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Abstract A pivotal role has been ascribed to oxidative stress in determining the imbalance
between protein synthesis and degradation leading to muscle atrophy in many pathological
conditions and in disuse. However, a large variability in disuse-induced alteration of redox
homeostasis through muscles, models and species emerges from the literature. Whereas the causal
role of oxidative stress appears well established in the mechanical ventilation model, findings are
less compelling in the hindlimb unloaded mice and very limited in humans. The mere coexistence
of muscle atrophy, indirect indexes of increased reactive oxygen species (ROS) production and
impairment of antioxidant defence systems, in fact, does not unequivocally support a causal
role of oxidative stress in the phenomenon. We hypothesise that in some muscles, models and
species only, due to a large redox imbalance, the leading phenomena are activation of proteolysis
and massive oxidation of proteins, which would become more susceptible to degradation. In
other conditions, due to a lower extent and variable time course of ROS production, different
ROS-dependent, but also -independent intracellular pathways might dominate determining the
variable extent of atrophy and even dispensable protein oxidation. The ROS production and
removal are complex and finely tuned phenomena. They are indeed important intracellular
signals and redox balance maintains normal muscle homeostasis and can underlie either positive
or negative adaptations to exercise. A precise approach to determine the levels of ROS in living
cells in various conditions appears to be of paramount importance to define and support such
hypotheses.
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Introduction

Skeletal muscle is well known to undergo atrophy and
a slower to faster shift in contractile and metabolic
properties in several animal and human models of disuse
(Thomason & Booth, 1990; Baldwin, 1996; Desplanches,
1997; Baldwin & Haddad, 2001).

Muscle atrophy, which is the major determinant of
disuse muscle weakness, is due to an imbalance between
protein synthesis and degradation. At least in the most
studied animal models of disuse, it is believed that an initial
decrease in protein synthesis is followed by a sustained
and likely predominant increase in protein breakdown
(Thomason & Booth, 1990; Powers et al. 2005). Most
studies have focused on protein degradation and have
shown a complex and still developing picture in which
the ubiquitin–proteasome pathway and the activation
of caspase-3 and calpains are likely to play a major
role (Powers et al. 2005, 2010). Importantly, myofibrillar
proteins have been shown to be lost at a higher rate that
other muscle fibre proteins (Thomason & Booth, 1990;
Jackman & Kandarian, 2004).

Oxidative stress has been shown to occur in disuse
and in many pathological conditions, and is now widely
considered a major trigger of the imbalance between
protein synthesis and degradation leading to muscle
atrophy (Powers et al. 2005, 2010; Moylan & Reid, 2007).
However, the causal role of oxidative stress in determining
disuse atrophy has not been definitely established yet.
Some contradictory results have been reported, suggesting
that care should be taken over generalizing conclusions
through different species, disuse models and muscles. We
will focus on the most widely studied models of disuse in
animals (mechanical ventilation, limb immobilization and
hindlimb unloading), and in humans (bed rest, unilateral
lower limb suspension, limb immobilization), and we will
consider how conclusive the evidence for a causal role of
oxidative stress is.

Oxidant antioxidant balance and oxidative stress

It has been known for a long time that reactive oxygen
species (ROS) are present in skeletal muscle (Commoner
et al. 1954) and can be generated during exercise (Dillard
et al. 1978; Davies et al. 1982). As ROS can damage
cell proteins, DNA and lipids through oxidation, they
have been considered to just be damaging agents, and
antioxidants are used to scavenge them (Dillard et al.
1978; Davies et al. 1982). The term oxidative stress has
been consequently defined as the ‘imbalance between
oxidants and antioxidants in favor of the oxidants,
potentially leading to damage’ (Sies, 1997). Importantly,
more recently it has been understood that ROS are major
signals involved in muscle homeostasis, i.e. in maintaining
normal skeletal muscle structure and function (Droge,

2002; Smith & Reid, 2006; Brigelius-Flohe, 2009; Musaro
et al. 2010). ROS production due to heavy exercise training
(Sastre et al. 1992; Vina et al. 2000; Palazzetti et al. 2003;
Aguilo et al. 2005; Silva et al. 2010) has been shown to
determine muscle damage, documented by increased lipid
peroxidation, protein carbonylation, increase in serum
creatine kinase and altered glutathione redox status. On
the contrary, ROS production during moderate exercise
caused positive adaptations among which are increases
in insulin sensitivity, mitochondria biogenesis and anti-
oxidant defence systems (Powers & Jackson, 2008; Jackson,
2009; Ristow et al. 2009; Silva et al. 2009; Strobel et al.
2011). Consequently, antioxidant administration may
counter muscle damage following heavy exercise (Sastre
et al. 1992; Vina et al. 2000; Palazzetti et al. 2004; Silva et al.
2010), but also positive adaptations following moderate
exercise (Ristow et al. 2009).

