001)) parallels the
creation of a protein from deoxyribonucleic acid (DNA) while simulating Darwinian
processes of natural evolution to stochastically produce a solution for a given problem.
Before we describe the operation of GE, we describe the process of creating a protein to help
understand the inspiration for GE. A protein begins as DNA, which is a sequence of
biological blocks called nucleotides. The DNA is transcribed to ribonucleic acid (RNA) by
sequentially grouping three nucleotides of DNA, where each grouping is called a codon, and
forming a sequence of codons as RNA. The RNA is translated to amino acids, which
contribute to the structure and function of a protein. In GE, a solution, typically a
mathematical expression, represents a protein and a randomly generated binary sequence
with variable length represents DNA. Just as DNA is transcribed to RNA, the binary
sequence is transcribed to a numerical sequence by grouping a predetermined number of
bits, where each grouping is represents a codon. Lastly, the numerical sequence is translated
to a sequence of grammatical symbols (e.g., variables, mathematical functions and
operators, decimals), which represent amino acids and define the structure of a GE solution.
For the GE, translation is dictated by two distinctive components in GE: a predefined
context-free grammar in Backus-Naur form (BNF) that consists of terminal symbols, non-
terminal symbols, rules to produce the symbols, and a starting symbol; and a mapping that
first generates a sequence of non-terminal symbols from codons then substitutes terminal
symbols for non-terminal symbols initiating with the starting symbol. The substitution is
defined by the following mapping:

Meanwhile, Table 1 lists a typical grammar for GE, which we use in our experiments.
Similar to GP ((Koza, 1992)), GE randomly initializes a population of individuals (i.e.,
DNA that ultimately converts to protein via above process), objectively computes a fitness
for each individual and iteratively simulates Darwinian evolution (i.e., selection, crossover,
mutation, duplication, and survival) to intermediately fabricate diversity in the population
and ultimately find the best possible individual. The algorithm terminates when a specified
number of generations (iterations) or value of fitness for the currently best individual is
achieved. But contrary to GP, which explicitly encode each individual as a solution, GE uses
a binary code that is transcribed and translated to compose a solution rather than randomly
generating a solution and uses a grammar to produce a structured parsimonious solution
rather than a seemingly spontaneous combinatorial solution.

In our application, we apply GE to select and combine features that distinguish pathological
and normal iEEG activity. Thus, we define a BNF grammar that uses mathematical
functions and operators as non-terminal symbols and original features and the numerical
digits (0-9) as terminal symbols. As a result, the GE can produce an amalgamated feature in
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the form of a mathematical expression that involves a subset of operators, functions, digits,
and features from the predefined grammar.

Data
We selected a sample of data to analyze (see ‘Methods’) from an existing large collection of
clinical iEEG recordings from six patients with epilepsy. The patients underwent long-term
continuous clinical video-iEEG monitoring and recording so that a neurosurgeon was able to
preoperatively estimate an epileptic focus for surgical treatment. The preoperative video-
iEEG recordings were used in an earlier medical study that involved the collection of the
above data at Emory University (EUH), the University of Pennsylvania Hospital (UPH), and
the Children’s Hospital of Philadelphia (CHP). The Internal Review Board (IRB) at each
institution approved the medical study and each patient already provided their informed
consent to enroll in the study. All collected data was de-identified before we sampled data
for our study.

For the EUH and UPH patients, iEEG recordings were collected with a 64-channel digital
EEG system (Nicolet Biomedical, Madison, WI) with an analog Butterworth bandpass filter
(−3dB cutoff frequencies at 0.5 and 150 Hz) and digitization at 12 bits per sample and 400
samples per second. For the one patient from CHP, iEEG recordings were collected with a
128-channel digital EEG system (Grass-Telefactor, Philadelphia, PA) with an analog
bandpass filter (−3dB cutoff frequencies at 0.5 and 100 Hz) and digitization at 12 bits per
sample and 800 samples per second before digital lowpass filtering (−3dB cutoff at 70 Hz)
and down-sampling to 200 samples per second. All digital data was archived to CD-ROM
storage.

