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Shotgun proteomics data analysis usually relies on data-
base search. However, commonly used protein sequence
databases do not contain information on protein variants
and thus prevent variant peptides and proteins from been
identified. Including known coding variations into protein
sequence databases could help alleviate this problem.
Based on our recently published human Cancer Proteome
Variation Database, we have created a protein sequence
database that comprehensively annotates thousands of
cancer-related coding variants collected in the Cancer
Proteome Variation Database as well as noncancer-spe-
cific ones from the Single Nucleotide Polymorphism Da-
tabase (dbSNP). Using this database, we then developed a
data analysis workflow for variant peptide identification in
shotgun proteomics. The high risk of false positive variant
identifications was addressed by a modified false discov-
ery rate estimation method. Analysis of colorectal cancer
cell lines SW480, RKO, and HCT-116 revealed a total of 81
peptides that contain either noncancer-specific or can-
cer-related variations. Twenty-three out of 26 variants
randomly selected from the 81 were confirmed by
genomic sequencing. We further applied the workflow on
data sets from three individual colorectal tumor speci-
mens. A total of 204 distinct variant peptides were de-
tected, and five carried known cancer-related mutations.
Each individual showed a specific pattern of cancer-re-
lated mutations, suggesting potential use of this type of
information for personalized medicine. Compatibility of
the workflow has been tested with four popular database
search engines including Sequest, Mascot, X!Tandem,
and MyriMatch. In summary, we have developed a
workflow that effectively uses existing genomic data
to enable variant peptide detection in proteomics.
Molecular & Cellular Proteomics 10: 10.1074/mcp.
M110.006536, 1–11, 2011.

DNA sequence variation is associated with diseases and
differential drug response. As a paradigmatic example, can-
cers are diseases of clonal proliferations caused by mutations
in oncogenes and tumor suppressor genes (1). After several
decades of searching through traditional biology approaches,
many mutant genes have been causally implicated in onco-
genesis (2). Facilitated by the new genomic techniques such
as SNP (single nucleotide polymorphism) arrays and deep-
sequencing, the identification of cancer genes has made
enormous progress over the past several years (3–7). The
genomic abnormalities of cancer are expressed through ab-
errant proteins and proteomes and their altered functions.
Although proteins reflecting the genomic changes in cancer
have the potential to become clinically meaningful biomark-
ers, their discovery and validation has proven to be challeng-
ing. As a result, few biomarker candidates have translated into
clinical use.

Over the past decade, mass spectrometry (MS)-based
shotgun proteomics has emerged as a high-throughput, un-
biased method for the identification of proteins in complex
samples (8, 9). Its application to tumor specimens holds great
potential in identifying mutant proteins in human cancers.
However, because shotgun proteomics data analysis usu-
ally relies on database search and because commonly em-
ployed protein sequence databases do not contain protein
variation information, the application of shotgun proteomics
to the detection of protein sequence variants remains a big
challenge.

Several research groups have made valuable efforts on
enabling the identification of variant peptides based on the
exhaustive search of all possible sequence variants. A mod-
ified version of Sequest provides automated search of human
hemoglobin gene variants through dynamically generating all
possible single-nucleotide variations and then constructing a
database that translates these sequences to peptides (10).
Roth et al. (11) developed a human protein database tailored
for the “top-down” MS approach by combinatorial consider-
ation of protein variability in a search. Similarly, the error-
tolerant search in Mascot (12) and the refinement search in
X!Tandem (13) allow exhaustive test of all amino acid substi-
tutions that can arise from single-base nucleotide substitu-
tions in each protein. Because of the greatly expanded search
space, it is difficult to apply meaningful measure of statistical
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significance for the variant identifications and the results re-
quire careful interpretation (12).

An effective approach to limit the search space of protein
variants is to consider only those derived from known coding
SNPs. A SNP annotation method was presented by Bunger et
al. in which MS/MS spectra were searched against reference
protein databases and a separate SNP database created from
peptides from the National Center for Biotechnology Informa-
tion (NCBI) dbSNP database (14). Schandorff et al. estab-
lished the MSIPI protein sequence database through elongat-
ing the original International Protein Index sequences with
coding-SNPs from dbSNP, sequence conflicts, and N-termi-
nal peptides (15). More recently, a web-based platform Sys-
PIMP was created for identifying human disease-related mu-
tant sequences based on the X!Tandem search of shotgun
proteomics data (16). SysPIMP collects human disease-re-
lated mutant sequences from the Online Mendelian Inherit-
ance in Man(17), Protein Mutant Database (18), and SwissProt
database (19).