The mechanisms underlying the opposite effects of ROS
on muscle homeostasis in different conditions are still
unclear. It could be that small, compartmentalized, or
transient (minutes) increases in ROS mostly modulate
intracellular signals by reversible oxidation of specific
protein residues (Ghezzi, 2005; Janssen-Heininger et al.
2008) and consequently affect gene expression (Jackson
et al. 2002; Ji et al. 2004; Powers et al. 2005, 2010). The
latter phenomenon could occur in response to moderate
exercise. In heavy exercise, disuse and pathological
conditions, sustained (hours, days), large increases in
ROS could (i) have a direct, non-specific, large scale
oxidative effect on proteins, which would become more
susceptible to proteolysis; (ii) damage plasma membrane
and sarcoplasmic reticulum altering calcium homeo-
stasis and activating proteases (e.g. calpains), enhancing
proteolysis, (iii) damage lysosome and cause a leakage
of catabolic enzymes in the cytosol. Oxidized proteins
could be more susceptible to proteolysis because they
are more easily targeted by the ubiquitin–proteasome
system, which is up-regulated by ROS (Davies, 1987; Shang
et al. 1997), because their recognition by calpain and
caspase is enhanced (Smuder et al. 2010), or because they
could be directly degraded by proteasome without being
ubiquitinated (Grune et al. 2003), or for all the above
causes.

As ROS are short lived and the direct determination
of their concentration is complex and exposed to error
(Smith & Reid, 2006; Palomero et al. 2008), in most
studies on disuse atrophy, ROS activity has been studied
‘indirectly’, namely by measuring protein oxidation and
lipid peroxidation (Lawler et al. 2003; Urso & Clarkson,
2003). The latter approaches have been mostly combined
with another indirect index of ROS activity, namely the
activity or content of antioxidant defence systems among
them superoxide dismutase, catalase and glutathione
peroxidase. The correlation between muscle atrophy,
increase in protein and lipid peroxidation and impairment
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of antioxidant defence systems has been taken as a strong
indication that oxidative stress occurred and was involved
in muscle wasting (Lawler et al. 2003; Powers et al. 2005).
The administration of antioxidants has been used to
counteract oxidative stress with the goal of confirming
the role of ROS through amelioration of muscle atrophy
(Kondo et al. 1992; Appell et al. 1997; Arbogast et al. 2007).

Animal models of disuse

Disuse atrophy due to mechanical ventilation. Studies
on the mechanical ventilation model can be considered
a paradigm of the relevance of studying a disuse
model for clinical practice and of how an analysis can
successfully develop providing strong evidence of the role
of oxidative stress. The topic has been recently reviewed
in detail (Powers et al. 2009). Table 1, presented as online
Supplemental Material, summarizes findings of the major
references cited regarding human and animal models of
disuse in order of appearance.

Mechanical ventilation (MV) is extremely important in
clinical practice, as it save lives of patients with critical
respiratory problems due to a variety of conditions, e.g.
respiratory diseases, spinal cord injuries, neuromuscular
diseases, coma, general anaesthesia, drug overdoses.

In the MV model, as animals are tracheostomized
and a ventilator delivers all breaths, the diaphragm is
completely inactive (McClung et al. 2007). As early
as 2002 available data suggested that MV induces an
extremely rapid (12–18 h) force loss and diaphragm
atrophy, and that oxidative stress plays a major role in

the phenomenon (Shanely et al. 2002). Lately, the picture
of the role of oxidative stress in MV was further refined
showing that MV cause a very early depression of protein
synthesis (Shanely et al. 2004), besides increasing protein
degradation; that insoluble proteins, likely myosin and
actin, are oxidized as early as 6 h into MV (Zergeroglu
et al. 2003); and that the increase in ROS depends
on both an increase in production and a decrease in
removal due to down-regulation of antioxidant defence
systems (e.g. glutathione, glutathione peroxidase, super-
oxide dismutase) (Falk et al. 2006).