Methods
Manual Markings

For each patient, we prepared two sets of raw data across multiple iEEG electrodes using a
MATLAB (Mathworks, Natick, MA) graphical user interface (GUI) ((Gardner, et al., 2007))
that automatically stored the time-stamp (i.e., the temporal beginning and ending) of a
manually marked event: training data, with which to select and combine the best feature(s)
using GE and cross-validate a chosen classifier, and testing data to verify the performance of
a detector with a GE-feaure. For the training data, firstly we randomly marked isolated slow
ripples (n = 21.3017±8.3116 seconds) and isolated segments of normal activity (n =
81.6667±21.8673 seconds) with the GUI, then secondly we ran an automated script to
compile the actual iEEG data and corresponding labels for the type of marked activity (i.e.,
normal activity or slow ripple) according to the marked timestamps. For the testing data,
firstly we randomly clipped continuous approximately three-minute segments of iEEG (n =
9.9963± 1.1651 clippings) with slow ripples and normal activity. Each clip came from one
electrode, but not all clips came from the same electrode. Secondly, we concatenated the
clips as one file of events, representing a single continuous iEEG signal (n =
29.9889±3.4952 minutes, 773.8333±162.5268 slow ripples) using another automated script.
Thirdly, we marked each slow ripple (SR) within the concatenated file using the GUI.

Experiments
We conducted two main experiments: 1) comparison of four methods (in next sections) to
find appropriate features for detecting slow ripples; and 2) evaluation of the best method in
the comparison when used to actually detect slow ripples in quasi-continuous iEEG (i.e.,
concatenated clips of iEEG that appeared continuous to a detector). We made the
comparison and evaluation after computing the projected performance of each method in
distinguishing slow ripples and normal activity for the training data (first experiment) or

Smart et al. Page 4

Expert Syst Appl. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



testing data (second experiment). Both experiments involved three metrics of performance
(see ‘Statistics’): one metric to serve as the objective function for the automated algorithms
that selected and/or combined features and two metrics—other than the first metric—to
define and compare the performance of the algorithms. The first metric also allowed a fair
comparison between the algorithms, ensuring that any discovered difference in performance
between the methods depended on the unique capability of the method rather than any
uncontrollable confounding experimental factor (e.g., stochastic convergence, dissimilar
parameters) due to the distinctive architectures. For the first experiment, we filtered the
training data, extracted 25 features from a few domains (Table 2), and input the result into
four methods for optimizing the selection and/or combination of at most three features. After
filtering all data with a Chebychev highpass filter (61-100 Hz) and separating the filtered
data into two classes of events (i.e., slow ripple or not slow ripple), the features operated in
non-overlapping sliding windows over each class of data before appending the processed
data as a single matrix. At this point, the data constituted a computed no x nf matrix, where
no was the number of observations and nf = 25 was the number of features, and a
corresponding no x 1 vector of labels. We referred to the no x nf matrix as a feature-matrix.
We controlled each method to return one, two, or three feature(s). For each number of
returned features, we computed the mean projected performance of each method using 30
trials of 6-fold cross-validation with a selected classifier to determine whether one method
performed better than others, whether a certain number of features delivered better
performance than others, and whether any differences in mean performance between
methods varied depending upon the number of features. In addition, because we measured
performance as two metrics (see ‘Statistics’), we determined if each method performed with
an expected difference between the metrics.

For the second experiment, we designed a detector that incorporated the feature(s) as
determined from the first experiment and processed the testing data with the detector. The
detector filtered the testing data with a Chebychev highpass filter (61-100 Hz), extracted a
single feature with 75% overlap between consecutive sliding windows of filtered data as a
time-series that we called a feature-series, classified the feature-series with a k-nearest-
neighbor classifier (k = 10) to form a binary time-series, and registered the time-stamps (i.e.,
first moments of transition between two classes) of each detected event. We computed
performance using the automatically registered time-stamps and the manually registered
time-stamps (see ‘Manual Markings’). Additionally, we implemented a previously published
detector for slow ripples ((O. Smart, et al., 2007)) and compared the implementations.

