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The endoplasmic reticulum (ER) as an intracellular Ca2þ store not only sets up cytosolic Ca2þ

signals, but, among other functions, also assembles and folds newly synthesized proteins.
Alterations in ER homeostasis, including severe Ca2þ depletion, are an upstream event in
the pathophysiology of many diseases. On the one hand, insufficient release of activator
Ca2þ may no longer sustain essential cell functions. On the other hand, loss of luminal
Ca2þ causes ER stress and activates an unfolded protein response, which, depending on
the duration and severity of the stress, can reestablish normal ER function or lead to cell
death. We will review these various diseases by mainly focusing on the mechanisms that
cause ER Ca2þ depletion.

Cytosolic [Ca2þ] ([Ca2þ]cyt) is precisely
regulated in time and space because Ca2þ

controls essential cell functions like prolif-
eration, differentiation, secretion, contraction,
metabolism, trafficking, gene transcription
and apoptosis, and in this way controls complex
processes like development or learning behavior
(Berridge et al. 2000). An abnormal [Ca2þ]cyt

caused by disturbances of Ca2þ channels, Ca2þ

transporters, Ca2þ pumps, and Ca2þ-binding
proteins can induce multiple pathologies (Mis-
siaen et al. 2000). Ca2þ channelopathies in the
nervous system leading to paralysis, ataxia,
or migraine can be caused by mutations in
subunits of voltage-operated Ca2þ channels in
the plasma membrane (Bidaud et al. 2006;
Lorenzon and Beam 2008). Other channelopa-
thies like malignant hyperthermia and central
core disease in skeletal muscle, and some

tachycardias and tachyarrhythmias in the heart
are because of mutations in Ca2þ-release chan-
nels or Ca2þ-binding proteins of the sarco-
plasmic reticulum (SR) (Durham et al. 2007;
Lorenzon and Beam 2008; Blayney and Lai
2009; Gyorke 2009). Deafness and skin diseases
can also be because of mutations in Ca2þ

pumps (Foggia and Hovnanian 2004; Van Bae-
len et al. 2004; Brini and Carafoli 2009). Ca2þ

dysregulation may also lead to more complex
diseases like Alzheimer and other neurode-
generative diseases (Bezprozvanny 2009; Ber-
ridge 2010; Supnet and Bezprozvanny 2010).

Disease states associated with a decreased
[Ca2þ] in the lumen of the ER ([Ca2þ]ER) have
thus far received less attention. The ER controls
the synthesis, modification, folding, and export
of proteins. An imbalance between the demand
for protein synthesis and the capacity to handle
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them leads to the accumulation of misfolded
or unfolded proteins, which is referred to as ER
stress. An unfolded protein response (UPR) is
initiated to reestablish normal ER function
(Schroder and Kaufman 2005; Ron and Walter
2007). If the stress is too prolonged or severe
to be corrected, the adaptive response triggered
by the UPR will not overcome the ER stress and
a cell-death program is triggered to eliminate
the damaged cell. Many diseases affect the ER
environment leading to ER stress, a UPR, and
apoptosis (Xu et al. 2005; Lindholm et al. 2006;
Kim et al. 2008). Some of them first deplete
ER Ca2þ, with disturbed function of luminal
proteins (Michalak et al. 2002). The decreased
[Ca2þ]ER, rather than the increased [Ca2þ]cyt,
then triggers apoptosis (Nakano et al. 2006;
Yoshida et al. 2006).

We will review the diseases in which a de-
creased [Ca2þ]ER is an upstream event in the
pathophysiology and show that ER stress often
plays an essential role. We will first briefly review
the mechanisms controlling the [Ca2þ]ER, then
focus on how ER stress leads to apoptosis, and
finally review the mechanisms of ER Ca2þ

depletion in the various diseases.

Ca2þ HOMEOSTASIS IN THE ER/SR

To function as an intracellular Ca2þ store, the
ER/SR needs to express at least three different
types of proteins (Pozzan et al. 1994): (1) Ca2þ

pumps for uphill transport of Ca2þ from the
cytosol to the lumen; (2) luminal Ca2þ-binding
proteins for storing Ca2þ; and (3) Ca2þ channels
for the controlled release of Ca2þ to the cytosol
along its electrochemical gradient. Although
the ER is generally assumed to form a continu-
ous compartment, it can be heterogeneous at
the level of its Ca2þ-handling proteins. A heter-
ogeneous distribution allows on the one hand
localized Ca2þ pumping and release, and on
the other hand, the setting up of Ca2þ signals
without disturbing Ca2þ-dependent proc-
esses within the ER lumen (Petersen et al. 2001;
Berridge 2002; Papp et al. 2003).

Ca2þ pumps of the SERCA type (sarco/
endoplasmic-reticulum Ca2þ-ATPase) actively
pump Ca2þ into the store (Fig. 1). They are

encoded by three different genes, whereby each
of them exists as various splice variants. SER-
CA2b has the highest Ca2þ affinity and is the
most ubiquitous pump. Other isoforms have
a more restricted expression pattern. Thap-
sigargin is a much-used specific inhibitor of
the SERCA pumps. This sesquiterpene lactone
irreversibly interacts with their M3-transmem-
brane helix. Phospholamban is the major endo-
genous regulator of SERCA pumps (at least for
isoforms 1a, 2a, and 2b), but it is only expressed
in muscle cells. This small protein decreases
their Ca2þ affinity (Brini and Carafoli 2009;
Vangheluwe et al. 2009).

Ca2þ in the lumen of the ER/SR is buffered
by Ca2þ-binding proteins. Calsequestrin is the
main Ca2þ-binding protein in skeletal and car-
diac muscle (Beard et al. 2004). In other tissues
Ca2þ binds to calreticulin (Michalak et al. 2002)
and other Ca2þ-dependent chaperones like
calnexin, 78-kDa glucose-regulated protein/
immunoglobulin heavy chain binding protein
(GRP78/BiP), GRP94, and various protein-
disulfide isomerases (PDI) (Papp et al. 2003).
All these proteins combine at least two of the
following three properties: Ca2þ binding, regu-
lation of Ca2þ pumps or Ca2þ-release channels,
and chaperone function (Berridge 2002; Papp
et al. 2003), emphasizing the close interrelation
between the [Ca2þ]ER and ER function.

The main Ca2þ-release channels in the ER/
SR belong to either the ryanodine-receptor
(RyR) (Zalk et al. 2007) or the inositol 1,4,5-tri-
sphosphate (IP3)-receptor (IP3R) (Foskett et al.
2007) families. In each family, three genes code
for receptor subunits, which assemble to pro-
duce very large tetrameric Ca2þ-release channels
(�2.2 MDa for the RyRs, �1.2 MDa for the
IP3Rs). Further diversity occurs by alternative
splicing and by the formation of both homo-
and, at least for the IP3R, heterotetramers. The
differences in channel and regulatory proper-
ties, and in subcellular localization, allow highly
specific Ca2þ signals propagating through the
cell. RyRs are predominantly expressed in mus-
cles and neurons although they can also be
present at low levels in other cells. Skeletal muscle
expresses mainly RyR1, which is activated by
direct interaction with L-type voltage-operated
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Ca2þ channels, whereas the RyR2 in cardiac tis-
sue and the RyR3 are activated by Ca2þ itself
(Endo 2009). IP3Rs on the other hand are ex-
pressed in all cell types. They generally become
active when IP3 is produced on cell stimulation
by extracellular agonists. IP3 binding at the
amino terminus of the receptor induces channel
opening at its carboxyl terminus (Bosanac et al.
2004). The further regulation of channel open-
ing by cytosolic factors including Ca2þ, by
regulatory proteins, and by phosphorylation/
dephosphorylation, as well as their subcellular
localization allow them to set up highly spe-
cific spatio-temporal Ca2þ signals (Vermassen
et al. 2004; Foskett et al. 2007; Mikoshiba 2007;
Vanderheyden et al. 2009).