Finally, a very recent work has brilliantly confirmed
in humans undergoing MV some conclusions obtained
in the rat model of MV: (i) muscle fibre atrophy, (ii)
decrease in an antioxidant defence system (glutathione),
and (iii) increase in caspase-3 and increase in expression
of two key ubiquitin ligases (MurF-1 and atrogin-1) of the
ubiquitin–proteasome pathways (Levine et al. 2008).

Importantly, administration of an antioxidant,
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox), a vitamin E analogue with strong and specific
antioxidant properties, blunted diaphragm atrophy in
mechanically ventilated rats (Betters et al. 2004; McClung
et al. 2007; Whidden et al. 2010) (Fig. 1). Even more
importantly, Trolox prevented activation of calpain and
caspase-3 indicating that oxidative stress is a requirement
for the activation of a major proteolytic pathway under-
lying MV muscle atrophy (Whidden et al. 2010). Such an
example illustrates how a direct link between oxidative
stress and proteolysis can be established, whereas most
evidence of the role of oxidative stress in other models

Figure 1. The impact of mechanical ventilation and antioxidant administration (Trolox) on
cross-sectional areas (CSA) of different muscle fibres (type I, IIa and IIb/x)
Five groups of rats were studied: controls (Con), mechanically ventilated for 6 and 18 h without and with Trolox
treatment (6 h MV, 6 h MVT, 18 h MV, 18 h MVT). (Reprinted from McClung et al. 2007 with permission from
Wiley-Blackwell.) ∗Significantly (P < 0.05) different from control values. †Significantly (P < 0.05) different from
6 h MV values. ‡Significantly (P < 0.05) different from 6 h MVT values. §Significantly (P < 0.05) different from
18 h MV values.
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relies just on correlations, e.g. on the presence at the same
time of atrophy and signs of oxidative stress.

Disuse atrophy due to hindlimb unloading and limb
immobilization. Several models of disuse have been used
in small mammals, among which the most used have been
hindlimb unloading (HU) and limb immobilization.

The potential role of oxidative stress in determining
disuse atrophy was studied by Kondo et al. (1992, 1993) in
pioneering works using the limb immobilization model.
No change in two antioxidant enzymes, glutathione
peroxidase and catalase, but an increase in the Cu,Zn
cytoplasmic isoform of superoxide dismutase and
in several indicators of oxidative stress (free iron,
xanthine oxidase activity, lipid peroxidation and oxidized
glutathione/reduced glutathione ratio) suggested, for the
first time, a major role of oxidative stress in disuse atrophy.

The issue was reconsidered in detail 10 years later by
Lawler et al. (2003, 2006) using the HU model. The
data confirmed Kondo’s hypothesis showing increase in
ROS, alterations in antioxidant defence systems (increase
in Cu,Zn superoxide dismutase (SOD), decrease in
catalase and glutathione peroxidase activities), decrease in
non-enzymatic antioxidant scavenging capacity (Lawler
et al. 2003) and decrease in heat shock proteins, Hsp25
and Hsp70 (Lawler et al. 2006), which can play relevant
roles in protecting cells against oxidative damage (Senf
et al. 2008).

As the presence in the same muscle of atrophy, of
indirect signs of ROS increase, and of an impairment
of antioxidant defence systems cannot be considered a
direct demonstration of the causal role of oxidative stress,
antioxidants have been used in an attempt to prevent
muscle atrophy, thereby proving the role of ROS. Whereas
early experiments in the limb immobilization model
suggested that antioxidant administration (vitamin E) can
blunt soleus atrophy (Kondo et al. 1992; Appell et al.
1997), contradictory results were obtained in HU. No
effect either in soleus or in gastrocnemius was observed
in the first study on HU using vitamin E (Koesterer
et al. 2002), and using allopurinol, an xanthine oxidase
inhibitor (Matuszczak et al. 2004). The Bowman–Birk
inhibitor, a soy protein extract which directly buffers ROS,
ameliorated soleus atrophy (Arbogast et al. 2007), but as
the drug also inhibits serine protease activity (Arbogast
et al. 2007), its effect could be independent from its anti-
oxidant activity. In another study, cysteine administration
was shown to partially prevent unweighting-induced
ubiquitination and degradation of proteins in parallel
with redox system normalization, but the same group
further showed no benefit of vitamin E (Ikemoto et al.
2002a,b). Interestingly, in a more recent study, a moderate
effect of vitamin E on soleus atrophy was observed, but
was accounted for by vitamin E inhibition of proteolytic

enzymes, rather than its antioxidant capacity (Servais et al.
2007).

