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Abstract

A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule
(protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as
alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-
channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical
properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion
length, as assumed in Langevin equation. The open probability of the ion–channel was determined considering
cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open
probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded
currents.
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Introduction

Molecular dynamics (MD) simulations is a method used to

model the molecular motion of proteins [1], including ion

channels [2]. Simulations are conducted by solving the equations

of motion for all atoms of a protein, starting from their known

initial locations and assigned random initial velocities. The

resultant motion is a high frequency, low amplitude vibration of

the protein atoms. MD had limited success in predicting the large

and gradual conformational changes that underlie the physiolog-

ical function of many proteins (e.g. ion–channel gating). MD

simulations are massive and usually can simulate up to

1 microsecond of protein dynamics and in some cases up to

1 millisecond using special computer architectures [3], while the

large conformational changes of ion–channels (and other proteins)

occur over tens of milliseconds. Due to the very large number of

degrees of freedom, it is impossible to analyze the motion in the

entire configuration space. Therefore, MD generates a trajectory

of conformational changes associated with assigned initial

conditions for the atoms. To facilitate computations, MD

simulations may be influenced to drag the structure toward

preferred conformations by reducing the potential energy of those

conformations [4,5]. Virtual increase of temperature to facilitate

the passage of the structure through local minima has also been

considered [6], as well as grouping atoms into coarse grains to

reduce degrees of freedom [7]. With these manipulations, the

motion trajectory samples a broader region in configuration space.

The estimates for the potential of mean force [8], computed this

way, rely on how accurate the motion trajectory represents the

entire space of trajectories. Clearly, simulating with MD the

microsecond dynamics of protein in a statistically meaningful

manner is challenging, whereas simplified models allow one to

study the millisecond dynamics in a computationally efficient way.

Large conformational changes usually involve gradual disloca-

tions of protein segments which can be modeled with a limited set

of degrees of freedom, xj. These degrees of freedom are usually

translation and rotation of protein segments with reinforced

secondary structure (e.g. helices). The proposed modeling

framework of this paper simulates the protein dynamics within

the entire configuration space of large conformational changes (all

combinations of xj), without explicitly simulating high frequency

vibrations of single atoms and thermodynamic properties. It

simulates the average conformational changes over Dt, a time

window sufficiently larger than the time between collisions. In this

study we analyzed the molecular motion of particles under the

influence of a conservative force field using a kinematic theory

approach and derived the governing equations of the motion.

These equations are more accurate alternatives to Langevin

equation and Smoluchowski equation which have been used to

model the gradual motion of proteins in a reduced configuration

space, neglecting its atomic vibrations [9,10,11].

According to Newton’s second law of motion, velocity of a

particle (referred to as a target particle in this paper) on a

molecular scale is determined by:

m
Lvi(xj)

Lt
~{

LW(xj)

Lxi

z
X

k

ck
i d(t{tk) ð1Þ

where m is the mass of the target particle, vi is its velocity along

coordinate xi, W is the potential of any existing conservative force

field, and the last term on the right represents the stochastic force
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of thermodynamic collisions on the particle. tk is a time when

another particle (referred to as a colliding particle in this paper)

hits the target particle and ck
i is the impact momentum transferred

to the target particle during the collision. The thermodynamic

forces on the target particle have a non–zero mean that is

proportional to the target particle velocity (in opposite direction).

Therefore, Newton’s equation assumes the form of Langevin

equation:

m
Lvi(xj)

Lt
~{

LW(xj)

Lxi

{fivizf s
i

~{
LW(xj)

Lxi

{fiviz
X

k

c0ikd(t{tk)

ð2Þ

where f s
i is a zero mean stochastic force and {fivi is a friction

force that models the non–zero mean of the thermodynamic force.