In normal conditions, several mechanisms
are operative to prevent ER Ca2þ depletion or

overload, e.g., both Ca2þ channels and Ca2þ

pumps are sensitive to luminal [Ca2þ]. The
IP3R becomes more sensitive to IP3 when the
[Ca2þ]ER increases (Irvine 1990; Missiaen et al.
1992) and also the RyR is stimulated by lumi-
nal Ca2þ (Nelson and Nelson 1990; Gyorke and
Terentyev 2008). SERCA-mediated Ca2þ uptake
into the ER is sensitive to [Ca2þ]ER (Takenaka
et al. 1982). The release of Ca2þ from the ER
during the generation of cytosolic Ca2þ signals
should not decrease the [Ca2þ]ER to a level at
which ER function and Ca2þ signaling become
compromised (Sammels et al. 2010). A mecha-
nism has evolved that couples ER Ca2þ deple-
tion to an increase of Ca2þ entry into the cell.
This phenomenon is known as “capacitative”
(Putney 1986) or “store-operated” Ca2þ entry.
STIM1 and STIM2 are ubiquitously expressed
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Figure 1. Normal and abnormal [Ca2þ]ER. A tight coordination between ER Ca2þ-release and -refilling mech-
anisms enables proper Ca2þ signaling in response to physiological stimuli. Under these conditions, Ca2þ

released from the ER stimulates mitochondrial activity and bioenergetics, leading to more ATP production.
The initial decline in [Ca2þ]ER activates STIM, allowing for store-operated Ca2þ influx. Ca2þ is recycled via
the SERCA pumps. Normal [Ca2þ]ER is restored and ER-related processes continue. In contrast, in pathological
conditions, stress responses will occur and affect the Ca2þ-signaling toolbox in various ways. Impaired mito-
chondrial activity, store-operated Ca2þ influx, or SERCA activity may all cause failure in restoring normal
[Ca2þ]ER in response to ER Ca2þ-signaling processes, and lead to a decreased [Ca2þ]ER. A chronic decrease
in [Ca2þ]ER may also be because of an imbalance between the Ca2þ-on and -off mechanisms as a result of
increased IP3R or RyR activity, decreased Ca2þ buffering, or increased ER Ca2þ leak.
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single-pass transmembrane ER and, to some
extent, plasma-membrane proteins with a lumi-
nal Ca2þ sensor (Stathopulos et al. 2008). De-
pending on the extent of ER depletion, either
STIM1 or STIM2 oligomerize and interact
with Orai1 proteins (Brandman et al. 2007).
These tetrameric Ca2þ channels in the plasma
membrane are then responsible for an increased
Ca2þ entry (Cahalan 2009; Deng et al. 2009;
Schindl et al. 2009).

ER STRESS AND APOPTOSIS

The ER not only fulfills a crucial role in Ca2þ

signaling, but also provides a quality-control
system for the proper folding of proteins and
for sensing stress (Fig. 2). A plethora of ER-
resident chaperones including calreticulin,
calnexin, PDI, and GRP78/BiP bind unfolded
or misfolded proteins via inappropriately expo-
sed hydrophobic or hypo-glycosylated residues
(Austin 2009). Calreticulin and calnexin bind
to polypeptide chains entering the ER lumen
through glycosylated residues, whereas PDI
mediates the correct formation of disulfide
bonds. GRP78/BiP undergoes cycles of binding
and release of unfolded proteins until they are
properly folded and hydrophobic residues are
inaccessible. ER-resident chaperones like calre-
ticulin, GRP78/BiP, and GRP94 need a high
[Ca2þ]ER for their activity (Ma and Hender-
shot 2004) with Ca2þ binding to paired anionic
amino acids (Lucero and Kaminer 1999). More-
over, several of the ER chaperones also act as
Ca2þ buffers (Lievremont et al. 1997; Papp
et al. 2003). Determination of the Ca2þ affinities
suggests up to millimolar levels in the ER (Sam-
brook 1990), and depletion of ER Ca2þ by treat-
ing cells with a Ca2þ ionophore or thapsigargin
can lead to inappropriate secretion, aggregation,
and degradation of unassembled proteins (Gaut
and Hendershot 1993).

The [Ca2þ]ER must be maintained in an en-
vironment of continuous intracellular Ca2þ sig-
naling. Failure of this homeostatic mechanism,
for example, by inhibition of SERCAwith thap-
sigargin, triggers a UPR to either reestablish
normal ER function or to eliminate the cell (Xu
et al. 2005). The adaptive mechanisms initiated

by the UPR involve reduced translation of
misfolded proteins, enhanced translation of
ER chaperones to increase the folding capacity
of the ER, and degradation of misfolded pro-
teins through ER-assisted degradation (ERAD)
(Schroder and Kaufman 2005; Malhotra and
Kaufman 2007). Global mRNA translation is
inhibited for a few hours to reduce the influx
of new proteins into the ER, whereas alarm
signals involving the activation of mitogen-
activated protein kinases (MAPK) are induced
(Kim et al. 2008). The UPR involves three sig-
naling pathways: PERK (PKR-like ER kinase),
Ire1 (inositol-requiring enzyme 1), and ATF6
(activating transcription factor 6).

The recognition of misfolded proteins
by the Ser/Thr kinase PERK leads to phos-
phorylation and inactivation of the eukary-
otic initiation factor 2a (eIF2a). This shuts off
mRNA translation, thereby preventing the
accumulation of newly synthesized proteins
in the ER (Harding et al. 1999), activates the
transcription factor ATF4, which increases
the level of chaperones such as GRP78/BiP
and GRP94, and helps to restore the cellular
redox homeostasis (Harding et al. 2000, 2003).

Ire1 has endoribonuclease and Ser/Thr-
kinase activity. Its endoribonuclease activity
degrades many mRNAs to reduce the protein
load on the ER (Hollien and Weissman 2006).
Ire1 removes an intron from the mRNA of
X-box-binding protein 1 (XBP1), leading to
the expression of XBP1. This transcription factor
is involved in the expression of several UPR and
ERAD genes (Rao and Bredesen 2004). The
kinase activity of Ire1 is involved in apoptotic sig-
naling via ASK1 (apoptosis signal-regulating
kinase 1) and JNK (c-Jun N-terminal kinase).
JNK activates the proapoptotic BH3-only pro-
tein Bim (Lei and Davis 2003; Putcha et al.
2003), and inactivates the antiapoptotic Bcl-2
protein (Yamamoto et al. 1999). Ire1 also recruits
caspase 12 (Yoneda et al. 2001), which may play a
role in ER stress-induced apoptosis (Szegezdi
et al. 2003). However, caspase 12 is not present
in humans, and although caspase 4, its close pa-
ralogue, may perform such function, it remains
uncertain whether caspase 4 is vital for ER
stress-induced apoptosis (Egger et al. 2003).
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Figure 2. The UPR. At a normal [Ca2þ]ER the ER-stress sensors are scaffolded and inactivated by GRP78/BiP.
Protein trafficking and quality-control mechanisms work normally. Polypeptides are translocated through
Sec61 and glycosylated. This transport is facilitated by the molecular chaperone GRP78/BiP. Glucosidases
then prepare the glycoprotein for binding to the ER lectins, calreticulin, and calnexin, whereas oxidoreductases
catalyze disulfide-bond formation. ER-resident chaperones facilitate the proper folding of the nascent protein
and prevent its aggregation. Further deglucosidation releases the ER lectins and once the protein is correctly
folded and processed, the protein leaves the ER via the coat protein (COPII)-coated vesicles to the secretory
pathway. Misfolded proteins, in contrast, associate with various chaperones, including GRP78/BiP, and are
removed from the ER through ERAD.

