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Oxidative stress has been implicated in aging and many
human diseases, notably neurodegenerative disorders
and various cancers. The reactive oxygen species that are
generated by aerobic metabolism and environmental
stressors can chemically modify proteins and alter their
biological functions. Cells possess protein repair path-
ways to rescue oxidized proteins and restore their func-
tions. If these repair processes fail, oxidized proteins may
become cytotoxic. Cell homeostasis and viability are
therefore dependent on the removal of oxidatively dam-
aged proteins. Numerous studies have demonstrated that
the proteasome plays a pivotal role in the selective rec-
ognition and degradation of oxidized proteins. Despite
extensive research, oxidative stress-triggered regulation
of proteasome complexes remains poorly defined. Better
understanding of molecular mechanisms underlying pro-
teasome function in response to oxidative stress will pro-
vide a basis for developing new strategies aimed at im-
proving cell viability and recovery as well as attenuating
oxidation-induced cytotoxicity associated with aging and
disease. Here we highlight recent advances in the under-
standing of proteasome structure and function during
oxidative stress and describe how cells cope with oxi-
dative stress through proteasome-dependent degrada-
tion pathways. Molecular & Cellular Proteomics 10:
10.1074/mcp.R110.006924, 1–11, 2011.

Reactive oxygen species (ROS)1 are routinely produced as
a byproduct of aerobic metabolism and oxidative phosphor-
ylation (1–4). Exposure to various environmental stressors
(e.g. ionizing and nonionizing radiation, or certain chemical
agents) can also result in the production of ROS (5–8). In
addition, ROS production and accumulation can be generated
during disease pathogenesis (e.g. Abeta-mediated produc-
tion of ROS in Alzheimer’s disease (9)), or even the natural
aging process (10, 11) (Fig. 1). Unneutralized ROS cause
oxidative damage to lipids, proteins, and DNA, thus leading to
aberrant molecular activities (12–14). Protein oxidation is par-
ticularly detrimental as the resulting conformational changes

to protein structures can render damaged proteins inactive or
lead to functional abnormalities.

To maintain cell viability and normal homeostasis, aerobic
organisms have evolved several defense mechanisms for re-
ducing the deleterious effects of oxidative stress, including
the production of antioxidants (e.g. glutathione, vitamins A, C,
and E, and flavenoids) and enzymatic scavengers of ROS (e.g.
superoxide dismutases (SOD), catalase, and glutathione per-
oxide). Cells also possess oxidation-reduction (redox)-depen-
dent protein repair pathways, which are triggered by oxidation
of redox proteins (15, 16). Redox signaling pathways activate
kinase cascades and gene transcription aimed at rescuing
oxidized proteins and restoring their functions (15–18). If cel-
lular defense and repair processes fail, oxidatively damaged
proteins can undergo direct chemical fragmentation, or form
large aggregates (19, 20). Although the pathogenicity of pro-
tein aggregates remains uncertain (21), it is known that unre-
stricted accumulation of damaged proteins can disrupt im-
portant cellular processes, including proteasome-mediated
protein degradation (22). Therefore, timely removal of oxida-
tively damaged proteins is of critical importance to maintain
normal cellular homeostasis and viability. Although there is
evidence suggesting that chaperone mediated autophagy is
activated during oxidative stress response (23), the protea-
some represents the major proteolytic machinery for the re-
moval of oxidized and misfolded proteins (19, 24–27). If ho-
meostasis is not restored, cells ultimately undergo apoptotic
or necrotic cell death (28, 29).

Oxidative stress has been implicated in aging and many
human diseases including Alzheimer’s disease, Parkinson’s dis-
ease, Huntington’s disease, amyotrophic lateral sclerosis (ALS),
cataract formation, and human cancers (30–36). In particular,
pathological developments in neurodegenerative diseases have
been strongly linked to oxidation triggered protein aggregation
partly because of elevated ROS levels in the brain (37–39). To
prevent cytotoxicity induced by oxidized proteins, normal pro-
teasome-dependent degradation is essential for cells to cope
with oxidative stress (25, 40, 41). Proteasomal dysfunction can
lead to decreased degradation of misfolded proteins, thus re-
sulting in accumulation of oxidized proteins and subsequent
protein aggregation. Protein aggregates can then feedback to
further inhibit proteasome activities, generate additional cellular
stress, and lead to cytotoxicity and human pathologies. Such
phenomena have been implicated in many oxidative stress-
associated disorders (42, 43).
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Despite the proteasome’s critical role in oxidative stress
response, our current understanding of how proteolysis of
oxidized proteins is regulated and how oxidative stress mod-
ulates proteasome structure and function remains limited.
Further understanding of how proteasome-dependent degra-
dation pathways are regulated in response to oxidative stress
may provide a molecular basis for developing new strategies
for curbing oxidative stress and preventing the formation of
intracellular protein aggregates during aging and disease.
Although other types of cellular stress, such as ubiquitin
stress and metal stress, share overlapping components and
response pathways as those involved with oxidative stress,
the differing overall responses and distinct requirements for
signaling and survival indicate these types of stress are not
functionally synonymous with oxidative stress (44–47), and

are beyond the scope of this review. This review focuses on
the recent developments in our understanding of proteasomal
regulation during oxidative stress.

