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Abstract
The paucity of clinical treatment data on rare tumors, such as mesenchymal chondrosarcoma
(MCS), emphasizes the need in theranostic tools for these diseases. We put forward and validated
a new theranostic method, combining tumor xenografts and mathematical models, and used it to
suggest an improved treatment schedule for a particular MCS patient. Growth curves and gene
expression analysis of xenografts, derived from a patient’s lung metastasis, served for creating a
mathematical model of MCS progression and adapting it to the xenograft setting. The
pharmacokinetics and pharmaco-dynamics of six drugs were modeled, with model variables being
adjusted by patient-specific chemosensitivity tests. The xenografted animals were treated by
various monotherapy and combination schedules, and the MCS xenograft model was computer
simulated under the same treatment scenario. The mathematical model for xenograft growth was
then up-scaled to retrieve the MCS patient’s tumor progression under different treatment
schedules. An average accuracy of 87.1% was obtained when comparing model predictions with
the observed tumor growth inhibition in the xenografted animals. Simulation results suggested that
a regimen containing bevacizumab applied i.v. in combination with once-weekly docetaxel would
be more efficacious in the MCS patient than all other simulated schedules. Weekly docetaxel in
the patient resulted in stable metastatic disease and relief of pancytopenia due to tumor infiltration.
We suggest that the advantage of weekly docetaxel on the triweekly regimen is directly related to
the angiogenesis rate of the tumor. Further validation of this conclusion, and the theranostic
method we provide, may facilitate personalization of solid cancer pharmacotherapy.

Introduction
Mesenchymal chondrosarcoma (MCS) is a rare disease that accounts for about 1% of all
chondrosarcomas. Overall, 5-year survival is 55%. This disease usually follows an
aggressive course, with a high rate of distant metastases (1, 2). Lack of efficacious therapies
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for this and other rare tumors that progress rapidly accentuates the need to develop accurate,
predictive personalization tools in a timely fashion.

Prediction of personalized therapy, or theranostics, is the process of selecting the best
treatment for a given patient by accounting for patient-specific factors, such as gender, age,
and genetic characteristics. A possible theranostic solution is to assess the relative efficacy
of various treatments in laboratory animals, which bear the patient’s cancer (3). However,
xenograft models suffer from three major impediments: slow, costly, and labor-intensive
cellular acquisition from tumor biopsies and xenograft growth; animal physiology not
reflecting the human pharmacokinetics (PK); and xenograft methods not accounting for
patient safety.

Underlying these impediments is the complexity of the involved dynamics due to which one
cannot estimate, by intuition alone, the relationships between measurable molecular
biomarkers and the behavior of the organism as a whole. In contrast, mathematical models
formally and systematically describe the major biological processes that relate the measured
biomarkers to the phenotype in question. By integrating these mathematical models into
comprehensive computer algorithms, one can compute what will be the effect on the
phenotype of changes, even small changes, in biomarker levels. In theranostics, laboratory
experiments in xenografted animals could be used in conjunction with mathematical models
for the pathologic and physiologic growth dynamics and for drug PK and
pharmacodynamics (PD).

Mathematical models for tumor progression (4–6), cancer therapy (7–10), and related
genetic (11, 12), hematologic (13, 14), and immunologic processes (15, 16) have been
developed. Using these models, the efficacy of various drug monotherapy and combination
schedules was predicted (7, 8, 14, 15, 17, 18). These computer-implemented models allow
clinicians to analyze the effects of drug regimens on disease progression, as well as provide
the power to check various biomarkers for their suitability to represent different aspects of
the disease in question. New methods for treatment optimization have also been developed,
which grade the therapeutic potential of specific regimens according to clinical criteria, such
as efficacy/toxicity ratio (17, 19). The biological process models, in conjunction with the
optimization methods, introduce into clinical oncology a quantitative prediction-based
decision-making facility.