Despite these exciting developments, the problem of ap-
plying shotgun proteomics to the identification of protein vari-
ants in human cancers has not been addressed adequately.
First, mutations, especially cancer-specific ones, are not spe-
cifically considered in existing approaches. NCBI’s dbSNP
database provides a general catalog of genome variation to
address large-scale sampling designs required by association
studies. It has been an invaluable resource for applying
genetic approaches to understanding the etiology of differ-
ent cancers (20). However, cancer somatic mutations are
collected in the Catalogue of Somatic Mutations in Can-
cer (http://www.sanger.ac.uk/genetics/CGP/cosmic) (21) and
other cancer specific databases (22) rather than dbSNP. As a
result, most cancer-specific mutations have been omitted
from previous studies. Recently, we developed a human Can-
cer Proteome Variation database (CanProVar1, http://bioinfo.
vanderbilt.edu/canprovar/) (23) that comprehensively inte-
grates proteome variation data from a variety of cancer
specific variation data sources including HPI (24, 25), COS-
MIC, OMIM, and large-scale mutational profiling studies on
cancer genes and cancer genomes (6, 7). Confirmed coding
variations in NCBI’s dbSNP are also included in CanProVar.
This cancer-centric proteome variation repository provides an
opportunity to create a protein sequence database that can
facilitate protein variant detection in shotgun proteomics anal-
ysis of human cancer samples.

Second, although limiting protein variants to known coding
SNPs and mutations could effectively reduce the search
space as compared with the exhaustive test of all possible
amino acid substitutions, this method still significantly in-
creases the number of entries in a protein sequence data-
base, which in turn increases the risk of false positive identi-

fications. Many previous reports failed to address this critical
problem (14). In the study by Bunger et al. (14), a peptide is
assigned as an “alternative allele” SNP if the search score for
its match against the dbSNP is at least 15% higher than the
score for corresponding reference hit. The threshold of 15%
was chosen based on manual examination to provide the best
balance between false positives and false negatives (14). Al-
though it was proven successful in this study, selection of the
score threshold requires manual examination by experienced
researchers and cannot be generalized and automated. Other
problems introduced by adding variations to sequence data-
bases include (1) efficient storage of variation information in
the database, (2) compatibility of the database with different
search engines, and (3) interpretability of reports that include
both variant and wild-type peptides.

In this paper, we present an integrated workflow to ad-
dress the above problems. First, we created a variation-
containing protein sequence database based on the
CanProVar database. Next, we developed a workflow for
identifying both wild-type and variant peptides simultane-
ously from shotgun proteomics data. We used data sets
from colorectal cancer cell lines and human patient samples
to demonstrate our workflow. Identified variants were vali-
dated through genomic sequencing. Moreover, we tested the
compatibility of the workflow with popular search engines
including MyriMatch(26), Sequest(27), Mascot(28), and X!Tan-
dem(13). A postprocessing tool was also developed to gen-
erate easily interpretable reports based on the output from
different search engines. Finally, we benchmarked our work-
flow against the exhaustive search-based methods.

EXPERIMENTAL PROCEDURES

Proteomics Data Sets—The human proteomics datasets from
colorectal adenocarcinoma cell lines (RKO, SW480, and HCT-116)
and three colorectal tumor specimens were generated in the Ayers
Institute at Vanderbilt. The cell lines were obtained from American
Type Culture Collection (ATCC, Manassas, VA) and grown and
harvested within 6 months of date of purchase, or grown from
frozen stocks that had been made within 6 months of original
purchase. They were grown in 10% fetal bovine serum and peni-
cillin and streptomycin supplemented medium at 37 °C with 5%
CO2. SW480 was grown in RPMI 1640 medium, whereas HCT-116
and RKO were grown in McCoy’s5A medium. Cells were grown to
80% confluency, the growth medium was aspirated, cells were
washed once in 1� phosphate-buffered saline and collected in 1�
phosphate-buffered saline. Cells were centrifuged at 300 � g for 5
min and supernatant was discarded. Cell pellets were stored at
�80 °C until cell lysis could be carried out. Biological replicates
were harvested �1 week apart from the identical cell culture. These
replicates were processed separately and independently through
the complete analysis procedure. Colorectal tumor specimens were
obtained from the Vanderbilt colorectal cancer repository under an
IRB-approved protocol that included informed consent from the
patients. We obtained three Stage III sigmoid carcinoma specimens
based on availability of the biological material and confirmed for the
presence of more than 70% tumor cells by a certified pathologist (Dr
M.K. Washington). A total of 60 �m thickness for each of the frozen
specimens was sectioned and collected into microcentrifuge tubes.