Grammatically Evolved Features
The feature-matrix entered a GE with predefined parameters (Table 3) and the GE returned
one mathematical expression that included at least one of the 25 features but defined a single
feature to quantitatively differentiate slow ripples from normal activity. We repeated the
above procedure with the same parameters for the GE to simultaneously return two and
three grammatically evolved features (GE-features). Also, we duplicated all above
procedures for the GE with a radial basis function (RBF) classifier—five hidden nodes and
one hidden layer—as well as a 10-nearest-neighbor classifier. We implemented the GE
using a custom algorithm written in ANSI C++.

Genetically Programmed Features
As with the GE, the feature-matrix entered a genetic program (GP) with predefined
parameters (Table 3) and the GP returned one mathematical expression that included at least
one of the 25 features but defined a single feature to quantitatively differentiate slow ripples
from normal activity. We completed the above procedure for only one genetically
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programmed feature (GP-feature). We implemented the GP using an open-source MATLAB
algorithm ((Silva & Almeida, 2003)).

Sequentially Selected Features
In addition, the no x nf feature-matrix entered algorithms for forward sequential feature-
selection (F-SFS) and backward sequential feature-selection (B-SFS), where each algorithm
returned a single subset of features per patient as benchmarks for the GE. The sequentially
selected features represent the most capable manual selection of features, since we suppose
that a human at best essentially emulates F-SFS or B-SFS. We used the F-SFS and B-SFS
algorithms in MATLAB.

Statistics
We performed the statistical analyses using SPSS software (SPSS Inc., Chicago, IL). For
each analysis, we chose a probability value (p-value) less than the level 0.05 (alpha) to
indicate a statistically significant observation. We computed the following three metrics for
our experiments. The accuracy served as the fitness (objective function) for the automated
algorithms that selected and/or combined feature, whereas both sensitivity and selectivity
constituted the performance. For each statistical test, the mean value of each metric after 30
trials of 6-fold cross-validation became the dependent variable.

(2)

(3)

(4)

For the first experiment, a two-factor repeated-measures analysis of variance (ANOVA)
with multivariate assumptions for each above metric determined if a method differed from
others, if a certain number of features differed from others, or if any differences in a metric
between methods varied depending upon the number of features with the method and the
number of features as the first and second factor, respectively. In addition, for the first
experiment, a Wilcoxon sign-ranked paired t-test for each method determined if a method
possessed balanced performance (i.e., no more sensitive than selective).

For the second experiment, a Wilcoxon sign-ranked paired t-test for each method
determined whether our suggested detector performed equivalently—in terms of sensitivity
or selectivity—to an earlier suggested detector (O. Smart, et al., 2007). In addition, as in the
first experiment, a Wilcoxon sign-ranked paired t-test for each method determined if a
method possessed balanced performance considering a more realistic task of detection.
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Results
Experiment 1

We determined that some methods performed differently from others, that the number of
features did not change the performance of each method, that the number of features did not
affect the differences in performance between methods, and that each method demonstrated
some unbalance in performance but the imbalanced performance of GE differed from the
other methods. Figures 1-3 illustrated these findings.

For a single feature, we found that none of the methods differed (p = 0.073) in mean
accuracy, that at least one method differed (p = 0.010) from others in mean sensitivity, and
one method ambiguously differed (p = 0.314, c.f. Table 4) from two other methods in mean
selectivity according to conflicting statistics (Figure 1). That is, it appeared that GE
produced a feature with higher projected selectivity than F-SFS and B-SFS and more exact
(i.e., smaller confidence interval and standard error) projected selectivity than all other
methods. When we repeated the analysis for only the methods that produced multiple
features, we found that the methods did not differ (p = 0.054) in mean accuracy, that at least
one method differed (p = 0.018) from others in mean sensitivity, and that again GE
practically but not statistically differed (p = 0.130, c.f. Table 5 and Figure 1) from the other
two methods in mean selectivity. Moreover, we determined that the number of features
neither altered the accuracy (p = 0.476), sensitivity (p = 0.150), or selectivity (p = 0.459) for
each method nor changed the accuracy (p = 0.891), sensitivity (p = 0.887), or selectivity (p =
0.817) across the methods (Figure 1). We also observed an interesting characteristic for each
method regarding the relation between sensitivity and selectivity. Namely, we observed that
GE produced features that led to higher selectivity than sensitivity (p = 0.028) and B-SFS
barely produced features with less selectivity than sensitivity (p = 0.047), whereas F-SFS (p
= 0.173) and GP (p = 0.075) produced features with equivalent selectivity and sensitivity.
Lastly, when we compared the k-NN classifier and RBF classifier with each number of GE-
features for each metric, we found no statistically or practically significant difference (p >
0.141, all nine pairs) in any of the comparisons.