Several preclinical and clinical trials have been carried out for testing the prediction
accuracy of mathematical model for tumor progression (20–24). In the present work, we
applied a validated model for vascular tumor progression (see below) to create a novel
theranostic method for a large class of anticancer drugs. The method was validated in
xenografts derived from a MCS patient’s lung metastasis and then used for predicting an
improved therapy for the patient himself.

By controlling its variable values, the validated model was adapted to describe the
metastatic tumor growth of a specific MCS patient as well as of its xenografted biopsy. We
used these two new models to analyze the reasons underlying the relative advantage of one
treatment option over another.

Materials and Methods
The Patient

A 45-y-old white male was in excellent health until a growing mediastinal mass was found
in 2004. His primary tumor was resected and identified histologically as MCS. Despite the
initial resection, multiple new bilateral pulmonary nodules were discovered 30 d after the
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operation. Despite aggressive chemotherapy with ifosphamide, cisplatin, and etoposide for
six cycles, VACA (vincristine, doxorubicin, cyclophosphamide, and dactinomycin) for 2
cycles, and sunitinib p.o. for 8 wk, the patient progressed with additional liver and bone
metastases. As a consequence of prolonged chemotherapy and documented bone marrow
infiltration, the patient suffered severe myelosuppression with pancytopenia.

Study Design
The workflow of this study is described schematically in Supplementary Fig. S1.

Tumor fragments were taken from lung metastases of the MCS patient and implanted in
mice. This xenograft model was established and amplified until sufficient tumor was
available to implant a control and several treatment groups. In this model, cells are only
propagated directly as smaller pieces from a previous xenograft and never propagated as a
cell line. Mice were divided into groups, each treated by different drug regimen, in addition
to a control group of untreated animals. In parallel to the laboratory work, a general
mathematical model for vascular tumor growth dynamics was adapted to describe the
growth of untreated xenografts of the MCS patient’s lung metastases. In silico experiments,
similar to those performed in vivo, were conducted to predict growth of MCS xenografts and
their response to various drug therapies. This was done by simulating the adapted tumor
growth model in conjunction with the relevant PK/PD models and the particular dosing
regimens. Where available, patient-specific chemosensitivity information was used to fine-
tune the PD models. Otherwise, only publicly available data were used for the mathematical
PK and PD models of the drugs in the xenograft experiments. Following the initial
assessment of model prediction accuracy (25), the variables of several drug models were
reevaluated and the accuracy was assessed again.

Subsequently, the mathematical model was adjusted to describe the patient’s metastatic
growth dynamics. This was done using gene expression analysis of key proteins in mice and
human and various treatment regimens were tested for efficacy in the MCS patient.

Experimental Setup
Immunohistochemistry—Tissue from the primary sarcoma was removed after surgery
and fixed in 10% buffered formalin and embedded in paraffin. Tissue sections of 5 μm were
deparaffinized in xylene and rehydrated in increasing concentrations of ethanol. Endogenous
peroxidase activity was quenched with 0.01% H2O2, sections were boiled in 0.01 mol/L
citric acid (pH 6.0), and nonspecific binding was blocked with 10% normal rabbit serum.
After washing, rat anti-mouse CD34 monoclonal primary antibody (PharMingen) specific to
vascular endothelium was applied at 25 μg/mL and incubated overnight at 4°C. After
washing in PBS, biotinylated rabbit anti-mouse antibody, diluted 1:100, was applied
followed by incubation at room temperature for 30 min. After washing again in PBS, avidin-
biotin complex (Vector Laboratories), diluted 1:25, was applied and incubated at room
temperature for 30 min and washed again in PBS. Tissue sections were developed with
diaminobenzidine and peroxide and counter-stained with hematoxylin. Microvessel density
(MVD) was assessed by counting the microvessels at ×200 in a field that had the highest
vascularization by scanning at ×40 (12) and then converted to MVD/mm2. Stained slides
were examined blind and were also scored from one to four with increasing vascularity.