1 The abbreviations used are: CanProVar, the human Cancer Pro-
teome Variation Database; SNP, single nucleotide polymorphism.
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Mass spectrometry methods have been described in detail (29, 30).
In summary, proteins from cell line or tissue samples were reduced,
alkylated with iodoacetamide, and digested with trypsin. The resulting
peptides were separated on isoelectric focusing strips that were cut
into 15 (for cell lines) or 20 (for human tissues) separate fractions.
Each of these fractions was analyzed by a second separation on a
liquid chromatography column, followed by MS/MS analysis on an
LTQ-Orbitrap. Binary spectral data present in the raw files were
converted to the mzML format using the msConvert tool in the Pro-
teoWizard library (v2.0.1757, 01/27/2010) (31).

Variations and Protein Reference Database—Protein variation data
were downloaded from the CanProVar database on 9/26/2009, which
included 41,541 nonsynonymous SNPs in 30,322 proteins and 8570
cancer-related variations in 2921 proteins (23). A corresponding nor-
mal protein database was downloaded from Ensembl (human, v53) at
ftp://ftp.ensembl.org/pub/current_fasta/homo_sapiens/pep/.

Search Parameters—We tested our workflow against four popular
database search engines, including MyriMatch(26) (v1.5.6), Se-
quest(27) (TurboSEQUEST v27), Mascot(28) (v2.2.04), and X!Tan-
dem(13) (X!TANDEM TORNADO v2008.02.01.3). MyriMatch was used
as the primary search engine in this study. All cysteines were as-
sumed to be carbamidomethylated, and methionines were allowed to
be oxidized. A precursor error of up to 0.007 m/z was permitted,
whereas fragment ions were required to fall within 0.5 m/z of their
expected locations. Ambiguous identifications that mapped to three
or more peptide sequences with equal scores were excluded. One
missed cleavage was permitted and no nonspecific cleavage was
allowed. The configurations for all search engines are provided in
supplemental File S1.

Genomic Sequence Verification—Genomic DNA from cell lines
RKO, SW480, and HCT-116 was isolated using a DNeasy® kit (Qia-
gen). After identification of putative variant peptides by shotgun pro-
teomics, the corresponding exons encoding the protein sequences
were amplified using a HotStarTaq® Master Mix Kit (Qiagen). The
following polymerase chain reaction (PCR) conditions were used:
96 °C � 15 min, followed by 40 cycles of 95 °C � 30 s, 60 °C � 30 s,
72 °C � 60 s, and a final extension of 72 °C � 10 min. A list of all the
primers used for the PCR amplifications is provided in sup-
plemental File S2. Excess primers and nucleotides were digested
using ExoSAP (USB). Sequencing reactions were performed by using
Applied Biosystems Version 3.1 Big Dye Terminator chemistry and
then analyzed on an Applied Biosystems 3730XL Sequencer. All
sequence chromatograms were read in both forward (F) and reverse
(R) directions.

RESULTS

Setup of the Workflow—As illustrated in Fig. 1, our workflow
for identifying wild-type and variant peptides based on shot-
gun proteomics data includes three steps: database creation,
peptide identification, and post-processing.

The variation-containing protein sequence database was
created based on the Ensembl protein database (human, v53)
and the CanProVar database (23). Missense variations, non-
sense variations and single amino acid deletions and inser-
tions were included in the database. After the naming con-
vention in dbSNP, each cancer-related variation in CanProVar
was given an identifier prefixed with “cs.” For each single
amino acid alteration, the sequence covering the enclosing
tryptic peptide and the two flanking tryptic peptides was
taken as an independent entry in the FASTA format. Peptide
entries with less than 4 residues were excluded because they

cannot be confidently identified in shotgun proteomics. Add-
ing the flanking peptides allows for the identification of
peptides with missed enzyme cleavage (15). This database
construction approach shares the same space-saving ad-
vantage as appending sequence variants to the original
protein sequence, which was adopted in the study of
Schandorff et al. (15). We chose to keep these peptides as
independent entries because related variation information
can be easily recorded in the sequence header, which in-
cludes corresponding protein ID, the start and end positions
of the peptide in the protein, and the identifier of the varia-
tion in database dbSNP or CanProVar. These new peptide
entries resulted in an increase of about 3.4% in the tryptic
peptide database size. Our protein sequence database com-
prised the complete Ensembl protein database (v53, 47,509
entries) and an additional 97,637 peptide entries with variations
from 29,873 Ensembl proteins. Among these, 10,254 peptide
entries carried cancer-related variations. We named this protein
sequence database MS-CanProVar. Reverse sequences were
appended as decoy sequences for false discovery rate (FDR)
estimation (32). MS-CanProVar can be downloaded at http://
bioinfo.vanderbilt.edu/canprovar.