However, modeling the non–zero mean of the stochastic force

by the term {fivi alters the governing equation and consequently

the stochastic properties of the resultant velocity. Assume the

simplest case in the absence of a conservative force field. The

actual motion of the target particle consists of constant velocity

motions between any two consecutive impacts. At any collision

incident, the velocity of the target particle changes abruptly by

Dvi~ck
i =m to a new random velocity. The expectation value of

the velocity after the collision is a constant fraction of the velocity

before the collision. But according to the Langevin equation, after

any collision the expectation value of the velocity equals its velocity

before the collision, and the magnitude of velocity decreases

exponentially between collisions (rather than being constant). It

means that Langevin equation overestimates the velocity magni-

tude right after a collision, and then compensates for this

overestimation by reducing it toward zero between collisions.

Therefore, the velocity ensembles that result from solving the

Langevin equation are different than the actual velocity ensembles

and consequently the Langevin equation may not be an accurate

choice for determining the statistical properties of the motion (e.g.

probability density function and autocorrelation of the velocity), or

for estimating the motion trajectories when the stochastic motion is

significant. An illustrative example of these Langevin equation

properties is provided in the Text S1.

In Langevin model of motion, the stochastic force is assumed to

be a zero mean Gaussian process with a Dirac delta autocorre-

lation function. Based on these assumptions, the variance of the

stochastic force can be determined in terms of the variance of the

velocity distribution using the fluctuation-dissipation theorem [12].

However, the prediction of Langevin equation for the velocity, in

response to a stochastic force with a Gaussian distribution, does

not have a Gaussian distribution (Figure S2 in Text S1); this

contradicts the well known Boltzmann–Maxwell distribution (a

Gaussian distribution) for the velocity (Figure S4 in Text S1).

Compared to a Gaussian distribution with the same variance, the

velocity distribution in Langevin equation has higher densities for

velocity magnitudes in close vicinity of zero and for large velocity

magnitudes (Figure S2 in Text S1). Because the friction term

causes a decay of the velocity magnitude toward zero between the

collisions (Figure S1 in Text S1), the probability of velocity

magnitudes close to zero is increased (compared to the Gaussian

distribution). And because the Langevin equation overestimates

the velocity magnitude after a collision (Figure S1 compared with

Figure S3) the probability of having large velocity magnitudes is

increased as well. In addition, application of the Langevin

equation is constrained to external force fields that are almost

constant over the diffusion length.

Motivated by the need for a model that can accurately replicate

the velocity distribution and does not constraint the conservative

force field as in the Langevin equation, we introduce here a new

modeling framework that is applicable to large, gradual conforma-

tional changes of a protein. We analyze the actual motion of a

particle (protein segment) that undergoes multiple collisions in a

probabilistic domain (a kinetic theory approach) and derive a

governing equation for the average velocity. Unlike the Langevin

equation, the governing equation of the average velocity does not

have an inertial term. It should be emphasized that the inertial term

is not neglected assuming a large friction coefficient (as assumed in

the high friction limit of Langevin equation), it simply does not

appear in the governing equation of the average motion after

applying Newton’s law of motion for a system with multiple

collisions. Because during the conformational changes of a protein

segment the conservative force may vary significantly over the

diffusion length, we do not consider it constant in our analysis and

derive a more general equation for the effect of a conservative force

on the motion trajectory and the probability distribution. The

stochastic term in our equation appears as stochastic velocity (rather

than force) and does not have a delta autocorrelation function. Note

that the autocorrelation of the stochastic force is assumed to be a

Dirac delta function in deriving the statistical properties of motion

from Langevin equation and in deriving the Einstein–Smolu-

chowski relation between the friction coefficient and the diffusion

constant. In reality, the autocorrelation decreases gradually over Dt.

The newly developed modeling framework is used to simulate

the conformational changes of the voltage sensor region (S1 to S4)

of the Kv7.1 ion–channel during gating and the resultant open

probability is compared to experimentally recorded macroscopic

currents.