Proteasomes and Oxidative Stress

The 26S proteasome is a multicatalytic protease responsi-
ble for ubiquitin/ATP dependent protein degradation (48–50).
This macromolecular protein complex is composed of the 20S
core particle (CP), capped by a 19S regulatory particle (RP,
also known as CAP or PA700) on one or both sides (51, 52).
The eukaryotic 20S CP is composed of two copies each of 14
subunits, 7� and 7�, which form a conserved barrel-shaped
structure with four stacked seven-member rings in the order
of ���� (48, 53). Three of the � subunits (i.e. �1(Y), �2(Z), and
�5(X)) are catalytically active and are responsible for the var-
ious proteolytic activities of the proteasome (e.g. chymotryp-
sin-like, trypsin-like, and caspase-like activities) (54). Upon
Interferon-� induction, mammalian 20S proteasomes can in-
corporate three alternative catalytic � subunits, �1i (LMP2),
�2i (MECL), and �5i (LMP7), to constitute immunoprotea-
somes that are best known for generating immunopeptides
for MHC class I antigen presentation (55, 56). Although �

subunits are catalytically inactive, they are critical for gating
the opening of the 20S core particle and for forming associ-
ations with regulatory complexes (49, 53).

The 19S regulatory complex is composed of at least 19
different subunits, which are arranged into two subcom-
plexes, the base and the lid (57, 58). The base complex
contains six ATPases (Rpt1–6) plus four non-ATPase sub-
units (Rpn1, Rpn2, Rpn10, and Rpn13) and directly associ-
ates with the 20S core. The lid is found distal to the base
and contains nine non-ATPase subunits (Rpn3, Rpn5–9,
Rpn11–12, and Rpn15). The 19S particle carries several
biochemical functions including recognition of polyubiquiti-
nated substrates, cleavage of polyubiquitin chains to recy-
cle ubiquitin, unfolding of substrates, assisting in opening
the 20S core, and subsequent translocation of unfolded
substrates into the catalytic chamber (49, 59–61). The ac-
tivities of the 19S regulatory complex and its assembly with
the 20S proteasome have been shown to be strictly ATP-
dependent.

In addition to association with 19S regulatory particles, 20S
proteasome can bind to alternative activator proteins. Three
mammalian 20S activators have been identified to date:
PA28��, PA28�, and PA200 (Blm10 in yeast) (58, 62–65).
These proteasome activators modulate 20S proteasome struc-
ture and generate “active” 20S proteasomes by opening the �

ring channel, thereby facilitating the entry of protein substrates
for degradation. Because these alternative regulatory proteins
lack deubiquitinases and ATPase activity, they promote protein
degradation in an ubiquitin/ATP-independent manner.

Although the degradation of oxidatively damaged proteins
can occur by both ubiquitin/ATP-dependent (i.e. 26S-depen-

FIG. 1. Cellular Response to Oxidative Stress. Shown here is a
flow chart detailing the production of reactive oxygen species (ROS)
and the subsequent cellular response resulting in either the return to
normal cellular homeostasis or apoptotic/necrotic cell death.
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dent) and ubiquitin/ATP-independent (i.e. 20S-dependent)
mechanisms (25, 66), various studies have implied that 20S
proteasomes may be more critical for the removal of damaged
proteins (19, 24, 26, 67). This may be in part because of the
fact that the 20S proteasome is more resistant to oxidative
stress than the 26S proteasome as the 20S complex can
maintain activity even upon treatment with moderate to high
concentrations of H2O2, whereas the 26S proteasome is
much more vulnerable (68, 69). Recently, it has been shown
that 20S proteasomes can degrade oxidized proteins (e.g.
histones, hemoglobin, superoxide dismutase) in vitro, inde-
pendent of ubiquitin/ATP (19, 24, 26, 70, 71). This phenome-
non has been attributed to 20S proteasome recognition of,
and interaction with, abnormally exposed hydrophobic
patches in oxidatively damaged and unfolded proteins that
induce conformational changes in the 20S structure and pro-
mote channel opening followed by protein degradation (19,
24, 26). It remains unclear, however, if degradation of oxida-
tively damaged proteins by the 20S proteasome can occur in
vivo in a similar manner as was shown in vitro.

The combination of associating regulatory complexes,
post-translational modifications, proteasome interacting pro-
teins (PIPs), and subunit composition define the structure and
activity of a given proteasome entity (50, 58, 72–79). The
diverse range of regulatory and activating complexes that
modulate 20S core activity supports the idea that the protea-
some is a highly dynamic protein complex, capable of adjust-
ing its proteolytic activity depending on the needs of the cell.
Accordingly, protein-protein interactions, post-translational
modifications, and proteasome gene regulation represent ad-
ditional levels of regulation for fine tuning the collective pro-
teasome activity upon oxidative stress.