After creation of the database, shotgun proteomics data
from a cancer sample can be searched against the database
using a database search engine (Fig. 1A). The next important
step is the confidence evaluation of the peptide identifica-
tions, i.e. FDR estimation. It has been suggested that a higher
risk of false positives could be associated with variant peptide
identifications as compared with that for wild-type ones (14).
In order to systematically investigate this problem, we
searched the SW480 dataset against MS-CanProVar with
MyriMatch and used the standard FDR estimation method
(32) with no special treatment to variant identifications. Pep-
tides with an FDR �0.05 were separated into a wild-type
group and a variant group, and the score distributions of
these two groups were plotted (Fig. 2A). The score distribution
for the variant group showed a significant shift toward the
low-score end. Similar results were observed in data from
other cancer cell lines (data not shown). These results suggest
that although the two groups of peptides were identified using
the same FDR cutoff, the variant group does have a higher risk
of false positive identifications. Follow-up genomic analysis
further confirmed this concern. As shown in Table I, among
the 11 putative variant peptides randomly chosen with
FDR � 0.1, only six were confirmed with genomic sequenc-
ing. With a threshold of FDR � 0.05, the confirmation rate
was six of nine.

For FDR estimation, all forward sequences are considered
as expressed and present. Nevertheless, for a specific sam-
ple, only some of the forward sequences are expressed.
Moreover, the proportion of expressed sequences among all
variant sequences in the database is expected to be signifi-
cantly lower than that among all wild-type sequences, i.e.
variant sequences are expected to have a lower prior proba-
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bility of being present in a specific sample. However, the FDR
estimation is for all matches above the selected score thresh-
old without discriminating wild-type from variant sequences.
Therefore, the combined FDR estimation will lead to a higher
false negative rate for wild-type peptide identifications and a
higher false positive rate for variant peptide identifications.
This might not be a big problem for wild-type identifications
because variant sequences only comprise a small fraction of
the database. Nevertheless, when we consider only variant
peptide identifications, the real FDR for the subgroup could
be much higher than the combined estimation.

To address this problem, we first estimated the FDRs for
wildtype and variant peptides separately. Specifically, only
variant peptides and corresponding decoys were considered
for the FDR estimation of variant peptide identifications. With
this naïve separate FDR estimation, more stringent score
cutoffs were set for the variant peptides than for the wild-type
ones in most of the experimental runs, and the risk of high
false positives for the variant group was reduced according to
the score distribution plot (Fig. 2B). However, in some exper-

imental runs, a lower search score cutoff was set for the
variant peptides than that for the wild-type ones. Indeed, for
variant identifications, we found that the search score cutoff
corresponding to a preselected FDR level (e.g. 0.05) varied
dramatically across the experiment runs, a phenomenon we
did not see in the wildtype searches. This may be because of
the small number of matches found in the variant peptides
and variant decoys. In the target-decoy search strategy for
FDR estimation, one can estimate the total number of false
positives that meet a specific score threshold by doubling the
number of selected decoy matches. This represents the num-
ber of observed incorrect decoy matches, combined with the
hidden incorrect target matches. When the number of total
matches is very low for a given subset of peptides, the esti-
mate of false positives becomes highly variable. As a result,
no improvement on the genomic confirmation rate was ob-
served (Table I).

To achieve a more robust estimation of the total number of
false positives, we proposed to combine information based
on decoys from both variant and wild-type sequences and

FIG. 1. Workflow for identifying var-
iant peptides from shotgun proteom-
ics data. A, MS/MS data in one of the
standard formats is searched using a se-
lected search engine against an inte-
grated database including both a regular
protein sequence database and the MS-
CanProVar. B, For each pepXML file
generated from an experimental run, the
false discovery rates (FDR) for wild-type
and variant identifications are estimated
separately. C, Both wild-type and variant
peptides are identified from MS/MS da-
taset based on a selected FDR cutoff
and reported.
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calculate FDR for variant identifications based on the follow-
ing formula:

FDRv �

2 � �R �
Rv

�

R��
�R �

Rv
�

R�� � Fv

(Eq. 1)

Here, R and Fv are the numbers of reverse matches and
forward variant matches above the score threshold, respec-
tively. R� and R� are the numbers of reverse matches and

variant reverse matches falling below the score threshold,
respectively. The Rv

�/R� ratio provides an estimate of the
proportion of variant sequences in the database.

In this formula, the number of false positives in variant
identifications is estimated by the total number of false pos-
itives and the proportion of variant sequences in the data-
base. Our assumption is that there is no difference between
the decoys from wild-type sequences and variant sequences
for FDR estimation. This formula may provide a more accurate
estimation of the number of false positives for variant peptide
identifications because the estimate is based on data that are
less subject to variation.

