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Abstract
Attention is a neurocognitive mechanism that selects task-relevant sensory or mnemonic
information to achieve current behavioral goals. Attentional modulation of cortical activity has
been observed when attention is directed to specific locations, features, or objects. However, little
is known about how high-level categorization task-set modulates perceptual representations. In the
current study, observers categorized faces by gender (male vs. female) or race (Asian vs.
Caucasian). Each face was perceptually ambiguous in both dimensions, such that categorization of
one dimension demanded selective attention to task-relevant information within the face. We used
multivoxel pattern classification (MVPC) to show that task-specific modulations evoke reliably
distinct spatial patterns of activity within three face-selective cortical regions (right fusiform face
area and bilateral occipital face areas). This result suggests that patterns of activity in these regions
reflect not only stimulus-specific (i.e., faces vs. houses) responses, but also task-specific (i.e., race
vs. gender) attentional modulation. Furthermore, exploratory whole brain MVPC (using a
searchlight procedure) revealed a network of dorsal frontoparietal regions (left middle frontal
gyrus, left inferior and superior parietal lobule) that also exhibit distinct patterns for the two task-
sets, suggesting that these regions may represent abstract goals during high-level categorization
tasks.

Introduction
Attention facilitates processing of task-relevant information (Corbetta & Shulman, 2002;
Desimone and Duncan, 1995; Yantis, 2008). Evidence for attentional modulation of cortical
activity has been reported in humans using functional magnetic resonance imaging (fMRI)
in multiple perceptual domains. For example, covert visuospatial attention modulates
activity in the corresponding retinotopic regions of extrastriate cortex (e.g., Yantis et al.,
2002; Kelley et al., 2008). Similar effects of attention upon cortical activity have been
observed during attention to visual features (e.g., Saenz et al., 2002; Liu et al., 2003) and
objects (e.g., O'Craven et al., 1999; Serences et al., 2004).

These studies have documented attentional modulation of visual properties that are
processed or represented in regions that are functionally well-characterized (e.g. retinotopic
organization of visual cortex; category selectivity of ventral temporal cortex). However,
many common perceptual tasks entail categorization based on complex combinations of
visual attributes. The mechanisms of attentional modulation of cortical activity based on
high-level perceptual categorization rules are unknown.
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Here we devised a face categorization task during which subjects categorized either the
gender or the race of ambiguous face morphs. Each stimulus was created by morphing
together one Asian male face with one Caucasian female face, or one Asian female face with
one Caucasian male face. Therefore each of them varied in both gender (male vs. female)
and race (Asian vs. Caucasian; see Figure 1). We investigated whether these two
categorization tasks evoked distinguishable patterns of activity in the cortical face network.

We used face categorization tasks for two reasons. First, race and gender are natural
categorization tasks that humans perform frequently, rapidly, and accurately. However, little
is known about how people accomplish these socially-relevant face categorization tasks.
Previous behavioral studies have suggested that different feature components as well as
holistic information are critical for the performance of different face categorization tasks
(e.g., Schyns et al., 2002; Smith et al., 2009; Mangini & Biederman, 2004). Although
allocation of attention to different types of information within the face during the
categorization task was suggested as a possible neural mechanism (Schyns et al., 2002), the
role of attention in these socially-relevant face categorization tasks has yet to be
investigated.

Second, the cortical substrate for face perception is well characterized and therefore
provides a solid foundation for addressing this question. Three main regions, inferior
occipital face area (OFA; e.g., Allison et al., 1994), fusiform gyrus (FFA, e.g., Sergent et al.,
1992; Kanwisher et al., 1997) and superior temporal sulcus (STS, e.g., Fairhall & Ishai,
2007; Puce et al., 1998), in both hemispheres have been identified as the core face network
mediating the visual analysis of human faces, and work together as a core system for face
perception (Haxby et al., 2002).