Regulation of the Proteasome by Interacting Proteins

Protein-protein interaction is one of the major mechanisms
regulating protein functions. Therefore, characterizing PIPs is
important for understanding the regulation of proteasome
function. Various approaches have been developed to cap-
ture and identify PIPs using genetic and biochemical tech-
niques. Among them, mass spectrometry coupled with affinity
purification has evolved as an attractive and powerful tool (80,
81), which has led to the discovery of hundreds of PIPs (46,
75, 76, 82–91). In addition to the proteins that form the pro-
teasome holocomplex, a broad class of PIPs have been iden-
tified, including ubiquitin receptors, ubiquitin ligases, deubiq-
uitinases, proteasome activators and inhibitors, chaperones,
and other types of modulators (46, 50, 58, 74–76, 82–94).
These proteins associate with proteasomes dynamically in
response to environmental changes and affect the function
and structure of proteasome complexes.

Ecm29-dependent Disassembly of the 26S Protea-
some—We recently employed biochemical and quantitative
mass spectrometry-based proteomic approaches to monitor

the structural dynamics of the 26S proteasome in yeast and
mammalian cells in an effort to understand the molecular
mechanisms underlying the regulation of 26S proteasomes
upon H2O2-induced oxidative stress (77). In this study, we
determined that acute H2O2 stress disrupts the integrity of the
26S proteasome complex and causes the dissociation of the
20S core from the 19S particle in a dose-dependent manner.
We also detected H2O2-induced loss of 26S proteasome pro-
teolytic activities, likely because of the observed separation of
the 19S particle from the 20S core. Additionally, we charac-
terized the dynamic changes of PIPs using stable isotope
labeling with amino acid in cell culture (SILAC)-based quan-
titative mass spectrometry, and identified that one of the
yeast PIPs, Ecm29, is substantially recruited to the 19S par-
ticle in response to H2O2 stress. Biochemical and genetic
experiments revealed that the H2O2 stress-induced attenua-
tion of yeast 26S proteasome activity is because of Ecm29-
dependent disassembly of the 26S proteasome complex, in-
dicating that Ecm29 is a key regulator of 26S proteasome
structure in response to H2O2 stress. Ecm29-dependent pro-
teasome dissociation has proven important for cell survival,
particularly for recovery following oxidative stress. This phe-
nomenon is independent of yeast activator protein 1 (Yap1), a
transcription factor critical for oxidative stress response in
yeast, and therefore functions as a parallel defense pathway
against H2O2-induced stress. In addition to the previously
established Ecm29 functions (83, 95, 96), our results describe
a role for Ecm29 in the response to oxidative stress in yeast,
suggesting that Ecm29 may have multiple functionalities in
controlling 26S proteasome structure.

H2O2 stress-induced disassembly of the 26S proteasome
was observed in both yeast and mammalian cells (77), sug-
gesting that this is a conserved mechanism for regulating
proteasome activities in an effort to cope with oxidative in-
sults. Several studies have suggested that degradation of
oxidized proteins is likely more dependent on 20S than 26S
proteasomes (19, 24, 26, 67). Therefore, we suspect that
disassembly of 26S proteasomes during oxidative stress
serves to increase 20S proteasome abundance, allowing cells
to more effectively clear irreparably damaged proteins and
mitigate the cytotoxic effects of their accumulation (19, 71,
97). This notion is further supported by studies using mutants
defective in 26S proteasome assembly (98), or activities (99),
which demonstrated that mutant cells are more resistant to
H2O2 exposure, and are able to degrade oxidized proteins
more effectively than their wild-type controls. Despite its iden-
tification as a PIP in mammalian cells, mammalian Ecm29
appears to be functionally distinct from its yeast ortholog
(100, 101). Extensive analyses by Gorbea et al. revealed that
mammalian Ecm29 associates with various molecular motors
and endosomal components, and serves as an adaptor pro-
tein, recruiting 26S proteasomes to specific cellular compart-
ments such as flotillin-positive endosomes, endoplasmic re-
ticulum (ER), and the centrosome (100, 101). In addition,
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studies in HeLa cells demonstrated that human 26S protea-
somes remain assembled even following detergent-induced
dissociation of Ecm29 (100). Furthermore, the levels and dis-
tribution of Ecm29 vary markedly among mouse organs, and
can be absent in some tissues (100). These results indicate
that Ecm29 is not necessary for the association of the 20S
core and the 19S particle. From these studies, it is evident
that Ecm29 has some distinct functions in higher eukaryotes
that are not present in lower eukaryotic systems. This brings
into question whether the reverse is also true. Consequently,
the question of whether mammalian Ecm29 is involved in
modulating the stability of 26S proteasome assembly in re-
sponse to oxidative stress, like its yeast ortholog, remains
unanswered, and the details regarding the regulator(s) re-
sponsible for the observed H2O2-triggered dissociation of the
20S core from the 19S particle in mammalian cells (77) are in
need of further elucidation.