The score distribution plot showed that the new FDR esti-
mation could significantly improve the confidence of variant
peptide identifications (Fig. 2C). Genomic sequencing verifi-
cation for the detected variations also showed that the new
FDR estimation method significantly outperformed both com-
bined and naïve separate FDR estimation. As shown in Table
I, variant peptide identification based on the new method
achieved a confirmation rate of six of seven, an improvement
as compared with the rate of six of nine acquired based on
combined or naïve separate FDR estimations. Moreover, al-
though the seventh mutation ABCF1N198D was not con-
firmed at the genomic level, this change may actually happen
after translation through the deamidation of the asparagine
residue. On the basis of these verification results, the new
refined FDR estimation approach for variant peptide identifi-
cations was employed in our workflow (Fig. 1B). In the last
step of the workflow, both wild-type and variant peptides are
identified based on the refined separate FDR estimation and
an easily interpretable report is generated. (Fig. 1C).

Application on Human Cancer Data Sets—With the proce-
dure described above, we performed database search and
peptide identification for three data sets from colorectal can-
cer cell lines RKO, HCT-116, and SW480, respectively. Myri-
Match was used as the search engine, and the FDR threshold
was set to 0.05 for both wild-type and variant peptides. Thus,
6284, 9145, and 20,023 unique peptides were identified in
SW480, RKO, and HCT-116 samples respectively, which
were mapped to 1148, 1784, and 2927 indiscernible protein
groups using IDPicker (33, 34). The number of variant pep-
tides was 20, 27, and 34 for SW480, RKO, and HC-116
respectively (supplemental Files S3 and S4), corresponding to
0.3%, 0.3%, and 0.2% of all peptides identified in each cell
line.

We randomly selected 10 and nine putative variant pep-
tides from the RKO and HCT-116 data sets for genomic
sequencing verification and the confirmation rate were 8 of
10 and nine of nine, respectively. Combining the genomic
sequencing result for SW480, the overall confirmation rate
for all three cell lines was 88% (23/26). A complete list of the
variant peptides and associated information can be found in
supplemental File S3. In the HCT-116 data set, we detected
a variation G13D in KRAS (Fig. 3). KRAS was one of the first

FIG. 2. Search score distributions for the variant (red) and wild-
type (green) peptides identified with FDR < 0. 05 in the SW480
data set. A, Under regular FDR estimation, an apparent shift to the
low-score end was observed in the distribution for variant identifica-
tions as compared with that for the wild-type identifications. B, Naïve
separate estimation reduced the bias to a certain degree. C,The new
refined separate FDR estimation approach proposed in this study
further improved the quality of variant peptide identifications.
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genes identified as a transforming gene (oncogene) capable of
driving tumor formation in experimental model systems. The
G13D variation is not only a known mutation in the HCT-116 cell
line but has also been found in 21% of 335 colorectal tumors in
a large-scale mutational profiling study (35).

In addition to the cancer cell lines, we also applied the
procedure on three data sets from clinical colorectal tumor
specimens. A total of 37,827 unique peptides were identified
in these data sets, which were mapped to 5581 indiscernible
protein groups using IDPicker. The number of distinct variant

FIG. 3. Sequence validation of the KRASG13D identified in the HCT-116 data set. A tandem MS spectrum with m/z 507.304 was identified
as peptide LVVVGAGDVGK. The peaks from y4 to y9 ions and b8 to b11 ions indicate a �58 Da mass shift corresponding to the substitution
of glycine with aspartic acid. The inset on the top right corner shows genomic sequencing of PCR product from region surrounding the mutation
with corresponding predicted amino-acids. Sequencing revealed a heterozygous point mutation. Consistently, the wildtype peptide LVVVGAG-
GVGK was also detected in the HCT-116 data set.

TABLE I
Genomic sequencing verification for the variant peptides identified in SW480. NS_FDR and RS_FDR, respectively, refer to naïve separate FDR
estimation and the refined separate FDR estimation proposed in this study. Peptides with FDRs higher than the given FDR cutoffs are marked

with dashes. Stars and cross marks represent successful or failed genomic sequencing verification, respectively.