We employed multivoxel pattern classification (MVPC) in a hypothesis-driven region of
interest (ROI) approach to investigate whether cortical face-selective regions reflect not only
what you see (i.e., responding more to faces than to houses or objects), but also how you see
it (i.e., responding differently during gender vs. race categorization tasks). In a subsequent
exploratory analysis, we used a searchlight procedure (Kriegeskorte et al., 2007) to identify
additional brain regions exhibiting distinct patterns of activity for the two face
categorization tasks.

Materials and Methods
Subjects

Eight neurological healthy adults (all right-handed, four females, age range 19 – 33, mean of
22) gave written informed consent, which was approved by the Johns Hopkins Medicine
Institutional Review Board, to participate in this study.

Stimuli and Procedure
Each of 6 male Asian faces were parametrically morphed (20 levels) with each of 6 female
Caucasian faces and each of 6 female Asian faces were morphed with each of 6 male
Caucasian faces, resulting a total of 72 pairs of morphs (see Figure 1a for an example pair).
The images were taken from the CalTech database and the AR-face database (Martinez &
Benavente, 1998), as well as in-house photography. All stimuli were rendered in grayscale
and cropped, leaving only eyes, nose and mouth, and then morphed using FantaMorph (v
4.0). The faces were presented in the center of the display at a viewing distance of 68 cm,
and subtended 6 degrees of visual angle in both height and width when viewed in the
scanner.
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Before the scanning session, subjects completed two sessions on separate days (one
categorization task per session) of a preliminary psychophysical task to determine their
male-female and Asian-Caucasian morph threshold (i.e., point of subjective ambiguity) for
each of the 72 pairs of faces. Subjects were asked to make male/female categorization
judgments by pressing one of the two keys on the keyboard. No feedback was provided.
Each face was presented until a response was registered. To efficiently obtain subjective
thresholds for each pair of stimuli, we used the methods of limits (see Fig. 1a). Different
morph levels for a pair were presented twice in each session, once in each direction (e.g.,
once from 100% toward 0% male and once from 0% toward 100% male). The sequence
stopped as soon as subjects changed their response (e.g., from male to female). For each
pair, the male-female morph threshold was taken as the midpoint of the morph levels that
were first categorized as “female” during a male-to-female sequence and as “male” during a
female-to-male sequence. Subjects completed the same procedure for the Asian-Caucasian
morph pairs. The order of tasks in two sessions was counterbalanced across subjects. By the
end of the two sessions, two morph levels (one for each task) were determined for each of
the 72 pairs, resulting in a total of 144 ambiguous morphed faces for each subject.

During the scanning session, subjects completed 12, 14, or 16 runs of the face categorization
task. Each run consisted of eight blocks of 38 sec each (4 blocks of the gender task and 4 of
the race task in alternating order). The initial task in each run was counterbalanced across
runs. All 144 stimuli were used in each run, randomly assigned to one of the 8 blocks. In
order to ensure that the classification was not based on perceptual differences in the stimuli,
we used each face in both tasks across runs. Therefore, the fMRI runs were acquired in
pairs: if a face was used in the gender task in the first run of a pair, it was used in the race
task in the second run of the pair.

Each of the eight task blocks within a run started with a 2 sec instruction screen indicating
which face categorization task to carry out in that block. Following the instruction screen
were 18 trials, during each of which a face was presented for 300 ms a blank screen for 1700
ms (Fig. 1b). Subjects held one button in each hand, and indicated their categorization
decisions by pressing one of the two buttons (response assignments were counterbalanced
across subjects).