Usp14-dependent Modulation of Proteasomal Degrada-
tion—Human Usp14 is a proteasome-associated deubiquiti-
nating enzyme that disassembles polyubiquitin chains from
the end distal to the substrate, thus shortening chains rather
than removing them together (84, 102, 103). Usp14 and its
yeast ortholog, Ubp6, have been identified as potent inhibi-
tors of proteasomal degradation of selected ubiquitinated
substrates in vitro and in cells by two different modes of
action (47, 84). The decreased degradation of some protea-
some substrates is dependent on Usp14 deubiquitinase ac-
tivity; whereas other substrates are stabilized by a mechanism
that is independent of Usp14 deubiquitinase activity (47). Lee
et al. has recently identified a selective small molecule (IU1)
that inhibits the deubiquitinating activity of Usp14 (47). It has
been shown that IU1 strongly reduces the accumulation of
oxidized proteins by accelerating their degradation in cells
exposed to oxidants (e.g. menadione, H2O2), thus promoting
cell survival and enhancing cell resistance to proteotoxic
stress. However, the IU1 inhibitor had little to no effect on
ubiquitin-independent proteasomal degradation indicating
that modulation of proteasomal degradation by Usp14 is me-
diated by changing the accessibility of ubiquitinated sub-
strates for proteasomal degradation, rather than directly al-
tering proteasome catalytic activity. This represents a very
different mechanism from Ecm29-dependent regulation of the
26S proteasome in response to oxidative stress as discussed
above (77). Together, these results demonstrate that regula-
tion of proteasomal degradation is a very complex process
and multiple mechanisms exist in cells that target various
aspects of the degradation process in response to cytotoxic
stress. Whether and how these regulatory steps work inde-
pendently or together require further clarification.

Chaperone-mediated Proteasome Regulation—Given the
association of chaperone proteins with unfolded and mis-
folded proteins, and the contribution of oxidative stress to
protein misfolding, it is not surprising that chaperone PIPs
contribute to proteasomal regulation in an effort to protect

cells from oxidative damage (104–109). For example, it has
been shown that neural cells overexpressing the human chap-
erone protein HDJ-1/Heat shock protein 40 (Hsp40) are more
resistant to cytotoxicity associated with both oxidative stres-
sors and general proteasome inhibitors. This suggests that
heat shock proteins may confer resistance to oxidative stress
by preserving proteasome function and attenuating the tox-
icity of proteasome inhibition (105). Similarly, Hsp90 and
�-crystalline both associate with the proteasome and are
important regulators of specific 20S proteasome activities
when cells are submitted to oxidative challenge (106–108).
Interestingly, under non-stressed conditions Hsp90 and
�-crystalline inhibit 20S proteasome activity (108, 110, 111),
but upon oxidative stress, these chaperones protect acti-
vated 20S proteasomes from oxidative inactivation (106–
108). Hsp90 also appears to selectively promote the deg-
radation of oxidized substrates by the 20S proteasome in
vitro (112). Taken together, these results suggest that mo-
lecular chaperones may play a role in regulating proteasome
activity in response to oxidative stress by both stabilizing
specific proteolytic activities and by aiding the recognition
and degradation of oxidized substrates. However, the mo-
lecular mechanisms by which chaperone proteins regulate
proteasome activity in response to oxidative stress have yet
to be determined.

Regulation of the Proteasome by Post-translational
Modifications

Protein post-translational modifications can regulate pro-
tein functions by changing their structures and physiochemi-
cal properties (113, 114), including their biochemical activity,
intracellular localization, turnover rate, and protein-protein in-
teractions. Identification and characterization of protein post-
translational modifications is therefore important for defining
how proteins are regulated in various cellular environments.
With the vast and rapid improvements in mass spectrometry-
based proteomic approaches (81, 114, 115), various post-
translational modifications of proteasome subunits have been
reported, including phosphorylation, acetylation, oxidation,
and myristoylation (86, 116–123). Most of these modifications
were identified from large scale analyses at the proteome level
or studies of purified proteasome complexes. Following the
identification of proteasomal post-translational modifications,
further analyses using genetic and/or biochemical ap-
proaches are required to determine the functional and biolog-
ical significance of each modification. This review will focus
on those post-translational modifications that have been
linked to proteasome function associated with oxidative
stress.

Oxidative Modifications—Oxidative modification refers to a
process by which ROS attack proteins, leading to fragmen-
tation of the polypeptide backbone, modification of amino
acid side chains, and/or the generation of protein-protein

Oxidative Stress and Proteasomes

10.1074/mcp.R110.006924–4 Molecular & Cellular Proteomics 10.5



cross-linkages. Side chain modifications include �-scission of
alanine, valine, leucine, and aspartic acid, oxidation of methi-
onine, and carbonylation (124). Intra- and interprotein cross
linking can occur through a variety of mechanisms, including
the formation of Schiff base cross-linkage (e.g. resulting from
4-hydroxy-2-nonenal (HNE) modification), and the formation
disulfide bridges between oxidized and reduced thiol groups
(124). Recent studies have shown that 19S and 20S protea-
some subunits are susceptible to oxidative modifications,
including carbonylation, HNE modification, and S-glutathio-
nylation (27, 125–128). It has been shown that carbonylation
of Rpt3 resulted in impaired Rpt3 ATPase activity and a sub-
sequent decrease in ubiquitin/ATP-dependent proteolysis of
the 26S proteasome (126). In addition, carbonylation or HNE
modification of the 20S proteasome has been shown to sup-
press its proteolytic activities (125). These results suggest that
oxidative modifications of proteasomes can contribute to the
regulation of proteasome functions in response to oxidative
stress.