In contrast, when the [Ca2þ]ER is chronically decreased, the function of chaperones becomes disturbed and
unfolded proteins accumulate and act as a sponge for luminal GRP78/BiP. As a consequence, ER-stress sensors
are devoid of GRP78/BiP and become activated, yielding early adaptive responses promoting survival (indicated
in green) or late responses promoting apoptosis under conditions of severe or on-going ER stress (indicated in
red). Ire1 undergoes dimerization and activation of its kinase and endoribonuclease activity, thereby splicing
XBP1 mRNA and yielding a potent transcriptional activator that induces the expression of genes involved in
ERAD, protein folding (like GRP78/BiP), and lipid synthesis. ATF6 goes to the Golgi compartment, where it
is proteolytically cleaved to yield a cytosolic fragment (p50) that migrates to the nucleus and activates the tran-
scription of UPR genes, like GRP78/BiP and CHOP. PERK dimerizes, autophosphorylates, and phosphorylates
eIF2a, thereby suppressing its activity and reducing the rate of translation initiation, while increasing the rate of
translation of ATF4, a potent transcription factor that augments the expression of genes involved in antioxidative
stress, amino acid metabolism, and protein chaperoning. During on-going ER stress or irreparable ER damage,
apoptotic pathways are activated. Ire1 phosphorylates JNK, leading to inhibition of Bcl-2 activity and activation
of Bim, and recruits, releases, and activates procaspases in the cytosol. Induction of CHOP via XBP1, ATF6 or
ATF4, down-regulates prosurvival Bcl-2-family members, increases prodeath proteins (like Bim) and ROS, and
decreases the levels of glutathione, a ROS scavenger. In the presence of ROS, Ca2þ transfer to the mitochondria
leads to the release of cytochrome c. The balance between proapoptotic and antiapoptotic Bcl-2-family members
is disturbed, with activation of the intrinsic apoptotic pathway.
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The transcription factor ATF6 is translo-
cated to the Golgi during ER stress and is proteo-
lytically activated. ATF6 stimulates ER-stress
genes as a homodimer or as a heterodimer
with other transcription factors like XBP1,
whose transcription is also induced by ATF6
(Yoshida et al. 2001; Malhotra and Kaufman
2007). ATF6 is cytoprotective, possibly mediated
by RCAN1 (regulator of calcineurin-1), an
endogenous inhibitor of calcineurin (Belmont
et al. 2008). This enzyme dephosphorylates
the proapoptotic Bad (Bcl-2 antagonist of cell
death), which then dimerizes and inhibits anti-
apoptotic family members such as Bcl-2 and
Bcl-Xl (Wang et al. 1999).

ATF4, ATF6, and XBP1 all induce the
transcription of the gene encoding CHOP (C/
EBP homologous protein) (Kim et al. 2008).
The Ire1-ASK1-p38-MAPK pathway enhances
CHOP activity at a posttranscriptional level
(Wang and Ron 1996). CHOP is involved in ER
stress-induced apoptosis by down-regulating
the antiapoptotic Bcl-2 (McCullough et al.
2001), and by inducing expression of the pro-
apoptotic Bim (Puthalakath et al. 2007) and of
ER oxidase 1a, thereby rendering the ER more
oxidative and exacerbating ER stress (Marciniak
et al. 2004). Misfolded proteins are eventually
eliminated via proteins involved in the ERAD
pathway, which are induced and controlled by
both Ire1-XBP1 and ATF6 pathways (Yoshida
et al. 2003).

No trigger for ER stress selectively elicits
either adaptive responses or apoptosis. The
switch between life and death is regulated by
the complex interdependent UPR-signaling
pathways that each may result in prosurvival or
prodeath responses. The different time courses
of the three main UPR branches may influence
the cell fate (Lin et al. 2007a). The early termi-
nation of Ire1a activity is needed for cell death.
Differential activation of PERK and Ire1a may
lead to life or death (Lin et al. 2009). Cell death
is induced by apoptosis and by caspase-inde-
pendent necrosis. ER stress also induces auto-
phagy (Ogata et al. 2006; Bernales et al. 2006;
Hoyer-Hansen and Jaattela 2007). The PERK-
ATF4 branch stimulates the expression of ATG12,
an autophagy gene (Kouroku et al. 2007). This

catabolic process removes unfolded proteins and
their aggregates independently of the ubiquitin/
proteasome system, thereby promoting cell sur-
vival. Ultimately, however, enhanced autophagic
vacuolization may lead to non-apoptotic cell
death (Levine and Kroemer 2008).

ER stress and cell death involve many Ca2þ-
dependent processes (Kim et al. 2008) including
phospholipases, scramblases, nitric-oxide (NO)
synthases, calpains, calcineurin, FKBP38, forti-
lin, a putative modulator of Mcl-1 (myeloid cell
leukemia sequence 1), death-associated pro-
tein kinase 1, mitochondrial fission, and Ca2þ-
dependent pathways triggering autophagy.
Some pathways require interplay between mito-
chondria and the ER in zones of close contact
(Giorgi et al. 2008, 2009). These microdomains
involve the close proximity of ER Ca2þ-release
channels like the IP3R and mitochondrial Ca2þ-
transport mechanisms, like the voltage-depen-
dent anion channel (VDAC) and the Ca2þ uni-
porter (Giorgi et al. 2009). Changes in ER Ca2þ

homeostasis in this way affect mitochondrial
Ca2þ signaling. Lowering of the [Ca2þ]ER by
antiapoptotic proteins such as Bcl-2 has been
described (Scorrano et al. 2003) and is expected
to lower the sensitivity to apoptotic Ca2þ trans-
fer from the ER to the mitochondria (Rizzuto
et al. 2009). Bcl-Xl, a related antiapoptotic pro-
tein was found to induce prosurvival ER-to-
mitochondria Ca2þ signaling by sensitizing
the IP3R to basal levels of IP3 (White et al.
2005). ER-to-mitochondria Ca2þ signals can
regulate cell survival by enhancing mitochon-
drial bioenergetics. Mitochondrial Ca2þ over-
load, on the other hand, by a larger or more
persistent [Ca2þ] rise was found to induce cell
death (Rong and Distelhorst 2008). Cell death
is characterized by mitochondrial outer mem-
brane permeabilization (MOMP) and the loss
of the mitochondrial transmembrane potential
DCm (Kroemer et al. 2007). Mitochondrial
Ca2þ overload can cause breakdown of DCm

by activating the permeability transition pore
(PTP). Loss ofDCm, however, seems to be a sec-
ondary event and not required for MOMP and
the release of cytochrome c (Chipuk and Green
2008). Accordingly, PTP opening probably
plays a role in necrosis but not apoptosis.
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Deficiency of Bax and Bak confers resistance to
apoptotic cell death induced by conventional
anticancer therapies. SERCA inhibitors like
thapsigargin, however, can efficiently kill Bax/
Bak2/2 MEFs by inducing mitochondrial
Ca2þ overload, PTP opening and necrotic cell
death (Janssen et al. 2009). In addition to PTP
opening, the activation and oligomerization
of the executioner proapoptotic Bcl-2-family
members Bax and Bak induce MOMP in
response to a variety of apoptotic triggers (Chi-
puk and Green 2008; Brunelle and Letai 2009).
The activity of Bax/Bak is tightly controlled by
proteins of the Bcl-2 family. The antiapoptotic
Bcl-2-family members, including Bcl-2, Bcl-Xl
and Mcl-1, neutralize and prevent oligomeri-
zation of Bax/Bak, whereas activator pro-
apoptotic BH3-only proteins, including Bim,
cleaved Bid and cytosolic p53, directly bind
to Bax/Bak, causing a conformational change,
membrane insertion, and oligomerization. In
addition, sensitizer BH3-only proteins, includ-
ing Bad, Noxa, and Puma, bind to the antiapop-
totic Bcl-2-family members, neutralizing their
antiapoptotic activity. Many of these proteins
affect ER Ca2þ homeostasis by binding to the
IP3R and/or changing its phosphorylation,
resulting in altered Ca2þ-flux properties of the
channel (Oakes et al. 2005; White et al. 2005;
Rong and Distelhorst 2008).

DIABETES MELLITUS

Intracellular Ca2þ signaling is perturbed in this
chronic metabolic disease with hyperglycemia.
Resting [Ca2þ]cyt increases, and stimulus-
induced [Ca2þ]cyt increases in many tissues de-
crease (Levy 1999; Verkhratsky and Fernyhough
2008). The [Ca2þ]ER and SR [Ca2þ] ([Ca2þ]SR)
decrease in the pancreatic ß-cell and in tissues
affected by diabetic complications.

Pancreatic b-Cell

The progressive reduction in cell mass and
eventually failure of the ß-cell is because of
apoptotic cell death. ER stress is an important
mechanism of apoptosis (Eizirik et al. 2008),
at least in some types of diabetes (Akerfeldt

et al. 2008). The [Ca2þ]ER in the ß-cell is de-
creased, but the mechanism involved depends
on the type of diabetes. The low [Ca2þ]ER

impairs proinsulin processing and transport
(Guest et al. 1997). The subsequently activated
UPR can lead to apoptosis resulting in insuffi-
cient insulin secretion (Oyadomari and Mori
2004; Eizirik et al. 2008). The very high secre-
tion rate of ß-cells makes them very sensitive
to apoptosis induced by ER Ca2þ depletion
(Araki et al. 2003; Cardozo et al. 2005; Tonnesen
et al. 2009).