Independent Functional Localizers
We defined several regions of interest in which to apply MVPC, including six face-selective
ROIs (3 in each hemisphere; see Fig. 2). Each participant completed one or two functional
localizer runs lasting 368 seconds; these data were used to identify the occipital face area
(OFA), fusiform face area (FFA), and superior temporal sulcus (STS) in both hemispheres
(Fig. 2). During each localizer run, subjects alternately viewed 12 blocks (each lasting 30
secs) of intact morphed faces (the 50% morph of 72 pairs) or houses (4 blocks each) and
phase-scrambled faces or houses (2 blocks each). Each image was presented for 300 msecs
and with a 1700 msec blank (Fig. 1b). Subjects performed a 1-back working memory (WM)
task, and pressed a button when a repetition was detected (3 repetitions per block).

fMRI Data Acquisition and Analysis
MRI scanning was carried out on a 3T Philips Gyroscan scanner. High-resolution
anatomical image were acquired with a T1-weighted 200-slice magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequence with a SENSE (MRI Devices, Inc.,
Waukesha, WI) 8-channel head coil (TR = 8.2 ms, TE = 3.7 ms, flip angle = 8°, prepulse
inversion time delay = 852.5 ms, SENSE factor = 2, scan time = 385 s), yielding 1-mm
isotropic voxels. Whole brain echoplanar functional images were acquired in 40 transverse
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slices (TR = 2000 ms, TE = 35 ms, flip angle = 90°, matrix = 64 × 64, with 3 × 3 mm in-
plane resolution, slice thickness = 3 mm, SENSE factor =2).

BrainVoyager QX (Brain Innovation, Maastricht, The Netherlands) and the libsvm (Chang
& Lin, 2001) for MATLAB were used for analysis. EPI Images from each scanning run
were slice-time and motion corrected and then high-pass (3 cycles/run) filtered to remove
low-frequency noise in the time series. No spatial smoothing was performed on the images.

Hypothesis-driven Regions of Interest MVPC
The localizer data were used to identify face-selective ROIs for each participant using a
contrast of faces vs. houses and scrambled stimuli. In each ROI, the fifty most selective
voxels (see Fox et al., 2009) during the preferred stimulation period were included in the
subsequent MVPC. The following ROIs were identified, with the number of participants
(out of 8 total participants) exhibiting significant activation (voxel-wise p < .01,
uncorrected) in that area: right FFA (8); left FFA (7); right OFA (8); left OFA (7); right STS
(8); left STS (7). (One subject had no activation in the vicinity of fusiform gyrus, inferior
occipital gyrus and superior temporal sulcus in the left hemisphere with even lowered
threshold). All subsequent ROI analyses were performed using the independent dataset from
the experimental runs.

The raw time series from each voxel within each ROI was first normalized on a run-by-run
basis using a z-transform. The mean BOLD signal in each of the 50 voxels in each ROI
during a time period extending from 12s to 38 s after the onset of the categorization task
instruction screen was taken as one instance for classification. The data were passed through
an arctan squashing function to diminish the importance of outliers (Guyon et al., 2002).
Thus, four voxel-pattern instances were extracted for each task in each run. A leave-one-run-
out cross-validation procedure was used to train a linear support vector machine (SVM)
based on all but one run, and the classifier was applied to the data from the left-out run to
discriminate between the gender versus race categorization tasks. Overall classification
accuracy was defined as the mean classification accuracy across all possible permutations of
leaving one run out.

Note that the question of interest was whether there exist multivoxel pattern differences in
the face network evoked during the gender or race discrimination tasks. Another potentially
interesting question would be to assess whether the multivoxel patterns evoked by different
stimuli (e.g., male vs. female faces or Asian vs. Caucasian faces) could be decoded within
those ROIs. While our stimulus set could be usefully applied to this question, the current
block design was not optimized for event-related analysis of stimulus differences.