S-glutathiolation is the covalent attachment of glutathione
(GSH) to protein thiol groups. There are two mechanisms by
which proteins can be S-glutathiolated: GSH can react with
oxidized thiol groups (e.g. Cys-SOH or Cys-S-S-Cys), or ox-
idized glutathione (GSSG) can react with reduced thiol resi-
dues (e.g. Cys-SH) (129). GSH is considered to have antiox-
idant function, by stabilizing oxidized protein thiol groups,
preventing further, possibly irreversible thiol oxidation through
S-glutathiolation, but S-glutathiolaton is also known to regu-
late protein activity (130). Upon H2O2-induced oxidative
stress in yeast, S-glutathiolation of 20S subunits was demon-
strated both in vitro and in vivo (127). Further functional stud-
ies determined that treatment of purified 20S proteasomes
with GSH lead to the inhibition of chymotrypsin-like and tryp-
sin-like activities (127). In comparison, mammalian protea-
somes appear to have a biphasic response to S-glutathiola-
tion, as low concentrations of GSH or GSSG increased the
chymotrypsin-like activity of purified mammalian protea-
somes whereas high levels of GSH or GSSG led to decreased
activity (128). Although S-glutathiolation of the 20S proteasome
generally inhibits proteasome activity, the biphasic response
observed for S-glutathiolation of mammalian proteasome may
be evidence of proteasome S-glutathiolation acting as a redox
signaling trigger through which proteasome activity is regulated
depending on the redox status of mammalian cells.

ADP-Ribosylation—In addition to oxidative modifications,
other types of modifications may be involved in altering pro-
teasome activities during oxidative stress. Poly [ADP-ribose]
polymerase 1 (PARP1), a nuclear enzyme that transfers ADP-
ribose moieties from NAD� to glutamic acid, aspartic acid, or
lysine residues, is activated in response to oxidative stress
(70, 131–133). Interestingly, evidence exists suggesting that
nuclear 20S proteasomes can be ADP-ribosylated by PARP1
in human hematopoietic K562 cells, resulting in increased
chymotrypsin-like activity of the nuclear 20S proteasome (70).

Given the nuclear localization of PARP1 and its role in DNA
repair (134), ADP-ribosylation is likely unique to nuclear pro-
teasomes and may function to enhance proteasomal degra-
dation of oxidized nuclear proteins (70, 135).

Phosphorylation—The proteasome is extensively and dy-
namically phosphorylated, though only a few phosphorylation
events have been linked to the regulation of proteasome activity
(136–139). One recent study revealed that Rpt5 (19S subunit)
can be phosphorylated by human apoptosis signal-regulating
kinase 1 (Ask1) (136). Although the specific Rpt5 functional sites
have yet to be identified, phosphorylation did result in the inhi-
bition of Rpt5 ATPase activity and in the reduction of 26S
proteasome proteolytic activities (136). The impairment of the
26S proteasome activity is not because of changes in the 26S
proteasome assembly. It is interesting to note that Ask1 is
required for the H2O2 stress-induced inhibition of 26S protea-
some activity in mouse fibroblasts and that Ask1 is activated by
Thioredoxin in response to various stresses including oxidative
stress (140–143). Therefore, Ask1-dependent proteasome
phosphorylation may act as a regulatory mechanism of protea-
some activities during various stress responses.

Apart from Ask1, additional kinases have been found to
phosphorylate proteasome subunits including CK2 (formerly
casein kinase II), cyclic AMP-dependent kinase (PKA), Ca2�/
calmodulin-dependent kinase (CaM-K) II, AMP-activated pro-
tein kinase (AMPK), and c-Abl and abl-related gene (Arg)
tyrosine kinases (137, 139, 144–148). Phosphorylation of pro-
teasome subunits by these kinases appears to be involved in
several proteasomal related functions and regulations includ-
ing proteasome assembly (137, 144–146, 149), and proteo-
lytic activities (139, 147). For example, CK2 phosphorylation
of �7 is important for stabilizing the association of the 20S CP
to the 19S RP (144, 145, 149). Although �7 phosphorylation,
is not required for assembly of the 26S proteasome, it was
reported that dephosphorylation of �7 following INF� treat-
ment correlated with decreased 26S proteasome stability.
Several putative PKA target substrates have also been iden-
tified from murine cardiac and hepatic tissue (147). In this
study it was shown that proteasomal peptidase activities were
elevated following in vitro phosphorylation of the 20S CP, at
multiple sites, by PKA (147). Another recent report demon-
strated that CaMKII can directly phosphorylate Rpt6, and that
constitutive activation of CaMKII results increased protea-
some activity, whereas pharmalogical inhibition of CaMKII
decreases the degradation of a GFP reporter protein in vivo,
suggesting that Rpt6 phosphorylation may regulate protea-
some activity (137). Proteasome activity can also be nega-
tively regulated by phosphorylation, as Liu et al. conclusively
demonstrated that c-Abl and Arg phosphorylation of �4 re-
sults in suppressed 20S and 26S proteasome proteolytic
activities (139). Although proteasome phosphorylation by
these kinases has not been directly linked to oxidative stress,
activities of CK2, PKA, CaM-KII, c-Abl, and Arg have been
shown to be modulated during oxidative stress (150–157).