Type-1 diabetes is characterized by an auto-
immune ß-cell destruction caused by over-
production of NO (Gotoh and Mori 2006).
Cytokines released from infiltrating T-cells
and macrophages up-regulate inducible NO
synthase in an NF-kB- and STAT-1-dependent
manner (Eizirik et al. 2008). NO depletes ER
Ca2þ in ß-cells by acting on SERCA and on
the Ca2þ-release channels (Oyadomari et al.
2001). NO down-regulates SERCA2b expres-
sion (Cardozo et al. 2005), perhaps through
inhibition of the Sp1 transcription factor (Pirot
et al. 2008). NO also reacts with superoxide
anion to form peroxynitrite, which inhibits
SERCA by reacting with two tyrosine residues
in the channel-like domain (Viner et al. 1999;
Grover et al. 2003). Peroxynitrite also activates
RyR2 by poly-S-nitrosylation of the channel
(Xu et al. 1998). The cytokines also up-regulate
death protein 5, a BH3-only protein that con-
tributes to Ca2þ depletion and ER stress (Gur-
zov et al. 2009). This depletion mainly occurs
when IP3Rs and RyRs are stimulated (Luciani
et al. 2009). Type-1 diabetes was furthermore
associated with the single-nucleotide polymor-
phism rs2296336 in the gene encoding IP3R3
(Roach et al. 2006). Increased cholinergic tone
with more acetylcholine-induced IP3 produc-
tion, and up-regulation of the IP3R during
hyperglycemia (Lee et al. 1999) therefore pro-
mote ER Ca2þ depletion. NO-induced ER stress
in ß-cells does not activate the ATF6 branch
of the UPR (Cardozo et al. 2005; Tonnesen
et al. 2009). It is still debated whether cyto-
kine-induced ER stress is a direct cause of
ß-cell apoptosis or a parallel and/or down-
stream event (Akerfeldt et al. 2008).

Diseases with a Low ER Calcium Concentration
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Nonautoimmune type-1 diabetes in Wolf-
ram syndrome is caused by mutations in the
gene encoding the ER glycoprotein wolframin
(Inoue et al. 1998; Strom et al. 1998). This
genetic defect lowers [Ca2þ]ER in ß-cells (Takei
et al. 2006) and activates the UPR and triggers
the apoptotic pathway (Yamada et al. 2006).
Reconstitution of this ER-resident transmem-
brane protein into planar lipid bilayers induces
a cation-selective ion channel (Osman et al.
2003). Wolframin also prevents ER stress via
other mechanisms, e.g., by negatively regulating
ATF6a through the ubiquitin-proteasome
pathway (Fonseca et al. 2010).

Type-2 diabetes is characterized by insulin
resistance in liver, skeletal muscle and adipose
tissue, and a failure of the ß-cell to compensate
for the increasing demand. Insulin resistance
in liver and adipose tissue may be because of
ER stress (van der Kallen et al. 2009). ER Ca2þ

depletion with thapsigargin leads to insulin
resistance (Ozcan et al. 2004), but so far there
are no studies linking peripheral insulin resis-
tance to a decreased [Ca2þ]ER. A high-fat diet
or obesity often leads to the development of
type-2 diabetes (Eizirik et al. 2008). Free fatty
acids trigger ß-cell loss (Leonardi et al. 2003).
One model of lipotoxicity proposes that palmi-
tate activates the UPR in ß-cells (Eizirik et al.
2008). The mechanism may again involve ER
Ca2þ depletion (Cunha et al. 2008; Gwiazda
et al. 2009) by decreased expression (Roe et al.
1994; Evans-Molina et al. 2009) or activity
of SERCA (Cunha et al. 2008). Peroxisome
proliferator-activated receptor-g (PPAR-g)
agonists, which improve sensitivity to insulin,
also restore SERCA expression and attenuate ER
stress in the ß-cell (Evans-Molina et al. 2009).
Despite variation in the gene encoding SERCA3
in type-2 diabetic patients (Varadi et al. 1999),
insulin secretion and blood glucose levels
were normal in SERCA32/2 mice (Arredouani
et al. 2002), probably because of compensatory
mechanisms.

Polymorphisms in the gene for insulin re-
ceptor substrate 1 (IRS-1) have been linked to
type-2 diabetes (Almind et al. 1993). IRS-1
directly interacts with SERCA3 (Borge and
Wolf 2003). Mice with deleted IRS-1 have

reduced SERCA2b and 3 levels, more transient
increases in [Ca2þ]cyt and less insulin secretion
(Kulkarni et al. 2004).

Diabetic Cardiomyopathy

The remodeling of the SR resulting in a slower
Ca2þ uptake, a lower [Ca2þ]SR, and release of
less activator Ca2þ, slows relaxation kinetics of
the ventricle and eventually leads to systolic
dysfunction, independently of vascular or valve
disease (Rubler et al. 1972). Hyperglycemia
causes these effects (Ren et al. 1997). The
changes in SR Ca2þ handling depend on the
type of diabetes, the experimental model, the
degree of hyperglycemia, and the extent of dis-
ease progression. SR function is already abnor-
mal at an insulin-resistant stage before the
manifestation of overt type-2 diabetes (Dutta
et al. 2002; Wold et al. 2005; Vasanji et al.
2006; Reuter et al. 2008).

Phospholamban, which inhibits SERCA2a,
becomes up-regulated (Kim et al. 2001; Choi
et al. 2002; Belke et al. 2004; Zhou et al. 2006)
at an early stage of the disease (Zhong et al.
2001). Its phosphorylation by protein kinase A
and Ca2þ/calmodulin-dependent protein ki-
nase, which regulates the interaction with SER-
CA2a, and therefore stimulates Ca2þ uptake,
decreases (Choi et al. 2002; Belke et al. 2004;
Vasanji et al. 2004, 2006).

The activity and expression of SERCA2a
decrease in the diabetic heart (Teshima et al.
2000; Kim et al. 2001; Trost et al. 2002; Choi
et al. 2002; Belke et al. 2004; Vasanji et al.
2004; Wold et al. 2005; Zhang et al. 2008; Stolen
et al. 2009; Wang et al. 2010). Reduced activity
of SERCA2a is not only because of the effect
on phospholamban, but also to increased for-
mation of advanced glycation end products
of SERCA2a (Bidasee et al. 2004), depressed
activity of protein kinase A (Dutta et al. 2002),
and sensory denervation leading to diminished
production of NO and peroxynitrite, which at
basal concentrations activate SERCA2a through
S-nitrosylation of Cys-349 (Bencsik et al. 2008).
The fact that peroxynitrite both stimulates
(Adachi et al. 2004) and inhibits SERCA (Viner
et al. 1999; Schmidt et al. 2003b) seems to
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indicate that the effect is very much dependent
on the experimental conditions or perhaps on
the isoform studied. SERCA2a expression
decreases in a later stage of the disease (Zhong
et al. 2001), perhaps by increased O-glycosyla-
tion of the transcription factor Sp1 with b-N-
acetylglucosamine because of the hyperglyce-
mia (Clark et al. 2003), or by reduced expression
and activity of SIRT1, a histone deacetylase
(Sulaiman et al. 2010). RyR2 function changes
by formation of disulfide bonds between adja-
cent sulfhydryl groups (Bidasee et al. 2003a),
by increased glycation (Bidasee et al. 2003b),
by decreased FKBP12.6 expression and bind-
ing (Belke et al. 2004; Shao et al. 2007), by
hyperphosphorylation (Shao et al. 2007;
Stolen et al. 2009), and by a reduced density of
T-tubules (Stolen et al. 2009). Two RyR popula-
tions appear: one with enhanced responsiveness
to Ca2þ and another being unresponsive (Shao
et al. 2007). Dysfunctional RyR2 can cause dys-
synchronous and diastolic Ca2þ releases, some-
times with ventricular arrhythmia (Shao et al.
2007). Spontaneous Ca2þ sparks representing
aberrant RyR2 activation increase in frequency
(Yaras et al. 2005; Shao et al. 2007). SR Ca2þ

leak increases (Belke et al. 2004; Stolen et al.
2009). Expression of RyR2 decreases (Teshima
et al. 2000; Choi et al. 2002; Guner et al. 2004;
Pereira et al. 2006; Zhou et al. 2006; Reuter
et al. 2008; Wang et al. 2010) at later stages of
the disease (Zhong et al. 2001). IP3R1, 2, and
3 become down-regulated, but these effects
may be species related (Guner et al. 2004; Zhou
et al. 2006). The roles of IP3Rs in the heart are
furthermore not entirely clear.