Animal model—For establishment and propagation, tumor fragments obtained from the
MCS patient were s.c. implanted using an 11-gauge cancer trocar on the right flank of male
CD-1 nude mice, as we assumed that mouse flank provides a good mirror of primary
sarcoma growth in the soft tissue microenvironment of the patient from which it originated.
Mice were weighed twice weekly and tumor measurements were taken with a Vernier
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caliper twice weekly, beginning 7 d after implantation. Tumors were considered established
once growth reached log stage as determined by tumor measurements. Once established
tumors reached a predetermined volume (1–3 cm3), they were excised and sectioned into 15
to 30 mm3 fragments, which were implanted s.c. as above; implantation was unilateral on
the right flank. Once tumors grew to 50 to 150 mm3 in size, animals were pair matched by
tumor size into treatment and control groups. The animals were ear tagged and followed
individually throughout each experiment.

Data collection and analysis—Tumor volume was calculated by conversion of two-
dimensional caliper measurements as follows (19):

(A)

where V, W, and L are the tumor volume, width, and length, respectively. Mean tumor
growth inhibition (TGI) of each treated group was compared with vehicle control and a TGI
value was calculated using the following formula:

(B)

where T 0 and C 0 are initial tumor sizes of the treated and the control tumor, respectively,
and T and C are sizes of treated or control tumor, respectively.

In vitro proliferation assays—Patient-specific tumor cells were obtained from
xenografts, generated by inoculation of lung metastases into immunocompromised mice,
which were collected when they had grown beyond 150 mm3 in size. The tumors were
minced into small pieces (<1 mm), digested for 2 h with collagenase-DNase, mechanically
dissociated, and passed through sterile nylon mesh to produce single-cell suspensions.
Viable tumor cells were enriched by elutriation and Ficoll-diatrizoate density centrifugations
(26). Tumor cell suspensions were plated in microtiter wells (50,000 per well) and incubated
in the presence or absence of the indicated drugs or combinations for 4 d in 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; ref. 27) or 7 d in the
differential staining cytotoxicity (DiSC; ref. 28) assays.

Mathematically Modeling Vascular Tumor Growth
A mathematical model of angiogenesis-dependent tumor dynamics and its underlying
assumptions is described in detail elsewhere (4, 5, 24). The reader is referred to Fig. 1 in ref.
24 for a schematic representation of the model. The model describes three main interactive
growth dynamics: of tumor cells, of blood vessel formation (angiogenesis), and of new
vessel maturation.

Generally, our model assumes that the tumor volume is formed by living cells, which
undergo mitosis or death, and dying cells, which are progressively eliminated. The living
cells consume nutrients and secrete proteins that affect angiogenesis. We distinguish
between two types of vessels, mature and immature, which differ in their perfusion
efficiency. Mature vessels are coated by pericytes, mesenchymal-like cells, which support
these vessels and enable improved blood flow (29, 30). The immature vessels are only tubes
of endothelial cells, which are more “leaky” than the mature ones, and conduct oxygen and
nutrients less effectively to the tumor (31, 32). Another property of immature vessels in our
model is their higher degradation tendency. The degree of tumor vascularization strongly
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affects its growth rate: higher and more effective vascularization triggers vigorous
proliferation of tumor cells while inhibiting angiogenesis. In contrast, insufficient
vasculature causes hypoxia and starvation of the tumor tissue, thus inhibiting cell
proliferation and promoting angiogenesis (33–37). Four proteins that are related to
angiogenesis are modeled: vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF), angiopoietin-1 (Ang-1), and angiopoietin-2 (Ang-2). The growth
factor VEGF drives angiogenesis by inducing endothelial cell proliferation and by serving as
a survival factor for immature vessels. PDGF drives maturation by inducing the proliferation
of pericytes, which coat the immature vessels and turn them mature. The proteins Ang-1 and
Ang-2 also affect the processes of vessel maturation and destabilization. The protein Ang-1
promotes vessel maturation by facilitating the binding of free pericytes to the extracellular
matrix. In contrast, Ang-2 causes pericyte dropout, thus promoting vessel destabilization
(38, 39).