Oxidative Stress and Proteasomes

Molecular & Cellular Proteomics 10.5 10.1074/mcp.R110.006924–5



Given the biological significance of proteasome phosphory-
lation by these kinases, we speculate that these phosphory-
lation events may provide additional means of regulating pro-
teasome activities upon oxidative insult.

Oxidative Stress-Mediated Proteasome Gene Regulation

Oxidative stress-mediated gene regulation is a known com-
ponent of the defense mechanism for cellular responses to
proteotoxic stress (158, 159). In yeast, much of the oxidative
stress-driven transcriptional activation is controlled by the
redox reactive transcription factor Yap1 (160). Rpn4, the tran-
scriptional activator for proteasome genes, is a Yap1 targeted
gene (161–164). Upon oxidative stress, transient Yap1-medi-
ated Rpn4 mRNA up-regulation (163) and Yap1-dependent
expression of several yeast proteasome components (165)
have been observed, however the biological consequences of
these changes were not evaluated. Nevertheless, overexpres-
sion of proteasome catalytic subunits �1 or �5 in mammalian
cells increased proteasome catalytic activities that correlated
with enhanced cell viability and reduced accumulation of ox-
idized proteins following oxidative stress (166). It has also
been shown that overexpression of proteasome assembly
protein UMP1 improves cell viability following exposure to
various oxidants (167, 168). The increased resistance to oxi-
dative stress by UMP1 overexpression may be because of
increased levels of proteasome activity (167, 168) resulting
from up-regulation of proteasome �-subunits (168). Together,
these studies suggest that increased 20S expression and
assembly would enhance a cell’s capacity to cope with oxi-
dative stress. Alternatively, disruption of Rpn4-mediated pro-
teasome induction leads to reduced viability in response to
oxidative stress (169), demonstrating the critical role of pro-
teasome gene regulation for combating oxidative insult.

In higher eukaryotes, nuclear factor �B (NF�B) and activator
protein-1 (AP-1; Yap1 homolog) are the most widely accepted
transcriptional regulators of mammalian oxidative stress re-
sponse, but they are not responsible for activation of protea-
some gene transcription (170, 171). Instead, transcription fac-
tor 11 (TCF11; long isoform of Nrf1) and NF-E2-related factor
2 (Nrf2) have been shown to promote the expression of sev-
eral proteasome genes (171, 172), and may act as functional
orthologs of yeast Rpn4 (78, 173, 174). Information detailing
how these transcription factors are regulated under stress is
still unknown and needs to be further investigated. Although
the transcriptional control of proteasome expression in the
mammalian system appears to be more complex than the
yeast system, up-regulation of proteasome expression has
also been observed in mammalian cells as an adaptive cellular
response to prolonged exposure of oxidative stress (67, 175).

In addition to standard proteasome subunits, mammalian
systems, unlike their yeast counterparts, also contain IFN-�

inducible catalytic � subunits that are integral parts of immu-
noproteasomes. Recently it has been recognized that immu-

noproteasomes are up-regulated under ROS attack and also
contribute to the removal of oxidized proteins in mammalian
cells (67, 175–177). Interestingly, it has been suggested that
immunoproteasomes are more resistant to oxidative stress
than standard proteasomes (67). Cells and mice deficient for
immunoproteasome subunits are more susceptible to oxida-
tion-induced cell death because of reduced proteasome ac-
tivity and accumulation of oxidized proteins (176, 177). It
appears that increased immunoproteasome expression not
only helps preserve proteasome function, but also makes
cells more resistant to oxidative insult (67, 175–177). Whether
the same class of transcription factors regulates expression of
standard and inducible proteasomal subunits remains to be
determined.

Proposed Model of Oxidative Stress-dependent
Regulation of the 26S Proteasome

In order to effectively defend the cell against oxidative
insults, cells must coordinate repair systems with protea-