Some treatments directly affect the Ca2þ

signal. Overexpression of SERCA2a protects
the heart from contractile dysfunction (Trost
et al. 2002; Vetter et al. 2002; Sakata et al.
2007) and reverses established cardiomyopathy
(Suarez et al. 2008) and the transcriptional
profile induced by diabetes (Karakikes et al.
2009). SERCA2a expression and cardiac function
can be normalized by PPAR-g agonists (Shah
et al. 2005), total triterpene acids from Cornus
officinalis Sieb. (Qi et al. 2008), and the SIRT1
activator resveratrol (Sulaiman et al. 2010).
Breviscapine in Chinese medicine decreases

phospholamban expression and increases that
of SERCA2a and RyR2 (Wang et al. 2010).
Exercise training also normalizes abnormal
Ca2þ signaling (Shao et al. 2009; Stolen et al.
2009).

Vascular Disease

Diabetes lowers [Ca2þ]ER in the smooth-muscle
cells, macrophages and platelets. These changes
contribute to the vascular complications
including atherosclerosis (Cooper et al. 2001).

In healthy smooth-muscle cells, basal levels
of NO react with superoxide anion to form
peroxynitrite, which together with glutathione
reacts with Cys-674 of SERCA and increases
its activity (Adachi et al. 2004). The hyperglyce-
mia of diabetes induces high levels of oxidants
that irreversibly oxidize Cys-674 leading to
less S-glutathionylation-induced stimulation
of SERCA2 (Adachi et al. 2004) and faster deg-
radation (Ying et al. 2008). Insulin also inhibits
SERCA via enhanced nitrotyrosine formation
(Kobayashi et al. 2007). SERCA2 is also redis-
tributed to a peri-nuclear pattern (Searls et al.
2010). The subsequently decreased [Ca2þ]ER

stimulates plasma-membrane Ca2þ influx and
induces migration of the smooth-muscle cell,
which contributes to neointimal hyperplasia
and atherosclerosis (Tong et al. 2008). Dediffer-
entiation of smooth-muscle cells precedes their
migration from the media to the intima. The
up-regulation of the secretory-pathway Ca2þ-
ATPase 1 (SPCA1) in diabetes (Lai and Michel-
angeli 2009) probably reflects the change from
a contractile to a secretory cell. Sp1 and YY1,
transcription factors controlling SPCA1 tran-
scription (Kawada et al. 2005), become more
active in high glucose (Han and Kudlow 1997).
The expression of IP3R and RyR decreases
(Ma et al. 2008; Searls et al. 2010).

Macrophages in type-2 diabetes express
more CHOP and are therefore more susceptible
to ER stress-induced apoptosis. CHOP induces
ER oxidase 1a, with hyperoxidation of the ER
lumen and disulfide-bond formation between
two cysteines in IP3R1. This causes dissociation
of the disulfide isomerase-like protein ERp44
(Kang et al. 2008) and more IP3-induced Ca2þ
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release (Li et al. 2009). These changes favor
plaque necrosis.

Altered Ca2þ signaling in platelets makes
them hyperreactive. Their increased adhesive-
ness and aggregability contribute to the devel-
opment of the angiopathy (Knobler et al.
1998). The hyperglycemia causes oxidant stress
in platelets (Vericel et al. 2004), which en-
hances tyrosine nitration of SERCA2 and in
this way decreases SERCA2 function and, at
least at high HbA1C levels, expression in type-
2 diabetic patients (Randriamboavonjy et al.
2008). PPAR-g agonists decrease tyrosine nitra-
tion of SERCA and increase its expression.
Increased levels of homocysteine in type-2 dia-
betic patients also release Ca2þ from agonist-
sensitive Ca2þ stores (Zbidi et al. 2010). The
direct stimulatory interaction of STIM1 with
SERCA3 is impaired in type-2 diabetes (Lopez
et al. 2008), which can explain the increased
plasma-membrane Ca2þ entry, and the higher
[Ca2þ]cyt at rest and during thrombin stimula-
tion (Saavedra et al. 2004). SERCA3b was up-
regulated in type-1 diabetes (Chaabane et al.
2007). This isoform is involved in cell adhesion
(Chaabane et al. 2006) and its up-regulation can
thus explain the increased adhesiveness in dia-
betic patients.

Diabetic Nephropathy

This complication is an important cause of end-
stage renal disease. Apoptosis induced by ER
stress also occurs in the diabetic kidney (Liu
et al. 2008). In podocytes, advanced glycation
end products release ER Ca2þ and trigger a
UPR leading to apoptosis during the early stage
of the nephropathy (Chen et al. 2008). The loss
of podocytes is an important determinant in
the progression of the disease. Tubulointerstitial
cells also show ER stress (Lindenmeyer et al.
2008), probably induced by the hyperglycemia
and the massive protein reabsorption as a
result of the proteinuria, but possible changes
in [Ca2þ]ER were not investigated. The activated
UPR selectively enhances the prosurvival path-
way of the response, suggesting that diabetic
damage may occur independently of any termi-
nal UPR process (Brosius and Kaufman 2008).

Decreased IP3R1 expression in the afferent
arteriole and mesangial cell leads to smaller
[Ca2þ]cyt increases in response to vasoconstric-
tors, resulting in renal hyperfiltration and glo-
merular damage (Sharma et al. 1999).

Sensory Neuropathy

Diabetic neuropathy can produce prolonged
changes in the nervous system, with pain,
sensory loss, food ulceration, infection, gan-
grene and poor wound healing (Huang et al.
2002; Verkhratsky and Fernyhough 2008). The
[Ca2þ]ER was decreased because of a decreased
SERCA expression by a so far unidentified
mechanism and by a decreased activity of the
pump (Verkhratsky and Fernyhough 2008).
The decreased activity of SERCA may be caused
by impaired mitochondrial ATP production
in diabetes because of reduced stimulation of
insulin receptors (Fernyhough and Calcutt
2010). This effect on the mitochondria seems
to be independent of the hyperglycemia. The
decreased [Ca2þ]ER then affects protein synthe-
sis, posttranslational modification and traf-
ficking, which in turn diminish the supply of
voltage-gated Ca2þ channels to the axons, thus
resulting in the decrease of nerve-conductance
velocity (Verkhratsky and Fernyhough 2008).
Stimulus-induced [Ca2þ]cyt increases decrease
(Kruglikov et al. 2004) as a result of the de-
creased [Ca2þ]ER and probably also as a result
of decreased IP3R function. Protein glycosyla-
tion with b-N-acetylglucosamine is increased
in diabetes (Hu et al. 2005). Glycosylation of
IP3R1 by b-N-acetylglucosamine decreases its
function (Rengifo et al. 2007).

Salivary Glands

Abnormal Ca2þ signaling in the salivary glands
leads to dryness of the mouth, loss of taste sen-
sation, sialosis, and other disorders of the oral
cavity (Nicolau et al. 2009). SERCA is inhibited
in the submandibular gland of streptozotocin-
induced diabetic rats and therefore [Ca2þ]ER

and IP3-induced [Ca2þ]cyt increases decrease
(Fedirko et al. 2006). The decreased [Ca2þ]ER

results in improper posttranslational process-
ing, folding, and exit of ER proteins. This could
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explain the decreased saliva protein content and
amylase activity.