We very recently applied the proteomic approach
(Brocca et al. 2010) and electrophysiological
measurements (Desaphy et al. 2010) to mice following
HU in the presence and absence of Trolox administration.
Soleus data recapitulated what was previously observed
(Lawler et al. 2003): muscle fibre atrophy (Fig. 2A),
increase in lipid peroxidation and protein oxidation
(Fig. 2B), and impairment of several antioxidant defence
systems (Fig. 2C). In an electrophysiological study on the
same animals, a slow to fast shift in muscle phenotype and
an increase in chloride conductance and ClC-1 chloride
channel expression were found, which are early markers
of disuse atrophy (Pierno et al. 2002; Desaphy et al. 2005).
Therefore, soleus data seemingly supported the idea that
oxidative stress could be a major trigger of disuse atrophy.
Interestingly, the level of lipid peroxidation was studied in
soleus, gastrocnemius, tibialis anterior and EDL muscle
and was found to be linearly related to percentage muscle
atrophy (Fig. 2D) (Desaphy et al. 2010).

The analysis of HU gastrocnemius and of Trolox treated
HU soleus and gastrocnemius casted doubts about the
role of oxidative stress in determining muscle atrophy.
HU gastrocnemius, a fast muscle rarely analysed in
disuse models as it is considered to be less susceptible
to atrophy, did show atrophy (11%), but surprisingly
no increase in lipid peroxidation and protein oxidation,
and an increase, rather than a decrease, of antioxidant
defence systems (Brocca et al. 2010). No change in
antioxidant defence systems was observed in the only
previous work on HU gastrocnemius, although, based
on increased lipid peroxidation, a pathogenetic role
of oxidative stress was suggested (Siu et al. 2008).
Moreover, Trolox administration, which increased anti-
oxidant defence systems in both soleus and gastro-
cnemius muscles, fully prevented lipid peroxidation and
protein oxidation, counteracted the increase in chloride
conductance and partially counteracted the slow to fast
shift in muscle phenotype, but did not have any impact
on muscle and muscle fibre atrophy (Brocca et al. 2010;
Desaphy et al. 2010).

Interestingly, these data suggest that the existence of a
correlation between an indirect index of ROS production
and muscle atrophy (Fig. 2D) does not necessarily imply
a causal role for ROS. Indeed, protein oxidation might
follow muscle atrophy or occur in parallel and the
relationship still hold. In neurons, it has been shown
that ROS production by mitochondria depends on Bax,
a member of the Bcl-2 family of apoptotic regulators, and
that caspase 3, a major enzyme involved in disuse induced
proteolysis, mediates part of Bax induced ROS production
(Kirkland et al. 2010). In principle, the latter finding opens
the possibility that protein oxidation could, at least to some
extent, follow proteolysis.
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We reasoned that, notwithstanding Trolox adminis-
tration, oxidative stress could have occurred at early times
during HU, still determining muscle atrophy but dying
away by the time of our analysis, i.e. 14 days of unloading.
Therefore, we analysed four animals of the same strain
and age as those used by Brocca et al. (2010) following
3 days of HU. Although muscle fibres (type 1 and 2A in
soleus and type 2B in gastrocnemius) were significantly
atrophic (Fig. 3A) (16% on average), no protein oxidation
was detectable (Fig. 3B) and no impairment was observed
regarding three components of the antioxidant defence
systems previously found to be differentially expressed

after 14 days of HU, namely superoxide dismutase, Hsp70
and α,β-crystallin. The latter results, consistent with the
lack of benefits from antioxidant administration in mice,
support the hypothesis of a marginal role of oxidative
stress in muscle atrophy induced by HU, which is clearly in
contrast with the causal role played in diaphragm atrophy
following mechanical ventilation.

Human models of disuse

Notwithstanding the large amount of work on structure
and function of skeletal muscle in several disuse models