FIG. 2. Model of oxidative stress-dependent regulation of pro-
teasomes. In the early phase of cellular response to oxidative insult,
various changes occur to modulate 26S and 20S proteasome activity
in order to promote the degradation of oxidized proteins, and limit the
damage of oxidative stress. Initially, under milder stress conditions,
26S proteasomes are activated by mechanisms still unknown. With
persistent oxidative insult, or application of acute oxidative stress,
proteasomes disassemble into 20S CPs and 19RPs. In yeast, the PIP
Ecm29 is required for this disassembly (77). Following dissociation,
free 20S proteasomes are activated and oxidized proteins are de-
graded independently of ATP and ubiquitin. If cells undergo pro-
longed exposure to oxidative stress (at least 12 h), cells enter the late
phase of cellular response to oxidative stress. Though the exact
mechanism is unknown, 26S proteasome inhibition ultimately signals
the synthesis of new proteasome components and the formation of
functional proteasome degradation units. Of note * 20S, i20S, and
i26S proteasomes are more effective than standard 26S proteasomes
for degrading oxidized proteins.
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some-dependent degradation. Based on recent findings (19,
41, 67, 68, 71, 77, 97, 165, 175, 176, 178, 179), we propose a
working model to illustrate how compositional and structural
changes of proteasomes modulate their proteolytic activities
in response to ROS attack (Fig. 2). In the absence of stress,
the 26S proteasome represents the major cellular degradation
machinery and carries out ATP-dependent degradation of
ubiquitinated substrates. At the onset of oxidative stress, it
has been suggested that activities of the 26S proteasome can
be initially stimulated by unknown mechanisms for degrading
mildly oxidized proteins, thus protecting cells from oxidative
damage (175, 178). However, when the oxidative challenge
persists, or acute oxidative stress is applied, partial inhibition
of 26S activity occurs, leading to an accumulation of ubiquiti-
nated substrates (41, 68, 77). Although inhibition of 26S pro-
teasomes could be caused by oxidation products such as
protein aggregates or oxidized lipids (178, 179), it is most
likely because of oxidative stress-triggered 26S disassembly
as shown recently (41, 77). The dissociation of the 20S core
from the 19S particle allows the liberation of 20S complexes
and therefore increases cellular capacity for ATP/ubiquitin-
independent removal of oxidized proteins. Whether other
types of regulatory proteins are required for such 20S-de-
pendent degradation in vivo requires further investigation. In
yeast cells, 26S proteasome disassembly is regulated by pro-
teasome interacting protein Ecm29, and we hypothesize that
a similar type of regulator exists in mammalian cells. Because
mammalian cells have more regulatory proteins and protea-
somal components, we suspect that the molecular details
underlying the regulation of the mammalian 26S proteasome
are likely much more complicated than the yeast system. At
this stage, 26S proteasome disassembly is reversible (77);
once the oxidative stress is removed, the reassembly of the
26S proteasome occurs and the degradation of ubiquitinated
substrates can resume, leading to cellular recovery.

During prolonged exposure of oxidative stress (i.e. later
phase—at least 12 h following stress induction), proteasomal
activities are inhibited and de novo proteasome synthesis is
activated (67, 165, 175, 176). Up-regulation of both standard
and inducible proteasomal components leads to the forma-
tion of more functional 20S and i20S proteasomes, respec-
tively. The newly produced 20S and i20S complexes can
associate with PA28 and/or 19S regulatory complexes re-
spectively to form diverse functional proteasome complexes
for ubiquitin/ATP- independent and/or dependent degrada-
tion of oxidized proteins (41, 67). It has been suggested that
activated 20S, i20S, and i26S proteasomes are all better able
to degrade oxidized proteins than the standard 26S protea-
some (41, 67), and the production of immunoproteasomes
may be of particular importance for mounting a cellular re-
sponse against oxidative stress (176). Ultimately, the hetero-
geneous populations of proteasomes act in concert to de-
grade toxic oxidized proteins and protect cells from oxidative
damage.

CONCLUSION

The proteasome is regulated by complex and poorly under-
stood mechanisms. Attempts to clarify proteasome functional
dynamics in response to oxidative stress are complicated by
the presence of heterogeneous proteasome populations and
multiple regulatory pathways. Additionally, cells exhibit di-
verse, often contrasting, responses to oxidative stress that
are dependent on the type, dose, and duration of oxidative
insults. Despite well-established knowledge that proteasomes
are important for the removal of oxidatively damaged proteins
and the more recently proposed model whereby proteasome
activities are modulated by elevated ROS levels, many key
questions remain unanswered. These include the following:
(1) how do the subtypes of proteasome complexes work
together to effectively degrade damaged proteins; (2) what
are the mechanisms controlling proteasomal activities and
how do these adapt to oxidative stress; (3) how is proteolysis
of oxidatively damaged proteins regulated; (4) how are 20S
proteasomes activated in vivo for the degradation of oxidized
proteins; (5) what molecular mechanisms link proteasome
inhibition and/or activation to oxidative stress-associated hu-
man pathologies. Although several recent studies have pro-
vided new insights that shed light on some of these questions,
we have only just begun to unravel the molecular details
underlying oxidative stress-triggered regulation of protea-
some complexes. To fully address these questions, system-
atic analyses using biochemical, genetic and proteomic ap-
proaches are required. This will not only allow the
understanding of ROS-induced regulation of proteasomes,
but also provide potential molecular targets for screening
proteasome inhibitors and activators. Given that oxidative
stress-induced human diseases are associated with the ac-
cumulation of misfolded proteins and the loss of proteasome
activities, strategies that enhance endogenous proteasome
activity would be beneficial. Recent success of using a Usp14
inhibitor to accelerate proteasomal degradation of oxidized
proteins (47) demonstrates the possibility of developing pro-
teasome activating reagents for preventing protein aggrega-
tion in aging and/or neurodegenerative disorders.
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C. J., and Stöckl, J. (2010) Generation and biological activities of oxi-
dized phospholipids. Antioxid. Redox. Signal 12, 1009–1059