Personalizing the MCS Patient Model
The growth of six untreated xenografts was monitored for estimating the variables of the
MCS patient tumor model when xenografted in mice. Only three of them actually grew in
size. Results of histopathologic assays of the patient’s lung metastasis (e.g., tumor density,
mitotic index, necrotic index, and vessel density) were used to define valid variable ranges
in the evaluation process. Twelve model variables common to all the xenografts were
evaluated. In addition, two variables, which represent the vascular bed at implantation site,
were evaluated for each xenograft individually. Two additional xenograft growth curves
were monitored for validating model predictability.

Mathematically Modeling PK/PD
We adopted linear compartmental PK models for all the drugs in this study (see refs. 40, 41
for general reviews on compartmental PK modeling). Each effect of the drug is
mathematically defined as a function of drug concentration in a predefined model
compartment. In general, the concentration-effect relationship is defined using a sigmoid
function (42):

(C)

where E is the measured effect at the given plasma concentration C; E max and E min are the
maximal and the minimal possible effects, respectively; C nor is the drug concentration that
produces the effect that equals to the average of E max and E min; and m is the curve slope at
the point [C nor; E (C nor)]. However, when the available information does not permit a
reliable reconstruction of the variables for the sigmoid function, a more simplistic linear
relationship is used:

(D)

where E max and E min are the bounding maximum and minimum effects, respectively, and
C max and C min are the respective drug concentrations that cause these effects.

The model of drug effect depends on its actual mechanism of action. For example, the effect
of a cytotoxic drug, such as docetaxel, is modeled as a fraction of cells that are killed during
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the current time step (Eqs. C and D). Thus, in the context of docetaxel, E max and E min (Eqs.
C and D) are taken as 1 and 0, respectively. The overall effect on treated tumor shrinkage
compared with the untreated tumor is calculated by Eq. B.

The variable identification of the MCS model and the various PK and PD models was
performed using a cross-entropy method, described in ref. 43, as well as experimental
records of xenograft dynamic and publicly available PK data. The sources for PK and PD
data can be found in Supplementary Tables S1 and S2, respectively.

Personalizing PK/PD Models Using Xenograft Experiments
Six drugs and their combinations were tested in mice bearing xenografts from the patient’s
cancer tissue to determine the best possible treatment: bevacizumab, docetaxel, doxorubicin,
gemcitabine, irinotecan (CPT-11), and sorafenib. Results of in vitro proliferation assays of
the patient’s tumor cells were used to establish patient-specific concentration-effect curves
for the chemotherapeutics (docetaxel, gemcitabine, CPT-11, doxorubicin, and docetaxel/
gemcitabine combination). Two different concentrations of each drug were tested, enabling
to construct linear dose-response functions (Eq. D). Response was measured using DiSC and
MTT methods and concentration-effect equations were constructed separately for each
method and then averaged. For docetaxel and gemcitabine/docetaxel, only DiSC results
were used for parameterization. These data were modeled as the fraction of cells killed
during the current time step.

Modeling PD of targeted drugs (bevacizumab and sorafenib) was based on relevant data of
treated lung cancer xenografts and was implemented as a sigmoid dependence (Eq. C). In
our mathematical model, we included bevacizumab single-action mechanism as a VEGF
inhibitor and that of sorafenib triple-action mechanism (i.e., direct inhibition of tumor
maturation, inhibition of pericyte activity, and decreasing the cell proliferation rate). The
estimated individualized PD was combined with the corresponding PK to yield a complete
PK/PD model. No PK individualization was performed in this work.