Figure 2. The impact of hindlimb unloading (HU) and antioxidant administration (Trolox) in a slow,
soleus (Sol), and a fast, gastrocnemius (Gas), muscle of the mouse
A, cross-sectional area of type I and IIA fibres from Sol and of type IIB fibres from Gas in control mice (CTRL),
hindlimb unloaded mice for 14 days (HU-14) and hindlimb unloaded mice for 14 days treated by Trolox (HU-TRO).
∗Significantly different from CTRL (P < 0.05). (Redrawn from Brocca et al. (2010).) B, protein oxidation index (OI).
The height of each vertical bar represents the mean ± SEM. ∗Significantly different from all groups (P < 0.05).
(Reprinted from Brocca et al. (2010) with permission from Wiley-Blackwell.) C, differentially expressed proteins
belonging to antioxidant defence systems in soleus muscles of HU mice, identified by proteomic analysis. (Redrawn
from Brocca et al. 2010.) D, malondialdeyde (MDA) levels following 14 days HU plotted against the mean
percentage of muscle-to-body weight ratio decrease for EDL, tibialis anterior (TA), Gas and Sol muscles of the
mice. The points were linearly correlated (r2 = 0.94). (Reprinted from Desaphy et al. 2010 with permission from
Elsevier.)
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Figure 3. The impact of 3 days hindlimb unloading (HU-3) on cross-sectional area (CSA) of identified
types of muscle fibres (A) and on protein oxidation index (OI) (B) of soleus (Sol) and gastrocnemius
(Gas) muscles of the mouse
The number (n) of fibres measured is indicated above each bar. Both CSA and OI were determined exactly as by
Brocca et al. (2010). ∗Significantly different from CTRL (P < 0.05). Four mice were used.

in humans (Fitts et al. 2000; Trappe et al. 2001; Narici
et al. 2003; Hortobagyi & Devita, 2006; de Boer et al.
2007a; Pavy-Le Traon et al. 2007; Rittweger et al. 2009),
information on oxidative stress and on the potential
mechanisms involved in increased proteolysis is scanty.

The first of such studies on bed rest suggested a potential
role of oxidative stress in human disuse in line with
what was previously observed in small mammals (Dalla
Libera et al. 2009). Following 35 days (T35), but not 8 days
(T8), of bed rest, vastus lateralis muscle samples showed

Figure 4. The impact of 8 (T8) and 35 (T35) days of bed rest on cross-sectional area (CSA) of muscle
fibres and on protein oxidation (Oxy/RP) of muscle samples from the vastus lateralis muscle of humans
A, mean values of CSA of muscle fibres before bed rest (T0) and at T8 and T35. B, protein oxidation index (Oxy/RP).
∗Significantly different from T0 (P < 0.05). C, regression analysis of normalized values of muscle protein oxidation
(Oxy/RP) plotted against the percentage change of fibre CSA of the same muscles, determined at T8 and T35; the
slope of the line was significantly different from zero (P < 0.05), reprinted from Dalla Libera et al 2009 used with
permission from The American Physiological Society.
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muscle fibre atrophy (18%) (Fig. 4A) and increased
protein carbonylation (Fig. 4B). Interestingly, an inverse
linear relationship was found between normalised levels
of protein oxidation and CSA of muscle fibres of biopsy
samples (Fig. 4C), consistent with what was reported for
mice muscles in Fig. 3D (Desaphy et al. 2010). At T8 the
transient increase in two heat shock proteins known to be
up-regulated in response to ROS production (Motterlini,
2005) (Ryter et al. 2006), haem oxygenase-1 (HO-1) and
mitochondrial Hsp-70 isoform (Grp75), suggested the
occurrence of oxidative stress. A very recent global analysis
of gene expression (Reich et al. 2010) has shown an
up-regulation of the pathways involved in oxidative stress
response following 48 h of unilateral lower leg suspension
(ULLS), consistent with the increase in HO-1 observed by
Dalla Libera et al. (2009). However, some inconsistencies
emerged, as discussed by the authors. For instance the
content of both heat shock proteins was normal at T35,
suggesting that some mechanism had blunted the stress
response after T8, although increased carbonylation was
actually observed at T35.

More recently, in a limb immobilisation human model,
muscle (5.7%) and muscle fibre (5.6–11.8%) atrophy were
observed at the end of 14 days of immobilisation (T14)
in the absence of lipid peroxidation (Fig. 5A) and protein
oxidation (Fig. 5B) in vastus lateralis muscle. Ubiquitin
conjugates were higher at day 2, but normal at T14
(Fig. 5C), and caspase 3/7 activity was normal at both
2 and 14 days (Fig. 5D) (Glover et al. 2010). Based on their
own data and on previously published findings, which did

not show increased protein breakdown in human disuse
(Paddon-Jones et al. 2004; Symons et al. 2009), the authors
suggested that muscle atrophy was likely to be independent
of oxidative stress and increased proteolysis, although the
rate of protein breakdown was not determined (Glover
et al. 2010).