15. Finkel, T. (2000) Redox-dependent signal transduction. FEBS Lett. 476,
52–54

16. Barford, D. (2004) The role of cysteine residues as redox-sensitive regu-
latory switches. Curr. Opin. Struct. Biol. 14, 679–686

17. Martindale, J. L., and Holbrook, N. J. (2002) cellular response to oxidative
stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1–15

18. Chen, D., Wilkinson, C. R., Watt, S., Penkett, C. J., Toone, W. M., Jones,
N., and Bähler, J. (2008) Multiple pathways differentially regulate global
oxidative stress responses in fission yeast. Mol. Biol. Cell 19, 308–317

19. Davies, K. J. (2001) Degradation of oxidized proteins by the 20s protea-
some. Biochimie 83, 301–310

20. Davies, K. J. (1987) Protein damage and degradation by oxygen radicals.
I. General aspects. J. Biol. Chem. 262, 9895–9901

21. Tyedmers, J., Mogk, A., and Bukau, B. (2010) Cellular strategies for
controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788

22. Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Impairment of the
ubiquitin-proteasome system by protein aggregation. Science 292,
1552–1555

23. Kiffin, R., Christian, C., Knecht, E., and Cuervo, A. M. (2004) Activation of
chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell
15, 4829–4840

24. Breusing, N., and Grune, T. (2008) Regulation of proteasome-mediated
protein degradation during oxidative stress and aging. Biol. Chem. 389,
203–209

25. Goldberg, A. L. (2003) Protein degradation and protection against mis-
folded or damaged proteins. Nature 426, 895–899

26. Jung, T., and Grune, T. (2008) The Proteasome and its role in the degra-
dation of oxidized proteins. IUBMB Life 60, 743–752

27. Farout, L., Mary, J., Vinh, J., Szweda, L. I., and Friguet, B. (2006) Inacti-
vation of the proteasome by 4-hydroxy-2-nonenal is site specific and
dependant on 20s proteasome subtypes. Arch. Biochem. Biophys. 453,
135–142

28. Buttke, T. M., and Sandstrom, P. A. (1994) Oxidative stress as a mediator
of apoptosis. Immunol. Today 15, 7–10

29. Boldyrev, A. A. (2000) Discrimination between apoptosis and necrosis of
neurons under oxidative stress. Biochemistry 65, 834–842

30. Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Beher, D., Masters,
C. L., and Beyreuther, K. (1997) Reactive oxygen species and Alzhei-

mer’s disease. Biochem. Pharmacol. 54, 533–539
31. Jenner, P. (2003) Oxidative stress in Parkinson’s disease. Ann. Neurol. 53

Suppl 3, S26–36; discussion S36–38
32. Browne, S. E., Ferrante, R. J., and Beal, M. F. (1999) Oxidative stress in

Huntington’s disease. Brain Pathol. 9, 147–163
33. Jackson, C. E., and Bryan, W. W. (1998) Amyotrophic lateral sclerosis.

Semin. Neurol. 18, 27–39
34. Spector, A. (1995) Oxidative stress-induced cataract: mechanism of ac-

tion. FASEB J. 9, 1173–1182
35. Kumar, B., Koul, S., Khandrika, L., Meacham, R. B., and Koul, H. K. (2008)

Oxidative stress is inherent in prostate cancer cells and is required for
aggressive phenotype. Cancer Res. 68, 1777–1785

36. Brown, N. S., and Bicknell, R. (2001) Hypoxia and oxidative stress in
breast cancer. oxidative stress: its effects on the growth, metastatic
potential and response to therapy of breast cancer. Breast Cancer Res.
3, 323–327

37. Butterfield, D. A., and Kanski, J. (2001) Brain protein oxidation in age-
related neurodegenerative disorders that are associated with aggre-
gated proteins. Mech. Ageing Dev. 122, 945–962

38. Keller, J. N., and Mattson, M. P. (1998) Roles of lipid peroxidation in
modulation of cellular signaling pathways, cell dysfunction, and death in
the nervous system. Rev. Neurosci. 9, 105–116

39. Sayre, L. M., Smith, M. A., and Perry, G. (2001) Chemistry and biochem-
istry of oxidative stress in neurodegenerative disease. Curr. Med. Chem.
8, 721–738

40. Ding, Q., Dimayuga, E., Martin, S., Bruce-Keller, A. J., Nukala, V., Cuervo,
A. M., and Keller, J. N. (2003) Characterization of chronic low-level
proteasome inhibition on neural homeostasis. J. Neurochem. 86,
489–497

41. Seifert, U., Bialy, L. P., Ebstein, F., Bech-Otschir, D., Voigt, A., Schröter,
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