Exploratory Whole-brain MVPC
A 9mm-cubic searchlight (i.e., 27 voxels) was defined to move through the whole acquired
volume (individual native space), centered on each voxel in turn, again using the one run left
out procedure. After obtaining the classification accuracy for each voxel neighborhood in
each subject, we applied a Talairach transformation to combine the resulting statistical maps
across the 8 subjects. The group mean classification accuracy of the searchlight centering on
each voxel was then tested against chance (50% accuracy) with a right-tailed t test and
corrected for multiple comparisons with a cluster threshold correction (Forman et al., 1995).
The final statistical map reported below uses a corrected alpha = 0.001 with voxel-wise
nominal p of 0.003 (t(7) = 3.8).
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Results
Univeriate analyses

We first conducted a univariate ROI-based analysis in the core face network using
independent localizer runs (see Materials and Methods). We first examined whether the
mean BOLD signal in these ROIs differed for the two tasks. To do this, we computed the
mean magnitude of the sustained response (i.e., 12 sec to 38 sec after the onset of the task
instruction screen) during the two task conditions (gender vs. race) across all voxels in each
ROI and performed a paired t-test between them. None of the ROIs exhibited significant
mean differences for the two tasks (all p's > .14). This is not surprising; these face-selective
areas were, on average, about equally engaged during the two face-categorization tasks.

Multivariate pattern analyses
A linear SVM classifier was trained (separately for each subject) to discriminate multivoxel
patterns evoked while subjects carried out the race and gender categorizations, respectively,
using data from all the face-selective regions combined for each subject (i.e., 300 voxels for
all subjects except for S8, who contributed 150 voxels, all from the right hemisphere). The
mean classification rate was 61% and was significantly greater than chance across subjects
(t(7) = 2.5, p < .05). Second, we trained a classifier for each ROI separately. Figure 3 shows
the mean pattern classification rate of the group in each face-selective ROI. Chance
classification performance was 50%. Right OFA, right FFA and left OFA exhibited
classification performance that was significantly greater than chance (p's < .05), with mean
classification accuracies of 61%, 58%, and 57%, respectively.

As another check that the results were not due to chance, we used a randomization
procedure in which runs were randomly labeled as gender task or race task prior to
classification. In each region, classification accuracy during cross-validation was near 50%
(i.e., 48.9%-50.8%), as expected. When these values were used as an empirical measure of
chance, the same regions (i.e., bilateral OFA and right FFA) exhibited significant
classification accuracy.

Although there were no significant overall differences in mean signal across the two tasks in
each of these ROIs (see above univeriate analyses), to ensure the classification was not
driven by mean differences (see Esterman et al., 2009), we additionally conducted the same
analysis with removal of mean differences. We continued to observe significant
classification performance in right OFA, right FFA and left OFA (63%, 57% and 57%
respectively, p's < .05) but not in other regions of interests. The classification rate for all the
face-selective regions combined was also significantly better than chance (i.e., 64%, p < .
05). This mean-centering procedure ensured that a nonspecific difference (e.g., in efforts)
was not driving pattern classification; instead, specific multivoxel patterns of activity were
reliably different for the two task sets.

We then used an exploratory MVPC searchlight to examine classification based on patterns
from 3×3×3=27-voxel clusters centered at each voxel across the whole brain to identify
additional regions that contain distinct signals for the two face categorization tasks. This
procedure revealed a set of frontal and parietal regions in the left hemisphere, including
middle frontal gyrus (MFG), superior and inferior parietal lobule (SPL, IPL), and insula, as
well as several clusters in the middle and inferior temporal (IT) cortex (see Table 1). Several
of the identified regions in the IT cortex were in and near the fusiform gyrus in both
hemispheres as shown in Figure 4, though these were not identical to the independently
localized face-selective regions (i.e., FFA, shown in green in Figure 4, and OFA).
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Behavioral analyses
To ensure that the results were not driven by differences in mental effort or personal
preference for one category or response versus the other, we analyzed the response times
(RTs) as well as the relative proportion of each response type. Mean RT for the gender and
race categorization tasks was 913 ms and 939 ms, respectively (p > 0.13, data from 6
subjects; behavioral data from two subjects were lost due to technical issues). There were
also no response biases in either task. All 8 subjects categorized faces as female as often as
male during the gender task (51% vs. 49%, respectively; p > 0.8). The same pattern was
observed in the race task (46% vs. 54% for Asian, Caucasian, respectively; p > 0.1). These
results were as expected, because the stimuli used during the scanning sessions were
selected to be subjectively ambiguous in both tasks (see Materials and Methods). In
addition, there was no consistent activity that was greater for one task vs. the other (see
above), further suggesting that the tasks were well matched for difficulty and processing
demands.