The lack of increased proteolysis in muscle atrophy
following immobilisation is consistent with a number of
studies strongly suggesting that, contrary to what observed
in small mammals, the major phenomenon involved in
humans is a decrease in protein synthesis exacerbated by
anabolic resistance, namely by a decreased stimulation
of protein synthesis by exogenous amino acids (Rennie
et al. 2010). In muscle atrophy following ULLS, rates
of myofibrillar protein synthesis fell and no clear signs
of increased expression of MuRF-1 and atrogin-1, used
as markers of proteolysis, were observed (de Boer et al.
2007b). The increase in whole-body protein synthesis
following amino acid feeding was blunted in bed rest
(Biolo et al. 2004) and the infusion of amino acids
increased proteins synthesis less in the immobilised leg
than in the non-immobilised leg (Glover et al. 2008)
suggesting anabolic resistance.

Although most evidence points to a decreased protein
synthesis as the dominant phenomenon in disuse atrophy
in humans, some findings suggested an early and trans-
ient increase in protein breakdown (Tesch et al. 2008;
Glover et al. 2010; Gustafsson et al. 2010). A very recent
global gene expression analysis showed up-regulation of
pathways involved in protein ubiquitination and oxidative

Figure 5. The impact of 2 days (2 d) and 14 days (14 d) leg immobilization on lipid peroxidation
(4-HNE-ponceau) (A), protein carbonylation (oxyblot-ponceau) (B), ubiquitin protein conjugates content
(ubiquitin-ponceau) (C) and caspase 3/7 activity (D)
Redrawn from Glover et al. 2010.
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stress response following 48 h ULLS (Reich et al. 2010).
Moreover, a pivotal role of oxidative stress and increased
proteolysis in human chronic disease (e.g. respiratory,
kidney and cardiac disease, and muscular dystrophy) has
been suggested by a number of studies (Moylan & Reid,
2007) in agreement with what was previously observed
in many disuse conditions in small mammals (Powers
et al. 2007). In humans following 2–5 days of spinal cord
injury, muscle atrophy was associated with an increased
expression, although not with an increased content of
key components of the ubiquitin proteasome pathway
(Urso et al. 2007). However, it has been strongly argued
that, in the absence of inflammation or other phenomena
occurring in chronic diseases, disuse muscle atrophy can
be fully explained by a decreased protein synthesis with
little evidence of a possible role of increased proteolysis
and of oxidative damage or protein carbonylation (Murton
et al. 2008; Glover et al. 2010; Rennie et al. 2010).
Consequently, caution has been suggested in transferring
the results obtained on small mammals to humans (Rennie
et al. 2010).

To the best of our knowledge, there are no more studies
which assessed the presence of oxidative stress in human
limb muscles in disuse. The lack of a major role for
proteolysis, the key phenomenon supposedly triggered
by oxidative stress, suggests that the latter may not be
a major phenomenon in disuse atrophy of limb muscles
in humans. However, studies on oxidative stress and
disuse atrophy in humans are still limited. Moreover, ROS
might still play a role, but not through an increase in
proteolysis. Indeed, it has been recently suggested that a
ROS induced increase in atrogin-1 following 20 days of bed
rest could cause atrophy by impairing protein synthesis
(Ogawa et al. 2006), reconciling the strong evidence of a
predominating decrease in protein synthesis in humans
with the observation of a transient increase in atrogin-1, a
well established index of proteolysis. The latter hypothesis,
which is still to be confirmed, finds some support in
several observations. Atrogin-1 is up-regulated in disuse
atrophy through a potentially ROS-dependent mechanism
(Li et al. 2003; Powers et al. 2010). It is a key component
of the ubiquitin–proteasome proteolytic pathway, but has
been also shown to have a modulatory role on eukaryotic
initiation factor 3 subunit 5 (eIF3-f), a component of the
AKT/mTor pathway (Lagirand-Cantaloube et al. 2008),
which controls protein synthesis (Sandri, 2008).

Table 1 (online Supplemental Material) summarizes
findings of the major references cited regarding human
and animal models of disuse in order of appearance.

Why oxidative stress may not be equally relevant
in all disuse conditions

The role of an alteration of redox homeostasis in disuse
atrophy appears to widely vary through muscles, models

and species. Oxidative stress very likely plays a causal role
in diaphragm following MV. It is less clear whether it is a
cause or consequence of disuse atrophy in soleus and even
more so in gastrocnemius of HU mice, and very limited
evidence exists that it could play a determinant role in
humans. The discrepancy between the strong and rapid
oxidative stress-dependent atrophy of human diaphragm
following mechanical ventilation (Levine et al. 2008)
and the smaller and slower oxidative stress-independent
atrophy of human limb muscles (Glover et al. 2010)
strengthens the relevance of variability among different
muscles and experimental conditions.