No. Peptide Gene Variation FDR .1 FDR .05 NS_FDR .05 RS_FDR .05

1 LAAETGEGEGEPLSR DIDO1 T1568A * * * *
2 DPAEPMSPGEATQSGARPADR MYBBP1A Q8E * * * *
3 ASSSILINESEPTTNIQIR NSFL1C D179N X X X -
4 AGTDSPVSCASITEER CDCA2 V717I * * * *
5 GTETFEPEDK CD3EAP K259T * * * *
6 LDSTDFTSTIK TFRC G142S * * * *
7 FAALDDEEEDKEEEIIK ABCF1 N198D X X X X
8 ELFQTPGPSEESMSDEK MKI67 T760S X - - -
9 SDSELNNEVAAR CYBRD1 S266N * * * *
10 QLVNMCMNPDPEK NEK7 I275M X X X -
11 EILDEAYAMAGVGSPYVSR ERBB2 V773A X - - -
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peptides detected in these samples was 204 (supplemen-
tal Files S5 and S6), corresponding to 0.5% of all identified
peptides. As shown in Fig. 4A, 101, 78, and 139 variant
peptides were detected in each of the three patients, respec-
tively. Five peptides carried known cancer-related mutations,
and 4 of them were found in more than one patient (Fig. 4B).
The mutation TP53P309S was found in two colorectal cancer
patients in this study. Mutations in TP53 are the most com-
monly observed mutations in any cancer-associated genes
with �50% of all human cancers harboring inactivating mu-
tations in this tumor suppressor gene (36). The majority of
TP53 mutations cause increased half-life of a functionally
inactive p53 protein leading to loss of cell cycle control,
resistance to programmed cell death (apoptosis) and the ca-
pacity of infinite growth (immortality) in cells harboring such
mutations. The mutation TP53P309S has been reported in the
SW480 cell line. Inhibiting mutant TP53(R273H/P309S) ex-
pression in SW480 reduces cell proliferation, in vitro and in
vivo tumorigenicity, and resistance to anticancer drugs (37,
38). The mutation SMARCA4W764R was also observed in two
patients. Although not reported in colorectal cancer previ-
ously, this mutation has been reported in lung cancer (39). A
variety of other mutations within SMARCA4 (also named
BRG1) were found in several cell lines derived from carcino-
mas of the breast, lung, pancreas, and prostate etc., and
SMARCA4 has been suggested as a drug target for cancer
treatment (40). As a subunit of mammalian SWI/SNF chroma-
tin remodeling complexes, SMARCA4 is a critical regulator of
TP53 and has been found to be necessary for the proliferation
of malignant cells (41).

Test for Compatibility with Multiple Search Engines—To
ensure compatibility between our workflow and popular pro-
teomics search engines, we tested the procedure with Se-
quest, Mascot, X!Tandem as well as MyriMatch. The output
files of these search engines are written in the pepXML format
or can be transferred into the pepXML format via converters.
The variation information for each variant peptide is included
the pepXML files. Currently, there is no specific software
available to extract this information. Therefore we created a

tool CanProVar-Parser that can be used to estimate FDR,
perform identification for both variant and wildtype peptides,
and parse peptide information for reporting. Peptide-related
information in a report includes protein mapping, variations,
spectral count, FDR value, match rank and spectrum source.
The CanProVar-Parser is written in Perl and can be down-
loaded from http://bioinfo.vanderbilt.edu/canprovar. Applying
our procedure on the RKO data set identified 27, 22, 29, and
29 distinct variant peptides using MyriMatch, Sequest, Mas-
cot, and X!Tandem, respectively. Twenty-five variant peptides
were detected by two or more search engines (Fig. 5). It is not
unusual to get moderately overlapping results from different
search engines, and integrating results from multiple search
engines has been proposed as a way to improve peptide
identification (42–44). The ability to use our procedure with
different search engines makes it possible to perform this type
of integration.

Comparison with Exhaustive Search-based Methods—Re-
lying on exhaustive search for all amino acid substitutions that
can arise from single base nucleotide substitutions in each
protein, the error tolerant search in Mascot (12) and the re-
finement search in X!Tandem (13) allow the detection of var-
iant peptides without using existing information on genomic
sequence variations. To benchmark our method, we per-
formed analysis on the RKO data set using these exhaustive
search-based methods and the Ensembl protein database.
We controlled the FDR at a 5% level for the wild-type peptide
identifications. For variant peptide identifications, we followed
the suggestion from Mascot (http://www.matrixscience.com/
help/error_tolerant_help.html): (a) they must have scores of at
least the identity threshold for wild-type identifications; and (b)
they must have scores in excess of the highest scoring match
to the wild-type sequences. Accordingly, the error-tolerant

FIG. 4. Variant peptides and known cancer-related mutations
identified from clinical colorectal tumor specimens from three
patients. A, Venn diagram shows the number of identified unique
variant peptides and their overlaps among three patients. B, Five
known cancer-related mutations were detected in patients, four of
which were observed in two patients.