Discussion
The data reported here reveal modulation of the cortical face network evoked by high-level
categorization task set. Critically, because the stimuli were identical during the two tasks,
classification could not be based on intrinsic sensory differences in the physical stimuli.
Under these conditions, among all the face-selective brain regions, we found three (right
FFA and bilateral OFA) that exhibited distinct, task-specific multivoxel patterns evoked by
the two task sets. Our results suggest that these regions represent the diagnostic features or
combinations of features that are critical for these categorizations. Furthermore, our findings
echo studies of prosopagnosic patients or TMS-induced neurodisruption of face-selective
areas (see Rossion, 2008 for a review). For example, Minnebusch et al. (2009) found that the
failure to process faces in subjects suffering from developmental prosopagnosia was linked
to the lack of activation in bilateral OFA and FFA. Pitcher et al. (2007) found that repetitive
transcranial magnetic stimulation (rTMS) of right OFA disrupted accurate discrimination of
face parts; however, no effect of rTMS was observed in left OFA. Because the
categorization tasks used here relied on high-level face perception, rather than on low-level
judgments such as size or luminance, our finding of OFA and FFA is in line with previous
literature.

This conclusion is also consistent with previous studies also suggesting that different
diagnostic sensory information is critical for different face categorization tasks. Schyns et al.
(2002) and Smith et al. (2009) used a psychophysical subsampling technique to demonstrate
that gender categorization relied more on the eyes and mouth whereas identification relied
on almost the whole face. Independently, Mangini and Biederman (2004), using
classification images, concluded that different aspects of the face stimuli were critical for
different categorization tasks. It is likely that the differences between race and gender
categorization depends on both individual face components (e.g., eyes, nose, and mouth) and
configural information (e.g., eye separation, eye-nose distance, etc), but not on other socially
relevant information (e.g., gaze), which are thought to be processed in STS (e.g., Fairhall &
Ishai, 2007). Furthermore, Sigala & Logothetis (2002) used single neuron recording in
monkeys to measure the neural representations of task-specific diagnostic information in the
inferior temporal (IT) cortex following categorization learning (of line-drawings of faces).
After learning, neurons in IT became tuned to diagnostic aspects of the face (e.g., eye
height) in order to correctly categorize face stimuli.

It is possible that subjects used a purely component-based strategy for discrimination. For
example, one could fixate on the eyes during one categorization task and fixate on the
mouths during the other categorization task. If this strategy were employed, our MVPC
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results could be partially driven by low-level visual properties that differ at fixation (e.g.,
two elliptical contours vs. one). However, this is unlikely for two reasons. First, the
searchlight analysis failed to classify patterns in early visual cortex, where distinct foveal
stimulation would most likely lead to distinct patterns of responses. Second, regions that did
contain distinct multivoxel patterns (i.e., FFA, OFA) are regions known to have large
receptive fields, which should be relatively insensitive to small changes in the retinal
position of the stimulus. It is possible, however, that regions in IPS that support reliable
MVPC could be associated with different overt (or covert) states of attention to different
facial features, because IPS has been associated with different locations of covert attention
and saccades (e.g., Schluppeck et al., 2005).