To model drug combinations, the independent effects of each drug in the combination were
added. An additive effect was assumed due to lack of quantitative information on potential
PK/PD interactions. An exception is the case of docetaxel/gemcitabine combination, where
data from the patient-specific in vitro proliferation assays were available. Theoretically, the
combined effects of docetaxel and gemcitabine may be synergistic or antagonistic depending
on the type of tumor cells and on the order of drug administration (44, 45). PK interactions
are partially responsible for the dependence of the combined effect on drug sequencing (45).
As the chemosensitivity tests are PK independent, and due to the shortage of quantitative
data, we assumed that no PD interactions exist between the modeled drugs.

Simulating MCS Xenograft Dynamics and Response to Drug Treatment
The full PK/PD models of numerous therapy schedules were simulated in conjunction with
the MCS xenograft model. Mouse body weight was taken as 30 g. Efficacy was measured in
terms of TGI (Eq. B). As stated above, necrotic tumor cells do not disappear from the
system immediately, but are eliminated with a finite rate, and therefore contribute to tumor
volume. Thus, the control and treated tumor sizes in Eq. B may refer to the total number of
cells, or to living cells alone, resulting in TGI values that consider the tumor volume as a
whole (TGIT) or only the living fraction (TGIL).

Xenograft simulations were carried out for a period of 22 d, similar to the period for TGI
calculations in the experimental setup.

Gorelik et al. Page 6

Cancer Res. Author manuscript; available in PMC 2011 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Validating the Model Predictions
Growth of MCS xenografts treated under various therapies was monitored for 22 d after
treatment initiation. Model prediction accuracy was calculated as follows. For the control
group, the growth of the tumor during the experiment, G, is given by

(E)

where C0 and C are the initial and final sizes of untreated xenografts, respectively.

Prediction accuracy, A, for the control group was calculated using the observed, G obs, and
calculated, G calc, G values as follows.

(F)

Prediction accuracy for the treatment groups was calculated using the observed and
predicted TGI values, TGIobs and TGIcalc, respectively.

(G)

Refining the Models
Following the initial assessment of prediction accuracy, the PK and PD models of each drug
were independently revisited by detailing the action mechanisms of the involved biological
drug models and by additional refinement of PK/PD variables. Only publicly available data
were used in this process. Unlike the original models, the reviewing process was performed
only after receiving the experimental xenograft sensitivity. However, these were blinded in
the refinement process. Thus, the results below may be regarded as prospective ones.
Results of the initial assessment are also reported (25).

Simulating Tumor Dynamics and Response to Drug Treatment in the MSC Patient
The personalized disease model of the MCS xenografts served as the basis for the human
model. Gene expression analyses of key proteins (e.g., VEGF; ref. 46) in the patient’s
metastases and in the xenografted tumor (denoted as Met/F1 ratio) were used to scale
relevant xenograft variables. For example, gene expression analysis shows that the Met/F1
ratio of Ang-2 is 0.7. Therefore, values of corresponding variables in the xenograft model
were multiplied by this coefficient to yield a new value in the human model. Published data
on the involved drugs were used to model their PK in human. We assumed that
administering equivalent doses to a mouse and a human would result in effects of similar
maximum magnitude but with different time profiles. Therefore, the same PD functions used
in mice modeling were used in human models [i.e., patient-specific concentration-effect
curves for cytotoxic drugs (CPT-11, docetaxel, doxorubicin, and gemcitabine) and literature-
based functions for bevacizumab and sorafenib]. Note that for simplicity we describe here
only our predictions about drug efficacy. Predictions about drug toxicity will be discussed
elsewhere.
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The full PK/PD models were simulated in conjunction with the MCS human model under
various therapy regimens. A treatment period of 90 d was simulated, but simulations were
carried out for a total period of 120 d to allow confirmation of response 4 wk after the end of
treatment.