Essentially, GE resulted in more selective features than the other methods but with similar
sensitivity and demonstrated preferred selectivity over sensitivity while the other methods
exhibited balanced performance. Furthermore, the type of classifier made no difference in
performance, regardless of the number of produced features.

Experiment 2
Figure 3 illustrated the process of detecting slow ripples from raw iEEG using two distinct
detectors (i.e., one with a GE-feature, one with a GP-feature) for two patients. Figure 4
illustrated the repeated process of detection for another patient. Both figures captured a
visual finding for all patients regarding the GE-based and GP-based approaches: that the
approaches appeared to similarly classify interictal epileptic and non-epileptic activity. For
all patients, we quantitatively investigated whether the detectors performed equally for
quasi-continuous iEEG with a null hypothesis of no difference in performance between
methods and an unequal performance for at least one of the methods—considering the
results of the first experiment.

According to the non-parametric (Wilcoxon) t-test, the methods did not differ in median
sensitivity (p = 0.753) or median selectivity (p = 0.116), which agreed with earlier results
from the first experiment (c.f., Figure 2, Figure 5). Unexpectedly, given the results of the
first experiment, the detector with the GE-feature did not demonstrate a difference in
selectivity and sensitivity (p = 0.600). Thus, we concluded that GE and GP performed

Smart et al. Page 7

Expert Syst Appl. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



similarly in sensitively and selectively detecting slow ripples, despite the drastic difference
in the constructed features (Table 6).

Discussion
The findings in the presented experiments were important in several key aspects. First, we
determined that forward and backward sequential selection and genetic programming
returned features for detecting slow ripples with balanced sensitivity and selectivity whereas
grammatical evolution returned features for detecting slow ripples with more selectivity than
sensitivity. This finding was interesting since all four automatic approaches objectively
maximized accuracy with no statistically significant difference in accuracy. The similarity
between F-SFS and B-SFS was not surprising. Essentially, the algorithms iterated in the
same manner, where only the order of processing the feature-maxtrix—subtract (or add) an
individual feature-vector for B-SFS (or F-SFS)—defined the major difference in execution.
On the other hand, although both GP and GE incorporate Darwinist evolutionary
procedures, the GE clearly manipulated the feature-matrix in a different manner than the GP.
We attributed this disparity to the more structured BNF grammar of GE, which GP lacked
but perhaps introduced an increased level of selectivity in classification.

Second, we determined that GE presented higher mean selectivity, similar mean sensitivity,
and more precise performance (i.e., smaller standard error in mean sensitivity and mean
selectivity) when compared to the other three approaches. We attributed the contrast in
precision and selectivity also to the unique BNF grammar, which introduced a specific
structure in each returned solution.

Third, we observed that the number of features did not alter the previously mentioned
findings. This analysis was especially important, since it dictated the number of needed
features for properly processing the iEEG while minimizing computational burden for
extraction and classification of features. For instance, with the presented data for each
patient, we determined that one feature was just as effective as three features in
classification. Thus, we opted for a single patient-specific feature for further analyses.
Fourth, we observed that each patient-specific GE-feature simply scaled the ‘line-length,’
excluding Patient C for whom the GE-feature comprised ‘line-length’ and two other
complementary features. This fourth finding was very interesting for two main reasons: 1)
the unanimous selection of ‘line-length’ across patients not only presented a seemingly
universal single feature that effectively discriminated epileptic gamma oscillations and non-
epileptic background—at least according to the GE—but also agreed with prior literature in
successfully building automated detectors for epileptic activity (Esteller, 2001; Gardner, et
al., 2007; O. L. Smart, et al., 2005); 2) the execution of GP for the same experimental data
indicated that multiple features were necessary for effective classification in 4 of the 6
patients with ‘line-length’ selected for 3 of the 6 patient-specific GP-features. The latter
finding emphasized one of the disadvantages of the GP algorithm, namely the bloat rather
than parsimony in the returned solutions.