NEUROLOGICAL DISEASES

Neural Ischemia

Ischemia depletes ER Ca2þ. Both the decreased
[Ca2þ]ER (Paschen and Mengesdorf 2005) and
the increased [Ca2þ]cyt (Verkhratsky 2005) con-
tribute to cell death. The induced UPR may lead
to apoptosis in the peri-infarct area (DeGracia
et al. 2002). The release of Ca2þ amplifies the
[Ca2þ]cyt increase evoked by ischemia-induced
Ca2þ entry (Xiong et al. 2007). Inhibition of
this release with dantrolene reduces cell injury
(Wei and Perry 1996). The mechanism of ER
Ca2þ depletion remains unclear. Cytosolic
Ca2þ enhances NO synthesis, which inhibits
mitochondrial electron transport, and aug-
ments the generation of reactive oxygen species
(ROS) (Moncada and Erusalimsky 2002).
SERCA becomes inhibited by excessive NO pro-
duction (Doutheil et al. 2000), by ischemia-
induced inhibition of the coupling of ATP
hydrolysis to Ca2þ transport (Parsons et al.
1999), and by activated calpain by the increased
[Ca2þ]cyt (French et al. 2006; Bevers and
Neumar 2008). ER Ca2þ-release channels are
affected during neural ischemia. RyR2 is acti-
vated by S-glutathionylation by NO and ROS
(Bull et al. 2008), and by calpain-induced
proteolysis (Rardon et al. 1990). Calpain causes
proteolysis of the IP3R resulting in decreased IP3

binding, suggesting that site-specific cleavage
decreases the affinity of the remaining protein
species for IP3 (Nagata et al. 1994; Dahl et al.
2000). Although this would indicate that cal-
pain prevents Ca2þ release, it is also possible
that the proteolysis simply removes the ligand
regulation of the channel and leads to baseline
Ca2þ release from the ER, contributing to
Ca2þ overload (Bevers and Neumar 2008).
Calpain also inhibits IP3 metabolism by cleav-
ing IP3 kinase B (Pattni et al. 2003), allowing
it to act longer on the IP3R, thereby potentiating
Ca2þ efflux from the ER (Bevers and Neumar
2008). Enhanced activity of phospholipase C
and A2 during ischemia liberates free fatty acids,
which release ER Ca2þ (O’Neil et al. 1999).

Neurodegeneration

Ca2þ signaling is often abnormal in neurode-
generative diseases (Mattson 2007). Diseases
with an increased [Ca2þ]ER, like Alzheimer dis-
ease (Tu et al. 2006; Berridge 2010), fall outside
the scope of this review. ER stress and the UPR
also occur in Parkinson disease (Ryu et al.
2002), amyotrophic lateral sclerosis (Kanekura
et al. 2009), and polyglutamate diseases (Lind-
holm et al. 2006), but the effects on [Ca2þ]ER

are not well documented. We will focus on dis-
eases with a decreased [Ca2þ]ER.

Some lysosomal storage diseases lead to a
decreased [Ca2þ]ER. In neurons of GM1-gan-
gliosidosis, GM1 accumulates at the ER mem-
brane and depletes ER Ca2þ stores (Tessitore
et al. 2004) by interacting with the phosphory-
lated form of the IP3R (Sano et al. 2009). The
subsequent activation of the UPR leads to apop-
tosis (Sano et al. 2009). Silencing of IP3R1 with
siRNA reduces the number of apoptotic cells
(Sano et al. 2009). Increased Ca2þ release from
the ER in Gaucher disease is because of overac-
tivation of the RyR (Korkotian et al. 1999; Pelled
et al. 2005), because glucosylceramide, the lipid
that accumulates in this disease, directly
modulates the RyR (Lloyd-Evans et al. 2003).
In Sandhoff disease, SERCA activity is inhibited
by the accumulation of GM2-ganglioside (Pelled
et al. 2003), which depends on an exposed
sialic-acid residue on GM2 (Ginzburg et al.
2008). The UPR is also activated by the accumu-
lation of palmitoylated proteins in the infantile
form of Batten disease, but ER Ca2þ handling
was not investigated (Zhang et al. 2007). The
decreased SERCA2 and IP3R1 expression in
Niemann-Pick A disease did not activate a
UPR (Ginzburg and Futerman 2005). The sug-
gestion that the UPR is a common mediator
of apoptosis in neurodegenerative lysosomal
storage diseases (Wei et al. 2008a) can therefore
be questioned (Farfel-Becker et al. 2009). In-
creasing [Ca2þ]ER by inhibiting the RyR or
by SERCA2b overexpression partially restored
mutant-enzyme homeostasis in several lysoso-
mal storage diseases (Ong et al. 2010).

Transmissible spongiform encephalopathies
include Creutzfeldt-Jakob disease in humans,
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and bovine spongiform encephalopathy and
scrapie in animals (Prusiner 1998). These
diseases are associated with extracellular ac-
cumulation of a conformationally modified
abnormal isoform of the prion protein, a widely
expressed plasma membrane-associated glyco-
protein with highest levels of expression on
neurons and glia. This protein binds to the
cell surface and sends a signal to the ER to
release Ca2þ through the IP3R and RyR (Hetz
et al. 2003; Ferreiro et al. 2006, 2008). The
subsequent decreased [Ca2þ]ER leads to a UPR
and activates the ER-stress-induced apopto-
sis pathway. Dantrolene and xestospongin C,
which are inhibitors of the RyR and IP3R
respectively, prevent neuronal death (Ferreiro
et al. 2006, 2008).

Neuropathic Pain

Neuropathic pain is pain arising from nerve
injury. The soma of sensory neurons is affected
by injuring the peripheral axons. Spinal-nerve
ligation depletes ER Ca2þ (Rigaud et al. 2009)
by a loss of ER and therefore of SERCA (Gemes
et al. 2009). Rigaud et al. (2009) suggested that
this may trigger a UPR, but this was not directly
shown. Depletion of ER Ca2þ stores thus con-
tributes to the pathogenesis of neuropathic pain.

Anesthesia

General anesthesia may cause cognitive deficits
after surgery (Moller et al. 1998). Inhalation
anesthetics can overactivate the IP3R, with ex-
cessive ER Ca2þ release leading to apoptosis
(Wei et al. 2008b; Yang et al. 2008). Neurons
with enhanced IP3R activity, for example, in
familial Alzheimer or Huntington disease,
may be especially vulnerable.

CARDIOVASCULAR DISEASES

Atherosclerosis

Macrophages play a critical role in this chronic
inflammatory disease (Fan and Watanabe
2003). They accumulate unesterified cholesterol
in advanced lesions, which changes the fluidity
of the ER membrane and in this way inhibits

SERCA (Li et al. 2004). Depletion of ER Ca2þ

stores induces a UPR and apoptosis (Feng
et al. 2003). Excessive apoptosis plays a key
role in the progression of atherosclerosis. The
UPR also sets up a positive feedback loop with
more Ca2þ release via induction of ER oxidase
1a. Hyperoxidation of the ER lumen activates
Ca2þ release (Li et al. 2009) by disulfide-bond
formation between two cysteines in IP3R1 and
dissociation of the inhibitory ERp44 (Kang
et al. 2008). This mechanism complements the
increased ER Ca2þ leak through induction of
a truncated variant of SERCA1 through the
PERK pathway (Chami et al. 2008).

Homocysteine, a risk factor for cardiovascu-
lar disease, depletes ER Ca2þ in aortic smooth
muscle, induces ER stress and in this way accel-
erates atherosclerosis (Dickhout et al. 2007).
Also increased production of superoxide anion
inhibits SERCA in blood vessels (Tong et al.
2009).

Endothelial dysfunction already occurs
early during atherogenesis. Increased peroxyni-
trite formation in the endothelium inhibits
SERCA, depletes ER Ca2þ and induces a UPR
(Dickhout et al. 2005).

Chronic Heart Failure

Reduced [Ca2þ]cyt increases caused by a de-
creased SR Ca2þ content make the heart muscle
too weak to pump sufficient blood through
the body (Bers et al. 2003). Ca2þ pumping is
reduced because of a decreased ratio of SER-
CA2a relative to phospholamban expression
(Hasenfuss and Pieske 2002), or because phos-
pholamban is either mutated with more inhibi-
tion of SERCA2a (Franz et al. 2001; Schmitt
et al. 2003; Haghighi et al. 2006; Kranias and
Bers 2007) or less phosphorylated (Frank et al.
2002; Bers et al. 2003; Yano et al. 2008) because
of a more active protein phosphatase 1 (del
Monte and Hajjar 2008). SERCA2 mutations
have not been linked to heart failure (Schmidt
et al. 2003a). SERCA3f,an isoformwith aspecific
role in ER stress, becomes up-regulated (Dally
et al. 2009). Enhanced Naþ-Ca2þ exchange
leading to more extrusion of Ca2þ from the cell
also depletes SR Ca2þ (O’Rourke et al. 1999).
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Subconductance states of the RyR2 and
decreased coupled gating of RyR2-channel clus-
ters can increase SR Ca2þ leak during diastole
(Reiken et al. 2003; Wehrens et al. 2003, 2005a,
2006; Lehnart et al. 2005, 2008; Huang et al.
2006; Zalk et al. 2007). Hyperactivation of
RyR2 may arise from activated protein kinase A
by sympathetic neurons and increased levels of
catecholamines, and subsequent hyperphos-
phorylation of RyR2 at Ser-2809 and dis-
sociation of FKBP12.6 (Marx et al. 2000) (but
see Bers et al. 2003; Seidler et al. 2007; Yano
et al. 2008). Enhanced Ca2þ/calmodulin-
dependent protein kinase d-dependent phos-
phorylation of RyR2 at Ser-2815 also increases
diastolic Ca2þ leak and reduces SR Ca2þ load
(Ai et al. 2005).