Results

We develop a model for the gradual motion of the helical

transmembrane segments of an ion–channel protein. We use this

model to simulate the motion trajectories and the transient

probability distribution in the configuration space. Further, we use

the results of these simulations to compute the single channel and

macroscopic currents carried by the ion–channel. The model

developed in this paper represents the stochastic motion of a

particle (here a protein segment) on a molecular scale. It consists of

two key sets of equations: equations (38)–(40) and equations (43),

(47)–(49). The first set governs the average motion (over a time

window) of the particle and can be used to simulate the motion

trajectories. Compared to Langevin equation, a key feature of this

equation set is that it accounts for potential fields that are not

constant over the diffusion length by including the higher

derivatives of the potential function. Additionally, it provides

more accurate estimates for the stochastic properties of the

motion. The second set of equations (derived based on the first set)

governs the transient and steady state distribution of the particle in

its configuration space. These equations also account for potentials

that are not constant over the diffusion length.

For simulating the structural dynamics and electrophysiological

function of the ion–channel, the first equation set is used to

generate motion trajectories and from those the single channel

current traces. The second equation set is used to compute the

channel open probability and the macroscopic current through a

large ensemble of ion channels.

Equation of Motion for a Protein Segment
The stochastic motion of a target particle (representing a protein

segment) and colliding particles are considered in 3D Cartesian

Continuum Simulation of Conformational Changes
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space. Because of symmetry, the velocity of the colliding particles

is uniformly distributed in all directions. Also, the probability that

a point in space is occupied by a colliding particle is equal

everywhere. Consider a target particle moving with a velocity v0 in

the space shown in Figure 1 where the z direction is chosen along

the velocity. Assume an arbitrary location on the surface of the

target particle that may be hit by a colliding particle. Panel A

shows the impact point and the relative position of the target

particle and the colliding particle. An impact occurs if the velocity

of the colliding particle along the impact direction (dashed line) is

larger than the velocity of the target particle along this direction:

vnwv0 cos h. The tangential velocity of the colliding particle, vt,

can have any value. For a collision at an opposite location (panel

B), the condition of impact is: vnvv0 cos h. Therefore, along any

impact direction the colliding particle may have any velocity. This

means that the probability distribution of the impact direction, the

colliding particle velocity and consequently the time and distance

between the collisions are independent of the target particle

velocity. The impact direction may be quantified by angles h
(between 0 and p/2) and Q (between 0 and 2p) in a spherical

coordinate system. Particles with equal mass exchange their

component of velocity along the impact direction. Therefore, ~ww,

the velocity of the target particle after the impact is:

wz~vn cos hzv0 sin2 h ð3Þ

wy~ vn sin h{v0 sin h cos hð Þ sin Q ð4Þ

wx~ vn sin h{v0 sin h cos hð Þ cos Q ð5Þ

where h and Q determine the direction of the impact line. Because

the probability of occupying any location in space is uniform, the

probability distribution of the impact line is uniform. The

probability distribution of vn is the same as the probability

distribution of the velocity component along any axis (i.e. x, y or z),

which is known to be a Gaussian distribution. The expectation

value of the target particle velocity after the impact is:

SwzT~
1

2p

ððð
vn cos hzv0 sin2 h
� �

sin hg(vn)dhdQdvn~
2

3
v0 ð6Þ

SwyT~
1

2p

ððð
vn sin h{v0 sinhcoshð ÞsinQ sinhg(vn)dhdQdvn~0 ð7Þ

SwxT~
1

2p

ððð
vn sinh{v0 sinh coshð ÞcosQsinhg(vn)dhdQdvn~0 ð8Þ

where g vnð Þ is the probability density function of a 1D component

of the velocity. It should be emphasized that S~wwT is independent of

g vnð Þ. The expectation of the velocity in the z direction is non–

zero, meaning that the stochastic velocity of a particle is not

memory–less and therefore its autocorrelation function is not a

delta function. However, this value vanishes after about ten

impacts, implying that the autocorrelation approaches zero after a

time required for about 10 impacts.