ROS acutely affects muscle force and are necessary for
normal muscle homeostasis (Reid et al. 1993; Smith &
Reid, 2006; Brigelius-Flohe, 2009). They play a significant
role in positive adaptations following moderate exercise,
being intracellular signals modulating gene expression
(Jackson et al. 2002; Ji et al. 2004; Brigelius-Flohe, 2009;
Jackson, 2009; Ristow et al. 2009); they cause muscle
damage in heavy exercise; they modulate intracellular
signalling pathway involved in disuse atrophy (Powers
et al. 2010); and they can directly oxidize proteins on
a large scale enhancing their degradation rate (Smuder
et al. 2010). Consequently, it is very likely that differences
in the time course of ROS production, in the levels of
ROS, in the cellular locations of ROS production and
possibly in the nature of the ROS can occur in different
tissues and conditions supporting different responses.
Interestingly, NADPH oxidases, a major source of ROS,
are a family of enzymes whose members have different
tissue localizations (Geiszt & Leto, 2004) and are pre-
sent in different subcellular compartments (Ushio-Fukai,
2006).

Given the large spectrum of ROS potential effects it
is not surprising that their role in disuse atrophy can
vary according to muscles, species and models. The
difficulties in differentiating the role of ROS in different
disuse conditions might depend on the experimental
approach used and on technical limitations. The analysis
of correlations between atrophy and indirect indexes of
ROS activity might be misleading. It can be argued that
such correlations cannot definitely discriminate between
oxidative stress being a cause or a consequence of
muscle atrophy (Fig. 3D) (Desaphy et al. 2010). Moreover,
determination of carbonyls and lipid peroxidation is likely
to be sensitive to large scale oxidative phenomena missing
more subtle, but still potentially modulating, levels
of ROS.

The precise determination of ROS levels in living cells
is, therefore, of paramount importance and its lack is a
major drawback in all attempts to differentiate ROS effects
in different conditions. Recent advances in this respect
may open important opportunities (Palomero et al. 2008).
Notwithstanding the latter problems, some phenomena
potentially responsible for the variability in the response
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to disuse and in the ascertained roles of ROS can be put
forward.

The major muscles studied have different fibre type
composition. Soleus has the highest percentage of slow
fibres, gastrocnemius the lowest and diaphragm is inter-
mediate (Pellegrino et al. 2004; Desaphy et al. 2010).
Interestingly, diaphragm muscle has the higher capillary
and mitochondrial density than any other skeletal muscle
(Hoppeler et al. 1981) and soleus is well known to be
much more oxidative than gastrocnemius. Considering
that mitochondria are among the major potential sources
of ROS and that a proportion of electron flow (0.15%,
which is small in relative terms, but relevant in absolute
values) gives rise to hydrogen peroxide (Chance et al. 1979;
St-Pierre et al. 2002), soleus and especially diaphragm
could be more exposed to ROS production.

The decrease in load could have different effects on
diaphragm, which is chronically active, and on soleus,
which is a postural muscle, than on gastrocnemius, which
is a fast, phasic muscle. MV, limb immobilisation, and HU
could decrease neuromuscular activity to different extents.
In MV diaphragmatic fibres are totally inactive (Powers
et al. 2002) and go through passive shortening during
mechanical expansion of the lungs (Froese & Bryan, 1974).
Inactivity in the shortened position is known to favour
atrophy (Loughna et al. 1987). Immobilisation (Fischbach
& Robbins, 1969) might decrease neuromuscular activity
more than HU, in which some authors have shown no
significant decrease in integrated EMG (Alford et al. 1987),
and others have shown an initial decrease in the first 6 days
followed by recovery towards normal levels (De-Doncker
et al. 2005).

muscle VL gas sol sol dia

species humans rat & mice rat & mice rat & mice
rat & mice
humans

model BR, imm., ULLS HU HU imm. MV

rate of atrophy
5-25% in 23 w 11% in 14d 24% in 14d 50% in 8d In 15-18% 18h

slow phenotype

rate of oxidative
metabolism 

relative decrease
in load & in

neuromuscular
activity

extent of ROS
production

rate of increased
proteolysis due
to large scale

oxidative effect

?