FIG. 5. Overlap of variant peptides identified by different search
engines in the RKO data set.
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search in Mascot identified 10,344 wildtype peptides and
1298 variant peptides, whereas the refinement search in
X!Tandem identified 9705 wildtype peptides and 595 variant
peptides.

First, we compared the variant peptides identified by ex-
haustive search using the two search engines and found very
limited overlap (Fig. 6). Specifically, 95 and 90% of the iden-
tifications were unique to Mascot and X!Tandem, respectively.
In contrast, the overlap between the two search engines using
our method was much higher, with only 27% nonoverlapping
identifications for both search engines. The extremely small
percentage of overlap between exhaustive search results
from the two search engines raises a concern of potentially
high false positive rates (i.e. low specificity). Nevertheless,
exhaustive search-based methods identified many more var-
iant peptides than our method even if we only considered
common identifications from the two search engines, sug-
gesting a possibly higher sensitivity of these methods.

To gain some insight into the sensitivity of the exhaustive
search-based methods, we compared their variant identifica-
tions against the eight variant peptides detected by Myri-
Match in the RKO cell line and confirmed by genomic se-
quencing (supplemental Files S3). Surprisingly, despite the
large numbers of variant peptide identifications, for each
search engine, only three out of the eight peptides were
identified (Fig. 6). In contrast, with our method, seven out of
the eight were identified by both Mascot and X!Tandem.
Although a conclusion cannot be made based on the limited
number of true positives, these results do not provide evi-
dence for a superior sensitivity of the exhaustive search-
based methods.

DISCUSSION

We have created a protein variation-containing database
MS-CanProVar and a workflow for the simultaneous identifi-
cation of wild-type and variant peptides based on the data-
base. A novel FDR estimation method was introduced in the
workflow to ensure high reliability of the variant identifications.

Hundreds of variant peptides were identified from three colo-
rectal cancer cell lines and three tumor specimens used in this
study. Most of the variants were derived from the dbSNP
database and are likely to represent polymorphisms. Whether
these polymorphisms are associated with cancer will require
large-scale association studies. Some known cancer-related
mutations have been identified, including those associated
with cell proliferation, tumorigenesis, and drug resistance.

A major concern on the use of variation-containing data-
bases for shotgun proteomics data searching is the high risk
of false positive identifications (14). In this study, we system-
atically investigated this risk by comparing the search score
distributions of wild-type and variant peptide identifications and
proposed a modified FDR estimation method to automatically
handle this issue. By contrast, existing studies require manual
selection of a more stringent threshold for variant peptide iden-
tifications (14). It is also worth mentioning that in our workflow,
although FDR estimations were carried out separately for vari-
ant and wild-type peptide identifications, the database search
was done at the same time, similar to Schandorff et al. (15). In
Bunger et al. study (14), separate searches were performed for
the reference and variant databases. When a variant database is
searched separately, a best match to a variant peptide may be
because of the absence of the competition from the truly pre-
senting wild-type protein.

Genomic sequencing was used to provide an objective
evaluation of the reliability of the peptide variants identified
using our workflow and confirmation rates of around 90%
were achieved. Besides false discoveries generated by the
workflow, inconsistency between proteomics identifications
and genomic sequencing results can also be explained by
mass shifts because of various peptide modifications (14). For
example, the alteration ABCF1N198D detected in the SW480
data set might be because of deamidation as this alteration
was not confirmed by genomic sequencing. Oxidation (�16),
formylation (�28), and acetylation (�42) are other common
modifications on peptides (14). Discerning whether a mass
shift has resulted from a sequence variation or post-transla-
tional modification may require sequencing for confirmation.
For example, although the mass shift in MYBBP1AQ8E could
be explained by the deamidation of the glutamine residue, this
alteration was confirmed at the genomic level (Table I).

As pointed out by Schandorff et al. (15), searching against
variation-containing protein databases should provide a new
dimension to clinical proteomics projects. In cancer care,
detection of expressed mutant peptides and proteins of indi-
vidual patients by proteomics techniques may have an impor-
tant impact on the development of personalized medicine.
Although only five known cancer-related mutations were de-
tected in the tumor specimens from three colorectal cancer
patients, each patient showed a specific mutation pattern
(Fig. 4B). These mutation patterns provide both germline and
somatic mutation information at a proteome level that could
potentially facilitate personalized cancer care.

FIG. 6. Comparison between exhaustive search-based methods
and MS-CanProVar-based methods. A, Overlap of variant peptides
identified by Mascot and X!Tandem based on exhaustive search.
B, Overlap of variant peptides identified by Mascot and X!Tandem
based on MS-CanProVar. Bold numbers represent the count of var-
iant peptides and corresponding percentages in each section of the
Venn Diagrams. Numbers in the parentheses represent the count of
overlap with the 8 confirmed variant peptides in each section of the
Venn Diagrams.