Fifth, we found that the type of classifier did not significantly alter performance for the GE-
features. We expected no difference between the RBF and the k-NN, despite the different
architectures, since the GE produced a feature with very good discriminability per patient
before classification. Lastly, using a new testing sample of continuous iEEG, our suggested
detector (a GE-feature and a k-NN classifier) displayed similar sensitivity and selectivity to
a previously implemented detector (a GP-feature and a k-NN classifier) with our detector
exhibiting more expected precision in each metric than the previous detector.
Unsurprisingly, these findings mirrored our results for the point-basis estimation of
performance (i.e., using concatenated vectors of feature-values) because of the computed p-
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values. But contrary to the point-basis analysis, we observed no partiality of selectivity over
sensitivity. Nonetheless, we ultimately concluded that the suggested detector presented an
effective alternative to automatically registering epileptic oscillations in continuous clinical
iEEG.

Conclusions
Overall, GE facilitated a sound approach to detect interictal epileptic oscillations in clinical
iEEG. Because the GE required only a small sample of manually marked events and the
general framework of the detector did limit detection to a certain event or electrographic
recording, we presented a versatile approach that permitted the detection of interictal activity
in different recordable bandwidths (e.g., fast ripples, ripples, spikes).
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Figure 1.
We compared the accuracy, sensitivity, and specificity of the selected methods with one,
two, and three features; but we executed GP for only a single feature. For each number of
features, all methods shared similar accuracy and sensitivity but GE appeared to project a
higher selectivity despite no statistically significant difference. On the other hand, GE
displayed higher selectivity than sensitivity, whereas the other methods practically
demonstrated equal selectivity and sensitivity with a tendency for lower selectivity than
sensitivity. We observed these findings regardless of the number of features for each
algorithm.
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Figure 2.
We compared the accuracy, sensitivity, and specificity of a k-NN classifier and a RBF
classifier using the same GE-feature(s) to demonstrate that classification depends more on
the computed feature than the classifier in this application. We observed no difference in the
metrics for the classifiers with one, two, or three features.
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Figure 3.
We illustrated the process and a representative outcome for detecting slow ripples with a
four-second segment of processed iEEG from Patient A as an example. The raw iEEG (first
panel) was filtered (61-100 Hz) to highlight slow ripples amongst background (second
panel) before extracting each a GE-feature and a GP-feature and forming two feature-series
(third panel). Each feature-series was classified using a nearest-neighbor classifier, resulting
in a binary sequence (fourth panel) to discriminate epileptic events (1) and non-epileptic
events (0). For this case, we noticed that although the feature-series did no overlap, the
feature-series shared a similar end-behavior and ultimately the binary sequences were the
same.
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Figure 4.
We illustrated the process and a representative outcome for detecting slow ripples with a
four-second segment of processed iEEG from Patient C as an example. The raw iEEG (first
panel) was filtered (61-100 Hz) to highlight slow ripples amongst background (second
panel) before extracting each a GE-feature and a GP-feature and forming two feature-series
(third panel). Each feature-series was classified using a nearest-neighbor classifier, resulting
in a binary sequence (fourth panel) to discriminate epileptic events (1) and non-epileptic
events (0). For this case, we noticed that the feature-series somewhat overlapped and
paralleled in end-behavior but the binary sequences experienced some subtle differences
(e.g., time-stamp(s) and duration of detected events).
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Figure 5.
We compared the performance (i.e., sensitivity, and specificity) of our approach and a
previously proposed approach for detecting slow ripples with one feature from an
evolutionary algorithm. Overall, the approaches shared similar sensitivity and selectivity
despite sweeping differences in the algorithmically constructed features.
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Table 1

We defined the below grammar for the grammatical evolution

Rule Rule Number

<start> ::= <expr> 0

<expr> ::= <expr> <op> <expr> 0

|<func> ( <expr> ) 1

|<terminal> 2

<xlist> ::= | x1 | x2 | … | xn 0 | 1 | 2 | … | n-1

<digitlist> ::= <digit> | <digit><digitlist> 0 | 1

<terminal> ::= <xlist> | <digitlist>.<digitlist> 0 | 1

<op> ::= + | − | * | / 0 | 1 | 2 | 3

<func> ::= sin | cos | exp | log | sqrt | abs 0 | 1 | 2 | 3 | 4 | 5

<digit> ::= 0 | 1 | 2 | … | 9 0 | … | 9
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Table 2