Results and Discussion
Experimental results

Personalized PD variables of the cytotoxic drugs docetaxel, doxorubicin, gemcitabine, and
CPT-11 were estimated using the chemosensitivity tests of the patient’s tumor cells to the
respective drugs. In addition to assessing the sensitivity to a single compound, docetaxel/
gemcitabine combination was also tested (Table 1). This combination (docetaxel, 260 μg/
mL; gemcitabine, 37.5 μg/mL) was found in vitro to be less efficacious than gemcitabine
alone (70% versus 14% surviving cells, respectively). Moreover, after 1:2 dilution, the
docetaxel/gemcitabine combination became completely inactive (100% surviving cells).

The xenografted animals were treated by five different drug schedules (regimens 1–5; Table
2). Tumor sizes of the treated and control animals were measured and registered at treatment
onset (day 0) and on day 22. The calculation of TGIT was performed according to Eq. B. In
our experiments, the TGIT values for the five regimens ranged from 38.9% (sorafenib
monotherapy, regimen 4) to 109.3% (bevacizumab/docetaxel/gemcitabine, regimen 2).

Validating the predictions of the mathematical model
The mathematical model successfully retrieved the growth curves of the untreated MCS
xenografts, including the calculated 3-month lag period between implantation and growth
(Fig. 1). Validated for untreated tumor dynamics, the model was then simulated under
different treatment regimens. The values of TGIT were calculated from the predicted tumor
sizes (Eq. B). Model predictions were compared with the experimentally observed values. In
the initial assessment, the average prediction accuracy was 81.9% (25). Having refined the
drug models, the accuracy of model predictions increased to 87.1% (Table 2). The analysis
below refers to the results obtained using the refined models.

The predicted efficacy ranking of the different treatment regimens was correct, except for
the swapping of rank 3 and 4 (regimens 3 and 1). Note the small difference in the
experimental TGI values of these two regimens—59.4% for regimen 1 and 56.4% for
regimen 3. This may suggest that the difference between these two schedules is not
significant.

The most accurate prediction was achieved in the bevacizumab/CPT-11 combination
(regimen 1). The model-predicted and measured TGIT values were 57.2% and 59.4%,
respectively (accuracy of 96.2%). The two most efficacious regimens, in terms of TGI, were
regimen 2 (bevacizumab/gemcitabine/docetaxel) with measured TGIT being 109.3% and
regimen 5 (bevacizumab/sorafenib) with measured TGIT being 87.22%. Our prediction for
regimen 2 (TGIT = 76.6% predicted versus 109.3% measured) was the less accurate of all
the predictions (accuracy of 70.1%). Nevertheless, it was correctly identified as the most
potent schedule. Note that excluding this lowest accuracy value results in mean accuracy of
90.5%.

Antagonism between gemcitabine and docetaxel was experimentally observed in vitro using
the patient’s tumor cells (Table 1). This result is corroborated by our model simulations,
which suggest that removing gemcitabine from regimen 2 (bevacizumab/gemcitabine/
docetaxel) yields a slightly larger TGIT: 78.6% versus 76.6%. However, whereas the in vitro
result is probably related to the drug sequencing effects on cell kinetics, we believe that the
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in silico predicted antagonism better reflects the in vivo setting, where the added, relatively
large, cytotoxic effect of the two drugs may generate intensive angiogenesis, eventually
leading to excessive tumor recovery.

Proposing an improved treatment for the MCS patient
Drug efficacy experiments in the personalized xenograft model alone are of limited use as a
theranostic tool (see above). Having validated our mathematical model, we could use it,
jointly with the results of the empirical xenograft experiments, for analyzing putative
treatment alternatives for the patient so as to maximize the TGI (Eq. B).