While the ROI-based MVPC results reflect task-specific modulation of face-selective cortex
(FFA and OFA), the exploratory searchlight approach revealed several frontoparietal regions
(see Fig. 3) that contain task-specific patterns of activity. These signals may represent
sources of top-down control during task-set maintenance, in contrast to the effects of control
in target regions like FFA and OFA. The frontoparietal findings echo many studies
suggesting that both prefrontal cortex (PFC) and parietal cortex play a role in maintaining
behavioral goals, intentions, abstract task rules (e.g., Badre, 2008; Miller, 2000; Koechlin &
Summerfield, 2007). Converging evidence for this idea can be found in several recent
studies, including single neuron recording in monkeys (e.g., Asaad et al., 2000), human
fMRI with univariate analysis (e.g., Bengtsson et al., 2009; Braver et al., 2002; Chiu &
Yantis, 2009; Sohn et al., 2000), and MVPC decoding studies (e.g., Bode & Haynes, 2009;
Esterman et al., 2009; Haynes et al, 2007).

The searchlight analysis revealed several regions in IT cortex that partially overlap and
neighbor the localizer-defined face-selective regions (see Fig. 3). Several reasons for inexact
correspondence in these two results are possible. First, the precise anatomical location of
face-selective cortex is variable across subjects, and the Talairach transformation is not
optimal for combining data across subjects in this case; the searchlight analysis was
conducted separately in each subject and then combined. Second, and more importantly,
voxels that are revealed by the searchlight reflect visual analysis relevant to categorizations
with ambiguous stimuli (i.e., the main gender/race task); in contrast, the face localizer task
reflects basic level categorization and stimulus matching (see also Nestor et al., 2008).

In summary, we used MVPC to successfully decode specific face categorization tasks in a
subset of the cortical face network, revealing task-specific attentional modulation of face
representations. Within the core face network, right FFA and bilateral OFA contained
discriminable task-dependent signals. We also observed distinct task-specific signals in the
left dorsal frontoparietal network (i.e., MFG, IPS, SPL), which may play a role in abstract
goal maintenance. We postulate that these regions may be sources of the task-specific
control signals that evoked the distinct patterns observed in the ventral face-selective
cortical regions. These results provide further evidence for the importance of FFA and OFA
in face processing, and expand our knowledge of how top-down attention can flexibly bias
information processing to meet task goals.
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Figure 1.
a, Psychophysical procedure for obtaining the ambiguity threshold. The lower (black)
sequence illustrates gender categorization. Using a male-to-female sequence, morph levels 1
through 10 were judged ‘male’, and level 11 was judged ‘female’, at which point the
sequence was halted. Later in the session, during a female-to-male sequence (gray) with the
same morph set, morph levels 20 through 10 were judged ‘female’, and morph level 9 was
judged ‘male.’ A male/female ambiguous morph level for this pair of faces was defined as
the midpoint of the two judgments, or level 10 in this example. The same procedure was
applied to Asian/Caucasian categorization (gray), and in this example, level 11 was selected
as the ambiguous morph for the race categorization task. b, Face categorization task.
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Figure 2. Distributed cortical network for face perception
Data from a representative subject illustrate face-selective regions of interest, including
occipital face areas (OFA), fusiform face areas (FFA), and superior temporal sulcus (STS) in
Talairach space.
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Figure 3. Classification performance in the cortical face ROIs
Mean classification accuracy (%) for each ROI and for all face ROIs combined. Chance is
50%. OFA = occipital face area; FFA = fusiform face area; STS = superior temporal sulcus.
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Figure 4. Task-specific signals revealed by the MVPC searchlight
Exploratory whole-brain MVPC revealed regions exhibiting classification that was
significantly better than chance for the group (yellow/orange). These included a subset of
the frontoparietal attentional control network, including middle frontal gyrus (MFG), and
superior parietal lobule (SPL)/intraparietal sulcus (IPS), as well as several clusters in the
inferior temporal cortex. Some ventral temporal regions in fusiform gyrus in both
hemispheres are adjacent to the group locus of the functionally defined FFA, shown in
green). These ROIs are projected onto an averaged anatomical brain in Talairach space.
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