Identification of Variant Peptides in Human Cancers

10.1074/mcp.M110.006536–8 Molecular & Cellular Proteomics 10.5

http://www.mcponline.org/cgi/content/full/M110.006536/DC1


As compared with exhaustive search-based methods, lim-
iting protein variants to those derived from known coding
SNPs and mutations could effectively reduce the search
space and thus lead to more reliable identifications. However,
this advantage also simultaneously imposes a major limitation
of dependence on known genomic sequence variations. The
number of known cancer-related mutations detected in this
study was moderate. Although this can be partially explained
by the potentially low stability of mutated proteins, an obvious
explanation is the limited database coverage. Cancer-related
mutations in the current CanProVar database distribute highly
unevenly in human proteins. Most proteins have very few
cancer-related mutations whereas some well-known cancer
genes have reported mutations in many positions in their
protein sequences, such as TP53, CTNNB1, and PIK3CA.
More than a hundred different cancer-related mutations have
been reported in these proteins. This bias might be explained
by the extreme instability of these important cancer genes,
but it may also reflect lack of study of other genes. Ongoing
large-scale cancer genome projects, such as the Cancer Ge-
nome Project of the Sanger Institute, The Cancer Genome
Atlas project of the National Cancer Institute, and the National
Human Genome Research Institute, will rapidly expand our
knowledge on mutations in human cancers (21, 39). We will
continuously incorporate results generated from these studies
into CanProVar and MS-CanProVar to improve the sensitivity
of our analysis workflow.

Although exhaustive search-based methods identified
many more variant peptides, evaluation in this study based
on limited true positives did not provide evidence for a
superior sensitivity of these methods over our workflow.
Recently, a sequence tagging-based “de novo” algorithm
has been proposed as an attractive alternative for variant
peptide identification (45). It will be interesting to perform a
thorough comparison of these complementary approaches
in order to highlight their distinct values. Moreover, only
missense variations, nonsense variations and single amino
acid deletions and insertions were included in MS-CanPro-
Var. Other protein sequence variations such as splice vari-
ants and post-translational modifications are also critical in
cancer studies and have been detected by shotgun pro-
teomics (46, 47). Future work is required to improve our
database and workflow for the inclusion of existing knowl-
edge on these variations.

In summary, we have developed a workflow for variant
peptide detection in shotgun proteomics studies. The work-
flow achieves a good balance between reliable variation de-
tection and overall sensitivity of peptide identification. Com-
patibility of the workflow with popular database search
engines has been extensively tested. Reliability of the identi-
fications has been confirmed by genomic sequencing. Apply-
ing this workflow on human cancer proteomics studies should
provide novel insight into cancer predisposition and potential
personalized therapy.

Acknowledgments—We would like to thank Dr. Surendra Dasari
and Mr. Mathew C. Chambers for their assistance in the preparation
of the supplementary files.

* This work was conducted, in part, using the resources of the
Advanced Computing Center for Research and Education at Van-
derbilt University, Nashville, TN. This work was supported by the
National Institutes of Health (NIH)/National Cancer Institute (NCI)
through grant R01 CA126218, the NIH/National Institute of General
Medical Sciences (NIGMS) through grant R01 GM088822, the NCI
Clinical Proteomic Technologies Assessment for Cancer (CPTAC)
program through 1U24CA126479, the NIH/National Center for Re-
search Resources (NCRR) Clinical and Translational Science
Awards (CTSA) program through UL1 RR024975, and a generous
gift from the Jim Ayers Foundation. WP acknowledges funding from
the NIH/NCI (VICC Cancer Center Core Grant (CA68485)) and an
anonymous donor. JL acknowledges funding from the National
Natural Science Foundation of China (Grant No. 31000582).

□S This article contains supplemental Files S1 to S6.
§§ Current address: Department of Bioinformatics and Biostatis-

tics, School of Life Science and Biotechnology, Shanghai Jiao Tong
University, Shanghai 200240, China.

‡‡ To whom correspondence should be addressed: Department of
Biomedical Informatics, Vanderbilt University School of Medicine,
2525 West End Ave., Suite 800, Nashville, TN 37232. E-mail:
bing.zhang@vanderbilt.edu.

REFERENCES

1. Vogelstein, B., and Kinzler, K. W. (2004) Cancer genes and the pathways
they control. Nat. Med. 10, 789–799

2. Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R.,
Rahman, N., and Stratton, M. R. (2004) A census of human cancer genes.
Nat. Rev. Cancer 4, 177–183

3. Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjöblom, T., Leary, R. J.,
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