Many clinical trials have been reported comparing q7d with q21d docetaxel regimens for
various indications. Nevertheless, no definitive conclusion about the superiority of either
dosing interval can be made. In addition, several toxic effects have been associated with
weekly regimens (47). Because our preliminary simulations pinpoint the bevacizumab/
docetaxel combination as superior to most other therapies in suppressing the growth of the
MCS patient’s xenografts (25), we wished to test whether the patient would benefit from
weekly docetaxel administrations. To this end, a series of bevacizumab/docetaxel regimens
was simulated (regimens 6–21; Table 3). In all the studied regimens, delivery of triweekly
i.v. doses of 15 mg/kg bevacizumab combined with four alternative docetaxel doses (45, 60,
75, and 90 mg/m2) in four different dosing intervals (q7d, q14d, q21d, and q28d) was
simulated. The associated treatment efficacy, in terms of time to progression and final tumor
sizes, was predicted; time to progression is defined as the time needed for 20% increase in
tumor size. Results are summarized in Table 3 and in Fig. 2A, where the predicted tumor
growth curves of the 16 simulated treatments are shown. Our simulations suggested that
once-weekly regimens (Fig. 2A, filled circles) would be superior to other simulated
regimens for the MCS patient, both in terms of final tumor size and time to progression. The
improvement in tumor dynamics that is predicted for once-weekly regimens is caused by the
interdosing interval and not by increasing the total drug dose: dividing the total docetaxel
dose from regimen 16 to once-weekly dosing interval [i.e., doses of 25 mg/m2 (regimen 22)]
results only in a minute decrease in the predicted efficiency compared with regimen 7 (75
mg/m2 q7d). Both these weekly regimens are predicted to be more efficacious than the
triweekly regimen 16 (Fig. 2). This result supports theory, suggesting that interdosing
intervals per se significantly affect drug efficacy (7, 8).

Effect of angiogenesis on treatment outcome
To understand the mechanism underlying the predicted q7d versus q21d superiority, we
artificially changed various model variables and examined their effects on docetaxel
efficacy. By altering the kinetic rate of new vessel formation, as influenced by VEGF
secretion, density of VEGF receptors, etc., we could test the effect of angiogenesis on
docetaxel effect over time. Our mathematical model simulations show that a single
administration of the cytotoxic docetaxel perturbs the dynamic equilibrium between the
living tumor cells and the blood vessels that support them, thus triggering a cascade of
tumor recovery events. The more intensive the angiogenesis, the faster the tumor recovery is
(Fig. 3A and B).

Comparing the simulated tumor size in the MCS patient, after a single docetaxel dosing,
with the predicted tumor size with no treatment, we calculated the expected TGIL at each
time point according to Eq. G. The calculated TGIL on day 7 was 46%. On day 21, the effect
almost disappears, as shown by a TGIL value of only 10%—decrease of 36% (Fig. 3A).
When the rate of new vessel formation is halved, the predicted reduction in TGIL values
from day 7 to day 21 is only 29% (39% and 10%, respectively), indicating slower recovery
from drug-induced tumor inhibition. In contrast, if the rate of new vessel formation is
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doubled, compared with that calculated for the real MCS patient, the difference in the extent
of tumor inhibition by docetaxel dose, between day 7 and day 21, increases to 92%: 69% at
day 7 versus a negative value of −22% in day 21. The negative TGIL value means that at
this point, the number of living tumor cells is larger than it would have been if no treatment
were administered. The dependence of tumor recovery rate on the rate of new vessel
formation is almost monotonic over a wide range of kinetic rates (Fig. 3B). This suggests
that angiogenesis-intensive tumors can be controlled by more frequent docetaxel dosing,
whereas angiogenesis-poor tumors may be treated by less dense regimens. Adding to
docetaxel, the anti-VEGF monoclonal antibody bevacizumab is shown in our simulations to
slow down tumor recovery. The result is a predicted TGIL value of 76% at day 7 compared
with 45% without bevacizumab. As time goes on, bevacizumab is eliminated, which allows
rapid tumor recovery resulting in 10% TGIL on day 21 (a difference of 66%).