More determinantLess determinant

Figure 6. A scheme of the factors potentially involved in determining variable alterations of redox
homeostasis through muscles, species and models reported in the first three rows
Arrows point to the direction of an increase in the parameter. The large open arrow refers to the rate of atrophy,
which increases from left to right. The dashed arrow hypothesizes an increase in the extent of ROS production, from
left to right, depending (i) on the increase in the rate of oxidative metabolism due to small species having higher
metabolic rate and to the progressively slower phenotype (i.e. relative content of slow, type 1 fibres) of muscles
and (ii) on the increase in the relative extent of unloading at least from HU gastrocnemius towards diaphragm
subjected to MV. Consequently, the dotted arrow hypothesizes an increase in the rate of proteolysis, from left
to right, which is less determinant (or minor) in humans, and in HU gastrocnemius and soleus of rat and mice,
but more determinant (or major) in immobilized soleus and in diaphragm following MV due to a progressively
more evident large scale oxidation of proteins. Abbreviations: BR, bed rest; imm., immobilization; HU, hindlimb
unloading; MV, mechanical ventilation; d, days; w, weeks; h, hours.
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Therefore, diaphragm might go through higher ROS
production then soleus and soleus than gastrocnemius.
In diaphragm all ROS inducible pathways could be
activated, whereas in soleus and especially in gastro-
cnemius protein oxidation could not be an earlier (Fig. 3B)
and major (Fig. 2B) phenomenon and other mechanisms
independent from ROS or induced by a more subtle
increase in ROS could play a role.

Interestingly, the possibility that ROS production
occurs at different extents and rates and that different
mechanisms prevail in different models and muscles is
consistent with the very variable rate of muscle atrophy.
The rate of muscle atrophy is, in fact, extremely fast in rat
diaphragm following MV reaching 15–30% in 18 h, very
fast in rat soleus following limb immobilisation (∼50% in
8 days) and much slower in soleus (24%) and in gastro-
cnemius (11%) of mice following 14 days HU (Brocca et al.
2010; Desaphy et al. 2010).

The discrepancies between animal and human models
appear even larger than within the different animal
models. It has been known for a long time that oxidative
metabolism and heat production per unit body weight are
inversely related to body weight (Kleiber, 1947), and that
small animals are more exposed to ROS production and,
possibly for this reason, have shorter lifespan (Demetrius,
2005). Interestingly, it has been observed that the higher
the metabolic rate the higher muscle atrophy and that
small mammals, having a smaller percentage of muscle
mass, have less metabolic resilience than large mammals
(Demetrius, 2005). Moreover, disuse models in small
mammals could determine some stress and this might
make muscle more prone to an increase in protein break-
down (Paddon-Jones, 2006; Paddon-Jones et al. 2006).
Finally, xanthine oxidase, a major source of ROS, might
be less expressed in human than in rat muscle (Linder et al.
1999). Indeed, the rate of disuse atrophy is much higher
in small mammals (∼3% a day) (Thomason & Booth,
1990) than in humans (5–25% in 23 weeks) (de Boer et al.
2007b).

Figure 6 reports a scheme summarizing the major
factors potentially involved in determining variable
alterations of redox homeostasis through muscles, species
and models.

Conclusions

The observation that ROS play a major role in muscle
homeostasis, but can cause muscle wasting as well,
indicated that ROS production can be finely tuned and
controlled. It is thus very likely that the extent and time
course of ROS production, the ROS-dependent intra-
cellular pathways activated and, therefore, roles of ROS
widely vary through different muscles, species and disuse
models.

It could be wise to apply the term ‘oxidative stress’ only
to conditions in which oxidative damage is documented to
avoid misunderstanding by pooling phenomena in which
ROS modulate intracellular pathways and gene expression
contributing to muscle homeostasis and plasticity and
possibly to muscle atrophy, and those in which ROS
enhance proteolysis acting directly and non-specifically
on proteins.

In the absence of readily available approaches to
determine ROS levels in living cells, the evaluation of
the time course of changes in muscle mass, antioxidant
defence systems and signals involved in protein synthesis
and breakdown in both the absence and presence of
antioxidants should be the more correct approach to
clearly define the cause and effect relationship between
such phenomena. The simple correlation between muscle
atrophy and indirect indexes of enhanced ROS production
at any given time during the process does not seem to
be able to provide definitive conclusions (Fig. 2D and
Fig. 4C).
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