If there is no conservative force field acting on the particle, it

will have a zero mean normally distributed stochastic velocity, vs
i .

The conservative force will add a deterministic velocity, vd
i to this

zero mean stochastic velocity (causing the resultant stochastic

velocity of the particle to have a non zero mean):

vi~vs
i zvd

i ð9Þ

Assume that v{
i (k) is the velocity of the particle right before the kth

impact, vz
i (k) its velocity right after the kth impact and tk is the

time interval between the kth and (k+1)th impacts. Between the kth

Figure 1. Collision between a colliding particle (light gray) and the target particle (dark gray) along an arbitrary direction of impact
(dashed line). The colliding particle can have any velocity for an impact along any direction. Panel A shows a collision when the velocity of the
colliding particle along the impact direction (vn) is faster than the velocity of the target particle along this direction. In panel B, the velocity of the
colliding particle is slower.
doi:10.1371/journal.pone.0020186.g001
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and (k+1)th impact, the particle accelerates under the influence of

the conservative force field and as a result, its deterministic velocity

increases by Dvd
i (k) right before the (k+1)th impact is:

v{
i (kz1)~vs

i (k)zvd
i (k)zDvd

i (k) ð10Þ

During an impact, two particles exchange some (or all, if they have

equal masses) of their momentum in the direction of impact.

Depending on the direction of impact and mass of the particles,

the particle loses a fraction of its velocity and gains a fraction of the

velocity of the colliding particle:

vz
i (kz1)~ck(vs

i (k)zvd
i (k)zDvd

i (k))zlvs�
n

~(ckvs
i (k)zlvs�

n )zck(vd
i (k)zDvd

i (k))
ð11Þ

where vz
i (kz1) is the velocity of the particle immediately after the

(k+1)th impact, vs�
n is the normal component of the velocity of the

colliding particle and ck is the fraction of particle velocity that is

preserved during the impact. If there is no conservative force field,

there would be no deterministic velocity and the velocity after the

(k+1)th impact is:

vz
i (kz1)~ckvs

i (k)zlvs�
n ~vs

i (kz1) ð12Þ

From a statistical perspective, the stochastic velocity depends on the

probability of collision, and on the probability distribution of the

impact direction and the colliding particle velocity. These statistical

parameters are independent of the velocity of the target particle and

consequently its deterministic part. Therefore, the stochastic

component of the velocity would be the same with or without

conservative force field, and we may conclude that:

vd
i (kz1)~ck(vd

i (k)zDvd
i (k)) ð13Þ

Note that c is a random variable that obtains random values according

to its probability distribution at each collision. The magnitude of c is

always less than 1. The deterministic velocity can be calculated as:

vd
i (k)~

Xk{1

j~{?

P
k{1

l~j
cl)

� �
Dvd

i (j) ð14Þ

where j refers to all collisions prior to the kth collision. The right side of

equation (14) is a convergent series. Note that although we used the

notion of infinity, in practice the series approaches a constant value if

we calculate it up to a few preceding collisions (,10 for equal mass

particles).

To find the global velocity of the particle we average the velocity

over a time interval Dt. The time interval is chosen sufficiently long,

such that the average of a stochastic parameter over Dt closely

approximates its expectation value, and sufficiently short such that

gradual conformational changes are small during Dt. �vvi(t) is defined

as the average of the particle velocity over this time window:

�vvi(t):
1

Dt

ðtzDt
2

t{Dt
2

vi(t
0)dt0~

1

Dt

ðtzDt
2

t{Dt
2

vs
i (t
0)dt0z

1

Dt

ðtzDt
2

t{Dt
2

vd
i (t0)dt0 ð15Þ

We define �vvs
i (t) as the stochastic component of the average velocity.