This work does not address drug-induced hematopoietic toxicity (48), which is the major
dose-limiting factor in radiotherapy and chemotherapy of cancer (49). However, in another
work, the superiority of calculated 10-day interdosing docetaxel intervals for alleviating
neutropenia was theoretically shown, supporting the superiority of the weekly docetaxel
regimens.6 A clinical decision was made to proceed with docetaxel therapy in addition to
antiangiogenesis treatment with bevacizumab. For fear of aggravating the severe
pancytopenia with larger q21d doses of docetaxel, a weekly schedule, as predicted here, was
administered to the patient. The patient had a dramatic response to therapy with a marked
decrease in serum alkaline phosphatase from bone and an immediate substantial recovery of
all three blood elements (hemoglobin, WBCs, and platelet count). Soft tissue disease in the
lungs and liver remained stable and the patient enjoyed a 6-month period of good quality of
life, ending only after pulmonary progression of his disease to which he finally succumbed.
Thus, a combined experimental and modeling approach for treatment personalization
benefited this MCS patient.

Taken together, our results suggest that a methodology combining xenografted biopsies and
mathematical modeling has promising prospects in personalized oncology. As our model
had predicted, the patient showed a markedly improved clinical course after weekly
docetaxel and bevacizumab combination. Our prediction, about the superiority of once-
weekly docetaxel in patients with intensive angiogenesis, may explain observed variability
in the relative efficacy of q7d versus q21d docetaxel regimens in cancer patients (47). This
prediction should be validated in the preclinical and clinical setting. On further validation, it
may aid physicians in identifying improved treatment schedules for individual patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Growth in mouse of a tumor derived from a lung metastasis of a MCS patient. Simulation
results of the MCS xenograft model (line) compared with experimental measurements of
tumor size in a test mouse (circles). Tumor cells from the MCS patient biopsy were grown
in vitro and implanted into the animal on day 0.
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Figure 2.
Effects of docetaxel scheduling on tumor dynamics as predicted by simulations of the in
vivo MCS patient’s disease model under 16 bevacizumab and docetaxel treatment
combinations. Schedules include bevacizumab (15 mg/kg i.v. q21d) combined with
docetaxel (1-h i.v. infusion of 45, 60, 75, and 90 mg/m2; four docetaxel schedules are
presented: q7d, q14d, q21d, and q28d; A) and docetaxel [i.v. infusion applied in three
different schedules: 75 mg/m2 q21d (regimen 16), 45 mg/m2 q7d (regimen 7), and 25 mg/m2

q7d (regimen 22)]. The simulated treatment period is 90 d.
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Figure 3.
Model simulations of MCS dynamics in the patient after a single docetaxel dosing (75 mg/
m2, 1-h i.v. infusion). A, estimated TGIL after a single docetaxel dosing for tumors with
different levels of angiogenesis intensity. Angiogenesis intensity is determined by scaling
the model variable, which combines VEGF secretion and activity rates. Simulations using
two arbitrary scaling factors (SF) are compared with those with estimated angiogenesis
intensity of the MCS patient and, in combination with bevacizumab (BEV; 15 mg/kg i.v.),
are presented. B, predicted decrease in TGIL from day 7 to day 21 following docetaxel
administration as a function of angiogenesis intensity.

Gorelik et al. Page 16

Cancer Res. Author manuscript; available in PMC 2011 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gorelik et al. Page 17

Table 1

Chemosensitivity-tested response of the MCS patient’s tumor cells to cytotoxic drugs, as measured by DiSC
and MTT methods

Drug Concentration (Ag/mL) Response

DiSC MTT

Docetaxel 37.5 96 N/A

18.75 40 N/A

Gemcitabine 260 14 26

130 10 15

Gemcitabine + docetaxel 260/37.5 30 N/A

130/18.75 30 N/A

Doxorubicin 1.2 59 57

0.6 20 27

Irinotecan 30 48 18

15 24 20

NOTE: A higher response indicates a lower number of surviving cells (i.e., better efficacy).

Abbreviation: N/A, not available.
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