ß-blockers prevent the hyperphosphoryla-
tion of RyR2 by protein kinase A, normalize
channel function and improve cardiac func-
tion (Reiken et al. 2001; Doi et al. 2002). Heart
failure can also be prevented by JTV519, which
inhibits the dissociation of FKBP12.6 from
RyR2; thereby stabilizing the channel, enhanc-
ing cooperativity among the subunits, and
promoting coupled gating (Yano et al. 2003;
Wehrens et al. 2005b). Overexpression of
SERCA2 (Inesi et al. 2008; Kawase and Haj-
jar 2008), of pseudophosphorylated phos-
pholamban (Hoshijima et al. 2002), or of
FKBP12.6 (Huang et al. 2006), gene transfer of
a phospholamban-targeted antibody (Dieterle
et al. 2005), and down-regulation of phos-
pholamban (Andino et al. 2008) can correct
in vivo cardiac function. Modification of
SERCA/phospholamban activity/expression is
a promising target for remediation of cardiac
disease. Indeed, a clinical trial of SERCA2a-gene
therapy is initiated (Jaski et al. 2009).

VIRUS INFECTION

Complete virions or viral proteins can decrease
the [Ca2þ]ER. Some viruses stimulate Ca2þ

release via the IP3R, often by increasing the
[IP3] (Table 1). Other viruses release Ca2þ via
an increased expression or function of the
RyR. They may also decrease SERCA activity
or expression, enhance the passive Ca2þ leak

from the ER, or form pores in the ER mem-
brane. Nef of human immunodeficiency virus
type 1 directly interacts with the IP3R and acti-
vates Ca2þ entry, without however inducing
Ca2þ release (Foti et al. 1999; Manninen and
Saksela 2002).

ER Ca2þ depletion may be apoptotic or
antiapoptotic, depending on the virus, its life
cycle, and the induced pathology (Chami et al.
2006; Zhou et al. 2009). Ca2þ depletion by, for
example, enteroviruses and human cytomegalo-
virus, delays apoptosis, giving the virus more
time for replication. These viruses reduce ER-
mitochondrial Ca2þ fluxes and prevent opening
of the PTP with less release of cytochrome c and
less caspase activation (van Kuppeveld et al.
2005; Sharon-Friling et al. 2006). ER and also
Golgi Ca2þ depletion by e.g., enteroviruses leads
to the accumulation of ER/Golgi-derived
vesicles, where viral RNA replication takes place
(van Kuppeveld et al. 2005), and inhibits vesic-
ular protein trafficking and so down-regulates
immune responses of the ghost (de Jong et al.
2006). In contrast, ER Ca2þ depletion by hepa-
titis C virus in liver promotes apoptosis and
facilitates virion release because of translocation
of Bax to the mitochondria, depolarization of
the mitochondrial membrane, release of cyto-
chrome c, and activation of caspase 3 (Benali-
Furet et al. 2005). Abnormal Ca2þ signaling by
Gp120 and Tat causes neuronal apoptosis and
dysfunction and eventually AIDS dementia
(Haughey and Mattson 2002). The decreased
SERCA expression and increased RyR expres-
sion in Borna disease lead to ER stress, activa-
tion of the UPR and apoptotic degeneration
of the cerebellum and hippocampus (Williams
and Lipkin 2006). ER Ca2þ depletion also in-
creases [Ca2þ]cyt and therefore activates Ca2þ-
dependent enzymatic processes and transcri-
ption factors, promoting virus replication and
the induction of a variety of responses.

Some antiviral drugs directly affect the
[Ca2þ]ER. Human immunodeficiency virus-
protease inhibitors induce the accumulation
of free cholesterol in the ER of macrophages,
deplete ER Ca2þ, and induce ER stress and apop-
tosis (Zhou et al. 2005). This may explain
the increased incidence of atherosclerosis and
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cardiovascular disease in patients treated with
protease inhibitors. Lopinavir and ritonavir
also deplete ER Ca2þ and activate the UPR in
intestinal epithelial cells, thus disrupting the epi-
thelial barrier integrity with drug-induced diar-
rhea as a frequent side effect (Wu et al. 2010).

Bacteria can also cause ER stress. For exam-
ple, Shiga toxins of Shigella dysenteriae serotype
1 and some serotypes of Escherichia coli deplete

ER Ca2þ and trigger a UPR with apoptosis (Lee
et al. 2008).

LUNG DISEASES

Asthma

SERCA2 in airway smooth muscle is down-
regulated in this chronic inflammatory disease
with airway remodeling, leading to more

Table 1. Effects of complete virions or viral proteins on the [Ca2þ]ER.

Target Effect Virus or viral protein Reference

IP3R Increased IP3R
activity

p12I of human T-cell
lymphotropic virus type 1

Ding et al. 2002

glycoproteins of human herpes
simplex virus type 1 and type 2

Cheshenko et al. 2003

Increased IP3R
activity because
of increased IP3

production

influenza A virus Hartshorn et al. 1988
Poliovirus Guinea et al. 1989
gp120 and Tat of human

immunodeficiency virus type 1
Dayanithi et al. 1995
Mayne et al. 2000
Haughey and Mattson 2002

nonstructural protein 4 of
rotavirus

Tian et al. 1995
Dong et al. 1997
Seo et al. 2008

gp86 of human cytomegalovirus Keay et al. 1995
G-protein coupled receptor and

viral macrophage
inflammatory protein-I and -II
of human herpes virus 8

Arvanitakis et al. 1997
Nakano et al. 2003

RyR Increased RyR
activity

Tat of human immunodeficiency
virus type 1

Norman et al. 2008

Poliovirus Brisac et al. 2010
Increased RyR

expression
Borna disease virus Williams and Lipkin 2006

SERCA Decreased SERCA
activity

core protein of hepatitis C virus Benali-Furet et al. 2005

Decreased SERCA
expression

Borna disease virus Williams and Lipkin 2006
latent membrane protein-1 of

Epstein-Barr virus
Dellis et al. 2009

Passive Ca2þ leak Enhanced passive
Ca2þ leak

nonstructural protein 5A of
hepatitis C virus

Robinson and Marchant 2008

ER membrane Pore formation p7 and core protein of hepatitis C
virus

Griffin et al. 2003
Bergqvist et al. 2003

2B and 2BC proteins of entero-
and rhinoviruses

Aldabe et al. 1997
de Jong et al. 2008

nonstructural protein 4 of
rotavirus

Zhou et al. 2009

pUL37x1 protein of human
cytomegalovirus

Sharon-Friling et al. 2006
Zhou et al. 2009

6K protein of alphavirus Antoine et al. 2007
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sustained [Ca2þ]cyt increases and enhanced
cell motility, proliferation and secretion (Mahn
et al. 2009). Decreased SERCA expression might
be caused by enhanced cytokine production
during airway inflammation (Sathish et al.
2009).

ORMDL3 is a genetic risk factor associated
with asthma (Moffatt et al. 2007). The gene en-
codes an ER protein (Hjelmqvist et al. 2002)
that binds to and inhibits SERCA, leading to a
decreased [Ca2þ]ER and an UPR (Cantero-
Recasens et al. 2010).

Toxicity

Chronic exposure to cadmium in humans is
associated with lung, but also bone and renal
damage. Cadmium stimulates the IP3R through
IP3 production, and inhibits SERCA (Biagioli
et al. 2008). The reduced [Ca2þ]ER leads to ER
stress and ER-mediated apoptosis.