It is the average of the stochastic component of velocity, vs
i (t):

�vvs
i (t):

1

Dt

ðtzDt
2

t{Dt
2

vs
i (t
0)dt0 ð16Þ

�vvs
i (t) is a zero mean stochastic process with a smaller variance

compared to vs
i (t). Note that the autocorrelation of �vvs

i (t) vanishes for

times beyond Dt. Autocorrelation of vs
i (t) may be considered a delta

function compared to �vvs
i (t) because Dt is orders of magnitude longer

than the time of several collisions.

The average of the deterministic component of velocity is:

�vvd
i ~

1

Dt

ðtzDt
2

t{Dt
2

vd
i (t0)dt0~

1

Dt

XN

k~1

ðtkztk

tk

vd
i (t0)dt0 ð17Þ

where N is the total number of collisions during Dt. Between the kth

and (k+1)th impact, the particle travels between xi(k) and xi(k+1) and

is subjected to a conservative force fi(xj) (per unit mass). The global

motion of the protein segment (target particle) during Dt is

associated with the deterministic velocity. Dt is assumed sufficiently

small such that the conservative force field can be considered

constant over the associated global displacement. However, during

Dt the range of motion (diffusion length) depends on the stochastic

velocity that is much larger than the deterministic velocity and

consequently the particle travels much farther (than the global

displacement) in both the positive and negative directions. The

conservative force may or may not be constant over this range.

Note that Dt needs to be sufficiently large, such that the time

average and the ensemble average are the same (e.g. Dt includes at

least 100 collisions). Therefore, we assume that fi(xj) is not constant

over the diffusion length,
ffiffiffiffiffiffiffiffiffi
DDt
p

, and can be approximated

accurately by several terms of its Taylor expansion.

fi(~xx0zD~xx0)~fi(~xx0)z
X

j

Dxj

Lfi(~xx0)

Lxj

z
1

2!

X
j�

X
j

Dxj�Dxj

L2fi(~xx0)

Lxj�Lxj

z(D~xx3)

ð18Þ

Where ~xx0 is the location of the particle at the middle of time

window. The number of required terms depends on the variation

of the force field. Between the kth and (k+1)th impacts we may write:

v2
i (t){v2

i (tk)~2

ðxi (t)

xi (tk )

fi(xj)dxj ð19Þ

where t is between tk and tk+1. Substituting for vi from equation (9)

and assuming that vs
i&vd

i we may rewrite equation (19) as:

vd
i (t)~vd

i (tk)z
1

vs
i (k)

ðxi (t)

xi (tk )

fi(xj)dxj

~vd
i (tk)z

1

vs
i (k)

ðDxi (t)

Dxi (k)

fi(x0jzDxj)dDxj

ð20Þ

where Dxi(t)~xi(t){x0i.
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Note that the motion is a multidimensional motion. Equation

(20) integrates over the xi direction, but the location of the particle

(xj) varies in all directions. Because vs
j&vd

j and vs
j is constant

between impacts we may write:

xj(t){xj(tk)

xi(t){xi(tk)
~

Dxj(t){Dxj(k)

Dxi(t){Dxi(k)
~

vs
j (k)

vs
i (k)

ð21Þ

and consequently:

vs
i (k)Dxj(t)~vs

i (k)Dxj(k)zvs
j (k) Dxi(t){Dxi(k)ð Þ ð22Þ

where i and j refer to any two arbitrary degrees of freedom and Dxi(k)
refers to Dxi(tk). Substituting fi with its Taylor expansion in equation

(20) and substituting for xj(t) from equation (22) we may write:

vd
i (t)~vd

i (tk)z
1

vs
i (k)
½ Dxi(t){Dxi(k)ð Þfiz

Dxi(t){Dxi(k)ð Þ2

2vs
i (k)

X
j

vs
j (k)

Lfi

Lxj

z Dxi(t){Dxi(k)ð Þ
X

j

Dxj (k)
Lfi

Lxj

z
Dxi(t){Dxi(k)ð Þ3

6vs
i 2(k)