We selected twenty-five features with which a feature-matrix was computed as input for the four methods

Number Feature Description Domain

1 Curve Length Length of an irregular curve (i.e., similar to arc length) Time

2 Energy Average instantaneous energy Time

3 Nonlinear Energy Average change in amplitude and frequency Time

4 Root Mean Square
Time

Amplitude of time-varying wave (usually sinusoidal), quadratic mean

5 Mean Rectified Value Mean magnitude (i.e., average of an absolute value) Time

6 Sinusoidal Frequency Estimate of frequency for sinusoidal (or periodic) signal Time

7 Sinusoidal Phase Estimate of phase for sinusoidal (or periodic) signal Time

8 Periodicity Estimate of regularity for sinusoidal (or periodic) signal Time

9 Crossings Mean number of intersections across an amplitude reference Time

10 Peak PSD Maximum value of power spectral density (PSD) Frequency

11 Mean PSD
Frequency

Mean value of power spectral density (PSD)

12 Peak Sign-PSD
Frequency

Maximum value of power spectral density (PSD) for signed signal

13 Mean
Statistics

Measure of central tendency, arithmetic mean (or average)

14 Median Measure of central tendency, middle value Statistics

15 Interquartile Range
Statistics

Difference between the third and first quartiles, mid-spread

16 Mad
Statistics

Mean (or median) absolute deviation from mean (or median) value

17 Range Difference between the maximum and the minimum values Statistics

18 Standard Deviation
Statistics

Measure of the variability relative to a mean value

19 Variance
Statistics

Mean square deviation from a mean value

20 Skewness Asymmetry about a mean value Statistics

21 Kurtosis Affinity to statistical outliers Statistics

22 Spectral Entropy
Information

Measure of predictability (or regularity) in a sequence

23 Shannon Entropy
Information

Average missing information when values are unknown

24 Renyi Entropy
Information

Measure of the diversity (or randomness) in a sequence

25 Complexity Level of intricacy in a sequence Information
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Table 3

We set the below parameters for the GE and GP, which controlled each algorithm

GE Parameter Value

POPULATION 200

GENERATIONS 200

SAMPLING tournament

CROSSOVER 2 parents, 2 children

MUTATION 1 parent, 1 child

FITNESS accuracy of k-NN classification

SURVIVAL total elitism

MAXLENGTH 40·(number of desired features)

GP Parameter Value

POPULATION 200

GENERATIONS 10

SAMPLING tournament

CROSSOVER 2 parents, 2 children

MUTATION 1 parent, 1 child

FITNESS accuracy of k-NN classification

SURVIVAL total elitism

MAXLEVEL 9

INICMAXLEVEL 6

INICDYNLEVEL 6

FIXEDLEVEL 1

DYNAMICLEVEL 2

DEPTHNODES 1
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Table 4

We computed the marginal statistics for the mean selectivity of each method. The table showed that GE
practically differed in selectivity from B-SFS and F-SFS and almost GP, yet the ANOVA found no
statistically significant difference between any of the methods

SELECTIVITY

method Mean Std. Error 95% Confidence Interval

Lower Bound Upper Bound

B-SFS .625 .083 .413 .837

F-SFS .690 .065 .524 .856

GP .753 .049 .627 .878

GE .902 .018 .857 .948
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Table 6

We collected and contrasted the constructed features for the GE and GP algorithms

Patient GE-Feature GP-Feature

A 5.40·f1 √(atan(atan(atan(atan(atan(f1))))))

B 58.59·f1 atan(f17·f9·f17·f9·f9·f22·f22)·f9) = atan((f17)2·(f9)2·(f22)2)·f9)

C (−517.61·f4+765.70·f1)·(−9.929)·f9 f16 - max((f16 - f1)2, f1)2

D 0.61·f1 max(f5,sin(f4)) + max(cos(f18), f10)3

E −695.8·f1 |f19|3

F 65.4·f1 (f6)2 + (f6)2·max(f7, (f1)2)
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