LIVER DISEASES

Nonalcoholic Fatty Liver

Triglycerides and free fatty acids accumulate
in the liver of obese individuals. Palmitate
and stearate deplete ER Ca2þ stores and activate
the UPR leading to cell death (Wei et al. 2009).

Cholestatic Liver Disease

Intrahepatic accumulation of bile acids induces
hepatocellular injury. Glycochenodeoxycholic
acid depletes ER Ca2þ and induces a UPR and
apoptosis (Tsuchiya et al. 2006). It is unclear
to what extent the decreasing [Ca2þ]ER directly
contributes to the pathology.

Burn Injury

Severe burn injury impairs liver function. Ther-
mal skin injury in rats depletes ER Ca2þ in the
liver (Jeschke et al. 2010). This effect is because
of an activation of the IP3R by released cyto-
chrome c and an increased IP3R expression.
ER Ca2þ depletion activates the UPR leading
to apoptosis.

SKELETAL-MUSCLE DISEASES

Brody Disease

Mutations in the gene of SERCA1 (Odermatt
et al. 1996) leading to reduced Ca2þ-pump
expression or activity and hence a prolonged
[Ca2þ]cyt elevation cause muscle cramping
and impaired relaxation during exercise (Brody
1969). Chianina cattle congenital pseudomyo-
tonia (Drogemuller et al. 2008) and Belgian
Blue cattle congenital muscular dystony (Char-
lier et al. 2008) are related pathologies. Until
now, no evidence for a UPR leading to apoptosis
has been provided, but the ongoing contracture
in cattle may induce rhabdomyolysis (Sacchetto
et al. 2009).

Autosomal Centronuclear Myopathy

Centronuclear myopathies are characterized by
small myofibers with centrally placed nuclei.
Mutations of the muscle-specific inositol phos-
phatase MIP/MTMR14 cause the dominant
form of the disease (Tosch et al. 2006; Shen
et al. 2009). Mice deficient in this phosphatase
produce less contractile force, have prolonged
relaxation, and show exacerbated fatigue.
PtdIns(3,5)P2 and PtdIns(3,4)P2 accumulate
and directly activate RyR1, resulting in an
increased Ca2þ leak, a lower [Ca2þ]SR and a
higher [Ca2þ]cyt. This proposed effect of
PtdIns(3,5)P2 and PtdIns(3,4)P2 on RyR1 still
needs confirmation.

Central Core Disease

Some mutations in the gene for RyR1 lead to
hypotonia, proximal-muscleweakness, and cen-
tral cores on muscle biopsy (Zhang et al. 1993).
They can lead to a leaky channel and a reduced
[Ca2þ]SR, with deleterious consequences for
contractions (Brini et al. 2005).

SKIN DISEASE

Darier disease is an inherited skin disorder with
less adhesion between epidermal cells and ab-
normal keratinization. Mutations in the gene
encoding SERCA2 (Sakuntabhai et al. 1999)
lower the [Ca2þ]ER in keratinocytes (Foggia
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et al. 2006). ER stress may occur (Onozuka et al.
2006).

The fruit hull of mangosteen is used in
Southeast Asia to treat skin infections and
wounds (Mahabusarakam et al. 1987). a-man-
gostin inhibits SERCA, leading to a UPR and
apoptosis (Sato et al. 2004).

CANCER

Malignant Transformation

Altered Ca2þ signaling may be involved in ma-
lignant transformation (Monteith et al. 2007).
[Ca2þ]ER is often decreased, making the cell
resistant to apoptosis. Subsequent Ca2þ entry
increases [Ca2þ]cyt and changes gene expres-
sion, DNA repair, and cell-cycle regulation, re-
sulting in cancer development (Korosec et al.
2006; Monteith et al. 2007; Lipskaia et al. 2009).

Human hepatitis B virus, an etiologic factor
of hepatocellular carcinoma, integrates with its
DNA into the gene for SERCA1 and cis-activates
chimeric transcripts producing inactive pro-
teins that deplete ER Ca2þ stores (Chami et al.
2000). Mice with a heterozygous deletion of
the gene encoding SERCA2 (Liu et al. 2001)
and some patients with Darier disease (Burge
and Wilkinson 1992) develop squamous cell
carcinomas. Neoplastic transformation has
been linked to a down-regulated SERCA2
(Pacifico et al. 2003; Vanoverberghe et al.
2004; Bergner et al. 2009) or SERCA3 (Gelebart
et al. 2002; Brouland et al. 2005), e.g., by somatic
or germ-like mutations or epigenetic mecha-
nisms involving promotor methylation (Endo
et al. 2004; Korosec et al. 2006, 2008). ER Ca2þ

depletion can also result from overexpression
of Ca2þ-release channels. IP3R3 is overexpressed
in disseminated gastric cancer (Sakakura et al.
2003). The amplification of the gene for IP3R2
increases in some tumors (Heighway et al.
1996). Increased IP3R expression does not occur
in all cancers (Bergner et al. 2009).

Anticancer Drugs

Most chemotherapeutic approaches kill tumor
cells via the induction of MOMP. However,
drugs that compromise the normal function

and homeostasis of the ER may also induce pro-
grammed cell death or improve the therapeutic
efficacy of existing anticancer drugs (Boelens
et al. 2007). Some drugs primarily reduce the
[Ca2þ]ER and in this way induce a UPR leading
to apoptosis. Known SERCA blockers like
thapsigargin and curcumin have anticancer
activity (Denmeade et al. 2003; Anand et al.
2008; Bakhshi et al. 2008). Anticancer drugs
like the stable analogue of the Bcl-2 antagonist
HA 14-1 (Hermanson et al. 2009), artemisinin
(Stockwin et al. 2009), amiloride analogues
(Park et al. 2009), and 2,5-dimethyl-celecoxib
(Johnson et al. 2002; Pyrko et al. 2007) also
inhibit SERCA with ER stress as a result.
SERCA2 expression decreases after photody-
namic therapy with hypericin (Buytaert et al.
2006). ER Ca2þ stores are depleted by euplotin
C through activated RyRs (Cervia et al. 2006),
by paclitaxel through formation of Bax dimers
in the ER (Liao et al. 2008), and by epigallocate-
chin gallate through inhibited protein process-
ing at the level of glucosidase II (Magyar et al.
2009) and GRP78/BiP (Ermakova et al. 2006).
Ca2þ depletion and ER stress are also induced
by cisplatin (Nawrocki et al. 2005), dehydrocos-
tuslactone (Hsu et al. 2009; Hung et al. 2010),
honokiol (Chen et al. 2010), diaryl- and triaryl-
methanes (Abdelrahim et al. 2006), inhibitors
of heat shock protein 90 (Taiyab et al. 2009),
n-3 long-chain polyunsaturated fatty acids
(Jakobsen et al. 2008), rhein (Lai et al. 2009),
cardiotoxin III (Chien et al. 2008), homohar-
ringtonine (Jie et al. 2007), berberine (Lin
et al. 2007b), diindolylmethane (Savino et al.
2006), the multi-kinase inhibitor sorafenib
(Rahmani et al. 2007), the p210 bcr-abl
tyrosine-kinase inhibitor STI571 (Pattacini
et al. 2004), parthenolide (Zhang et al. 2004),
photodynamic therapy with tetra-S-glycosy-
lated porphyrin (Thompson et al. 2008), and
by many other drugs. Edelfosine leads to Bax/
Bak-mediated ER Ca2þ depletion and apopto-
sis, without inducing a UPR (Nieto-Miguel
et al. 2007).

Ca2þ depletion-induced ER stress can also
lead to autophagy, for example, in response to
the tyrosine-kinase inhibitor imatinib (Bellodi
et al. 2009), or to necrosis, for example, in
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therapy-resistant tumors with down-regulated
Bax or Bak (Janssen et al. 2009).

CONCLUDING REMARKS

Depletion of ER Ca2þ occurs in many diseases.
The accompanying ER stress often triggers a
UPR leading to apoptosis. The release of in-
sufficient activator Ca2þ may compromise
essential cell functions. We now begin to under-
stand the molecular mechanisms that reduce
the ER Ca2þ content. Some therapies already
directly target the Ca2þ-signaling pathway.
A better understanding of the defective Ca2þ

signal and the development of better drugs tar-
geting the proteins involved will eventually
result in better treatments for these various
diseases.
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