X
j�

X
j

vs
j� (k)vs

j (k)
L2fi

Lxj�Lxj

z
Dxi(t){Dxi(k)ð Þ2

4vs
i (k)

X
j�

X
j

vs
j� (k)Dxj(k)zvs

j (k)Dxj� (k)
� � L2fi

Lxj�Lxj

z
Dxi(t){Dxi(k)ð Þ

2

X
j�

X
j

Dxj (k)Dxj� (k)
L2fi

Lxj�Lxj

zO(Dx3)�

ð23Þ

Using equation (23), the Dvd
i (k) that is defined in equation (10) is:

Dvd
i (k)~vd

i (t{kz1){vd
i (tk)~tkfiz

t2
k

2

X
j

vs
j (k)

Lfi

Lxj

ztk

X
j

Dxj(k)
Lfi

Lxj

z
t3

k

6

X
j�

X
j

vs
j� (k)vs

j (k)
L2fi

Lxj�Lxj

z
t2

k

4

X
j�

X
j

vs
j� (k)Dxj(k)zvs

j (k)Dxj� (k)
� � L2fi

Lxj�Lxj

z
tk

2

X
j�

X
j

Dxj(k)Dxj� (k)
L2fi

Lxj�Lxj

zO(Dx3)

ð24Þ

And the average of the deterministic component of the velocity is:

�vvd
i (t)~

1

Dt

XN

k~1

ðtkz1

tk

vd
i (t)dt~

1

Dt

XN

k~1

1

vs
i (k)

ðDxi (kz1)

Dxi (k)

vd
i (t)dDxi

~
1

Dt

XN

k~1

½tkvd
i (k)z

t2
k

2
fiz

t3
k

2

X
j

vs
j (k)

Lfi

Lxj

z
t2

k

2

X
j

Dxj(k)
Lfi

Lxj

z
t4

k

24

X
j�

X
j

vs
j� (k)vs

j (k)
L2fi

Lxj�Lxj

z
t3

k

12

X
j�

X
j

vs
j� (k)Dxj(k)zvs

j (k)Dxj� (k)
� � L2fi

Lxj�Lxj

z
t2

k

4

X
j�

X
j

Dxj(k)Dxj� (k)
L2fi

Lxj�Lxj

zO(Dx3)�

ð25Þ

�vvd
i (t) depends on the random variables cl , tk and vs

j (k) and therefore

has fluctuations. However, these fluctuations are very small compared

to vs
i and may be incorporated in the stochastic velocity component.

From a thermodynamic perspective this negligible addition to the

stochastic velocity represents the very small addition to the particle

temperature during Dt as a result of friction. Figure 2 provides a

schematic presentation of the vd
i (t) and Dxi(t). Although the

deterministic velocity has some fluctuations, its expectation value

varies gradually over time (panel A) and causes a gradual global

motion of the particle. The large amplitude stochastic velocity

(compared to deterministic velocity) causes the particle’s location to

vary linearly between any two consecutive collisions (panel B). We

assume that the traveled distance between any two consecutive

collisions is sufficiently long such that the conservative force cannot be

considered constant along the path (panel C).

We define the global deterministic velocity as the expectation

value of equation (25) :

�vvd
i (t)~

SNT
Dt
½tkvd

i (k)z
t2

k

2
fiz

t3
k

2

X
j

vs
j (k)

Lfi

Lxj

z
t2

k

2

X
j

Dxj(k)
Lfi

Lxj

z
t4

k

24

X
j�

X
j

vs
j� (k)vs

j (k)
L2fi

Lxj�Lxj

z
t3

k

12

X
j�

X
j

vs
j� (k)Dxj(k)zvs

j (k)Dxj� (k)
� � L2fi

Lxj�Lxj

z
t2

k

4

X
j�

X
j

Dxj(k)Dxj� (k)
L2fi

Lxj�Lxj

zO(Dx3)�

ð26Þ

Where k refers to a collision incident in the middle of a time wi-

ndow t{ Dt
2

, tz Dt
2

	 

and the expectation values of fi and its

derivatives should be calculated at xj(t), the expectation location of

the particle at time t. c and t are uncorrelated stochastic processes

and are independent from each other and from vs. Dxi(k) is

independent of vs, c and t. Considering that the motion is

symmetric in the positive and negative directions we may write:

Svs
j T~0, Svs2

j T:s2, Svs3

j T~0 ð27Þ

SDxiT~0, SDxi
2T:l2, SDxi

3T~0 ð28Þ

StT:�tt and ScT~�cc ð29Þ

And the equation (26) can be simplified to:

�vvd
i (t)~Svd

i (k)Tz
�tt

2
fiz

�tt3

24

X
j

s2 L2fi

Lxj
2
z

�tt

4

X
j

l2 L2fi

Lxj
2
z(Dx3)ð30Þ

The expectation value of vd
i (k) can be determined using equations

(14) and (24) as:

Svd
i (k)T~

Xk{1

j~{?

SclT
k{jSDvd

i (j)T~SDvd
i (j)T

Xk{1

j~{?

�cck{j~
�cc

1{�cc
SDvd

i (j)Tð31Þ

ð23Þ
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SDvd
i (j)T~�ttfiz

�tt3

6

X
j

s2 L2fi

Lxj
2
z

�tt

2

X
j

l2 L2fi

Lxj
2
z(Dx3) ð32Þ

It should be mentioned that because of the symmetry of the motion

(location and velocity) in both the negative and positive directions,

all the odd derivatives of fi will be eliminated. Combining equations

(30), (31) and (32), the deterministic component of the velocity is:

�vvd
i (t)~{

1

f

LW
Lxi

{
1

v

X
j

L3W

LxiLxj
2
z(Dx3) ð33Þ

Where:

1

f
~

�tt(1z�cc)

2(1{�cc)
ð34Þ

1

v
~

s2�tt3(1z�cc)

12(1{�cc)
z

l2�tt(1z�cc)

4(1{�cc)
ð35Þ

fi~{
LW
Lxi

ð36Þ

And the equation of motion for the average velocity is:

�vvi(t)~�vvs
i {

1

f

LW
Lxi

{
1

v

X
j

L3W

LxiLxj
2
z½higher order terms� ð37Þ

In general, the characteristic parameters of the motion (�tt, �cc, s and l)

are different for different degrees of freedom and we write equation

(37) in a more general form:

�vvi(t)~�vvs
i {

1

fi

LW
Lxi

{
X

j

1

vij

L3W

LxiLxj
2
z½higher order terms� ð38Þ

where

1

fi

~
�tti(1z�cci)

2(1{�cci)
ð39Þ

Figure 2. A schematic presentation of the deterministic velocity and location of a particle along i th direction. Expectation value of deterministic
velocity (dashed blue line in panel A) varies gradually over time. Location varies linearly between any two consecutive collisions (panel B). The traveled distance
between any two consecutive collisions is sufficiently long that the conservative force (panel C) may not be considered constant along the path.
doi:10.1371/journal.pone.0020186.g002
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1

vij

~
sj

2�tti
3(1z�cci)

12(1{�cci)
z

lj
2�tti(1z�cci)

4(1{�cci)
ð40Þ

Probability Distribution of the Segment in Configuration
Space

Time variation of the probability distribution is equal to the

negative divergence of the probability flux. If the velocity field is a

time invariant process, then the probability flux is the expectation

value of the multiplication of the velocity field and the probability

distribution. Therefore:

LP

Lt
~{

L
Lxi

SviPT ð41Þ

For a stationary velocity field:

SviPT~S�vviPT ð42Þ

Using equations (38) and (42) we may rewrite equation (41) as:

LP

Lt
~

L
Lxi

Di

LP

Lxi

z
P

fi

LW
Lxi

zP
X

j

1

vij

L3W

LxiLx2
j

z½higher order terms

 !ð43Þ

The stochastic velocity leads to a diffusion (in the probability

distribution) with a diffusion constant Di. At steady state, the time

derivative of the probability distribution is zero:

LPss

Lt

~
L

Lxi

Di

LPss

Lxi

z
Pss

fi

LW
Lxi

zPss

X
j

1

vij

L3W

LxiLx2
j

z½higher order terms�
 !

~0

ð44Þ

This means that the total flux leaving a differential element in

configuration space is zero. Imposing the principle of detailed

balance (microscopic reversibility), probability flow in all directions

of the configuration space should be zero (no circulation in

probability space):

LPss

Lxi

~{
Pss

Difi

LW
Lxi

{Pss

X
j

1

Divij

L3W

LxiLx2
j

z½higher order terms�

~0

ð45Þ

In order for Pss to exist, its partial differentials in equation (45)

must present a total differential, meaning that for any i and k:

L
Lxk

Pss

Difi

LW
Lxi

zPss

X
j

1

Divij

L3W

LxiLxj
2
z½higher order terms�

 !

~
L

Lxi

Pss

Dkfk

LW
Lxk

zPss

X
j

1

Dkvkj

L3W

LxiLxj
2
z½higher order terms�

 !ð46Þ

Equation (41) is satisfied if and only if:

Difi~Dkfk~C1 ; Divij~Dkvkj

~C2j andsimilarly for higher order terms½ �
ð47Þ

where C1 and C2j are constants that vary with temperature.

Therefore, the principle of detailed balance requires that the terms

Difi and Divij retain the same value for all i. Under this condition

the steady state distribution of probability has the following closed

form:

Pss~Ae

{ W
C1

{
P

j

1
C2j

L2W
Lxj

2

ð48Þ

1

A
~

þ
Entire Space

e

{ W
C1

{
P

j

1
C2j

L2W
Lxj

2

dV ð49Þ

Simulation Results for Conformational Changes of the
Kv7.1 Ion–Channel Voltage Sensor during Gating

Degrees of Freedom. A 3D structure of the Kv7.1 channel

was derived previously [10,11] based on homology to Kv1.2 with a

known crystal structure in the open state [13] (Figure 3). To

simulate the protein structural dynamics, we first identify the

significant degrees of freedom for large conformational changes

Figure 3. 3D structure of Kv7.1 (one subunit) and its
transmembrane helices in the open conformation. The structure
was computed based on homology with Kv1.2 using its known crystal
structure [13]. Motion of the S4–S3 complex is assumed to be the major
conformational change during channel opening and closing (gating).
The loop connecting S2 to S3 and the linker connecting S4 to S5 are not
shown (dashed lines). Dark gray helices are S5 and S6 of the
neighboring subunit. Red segments are negatively charged residues
and blue segments are positively charged residues.
doi:10.1371/journal.pone.0020186.g003

ð43Þ

ð44Þ

ð46Þ
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during gating. A voltage dependent potassium channel consists of

four similar polypeptides (subunits), each includes six trans-

membrane segments termed S1 to S6. S5 and S6 form the pore

and S1–S4 form the voltage sensor that undergoes large

conformational changes in response to variations in membrane

potential. Voltage sensors of the four subunits are sufficiently

distant so that their conformational changes can be assumed

independent, except for the last transition to the open state that

requires a cooperative transition of all four voltage sensors [14,15].

Within each voltage sensor, transition and rotation of S4 and

probably S3 are associated with channel gating [16,17]. The

relative location of S3 and S4 is constrained by the very short loop

that connects them on one side and a salt bridge between S4

Histidine H240 and S3 Aspartic Acid D202 on the other side.

Therefore, we assume that the significant degrees of freedom that

can closely model the conformational changes during gating are

translation and rotation of S4 and S3 as a single complex.

Translation is perpendicular to the membrane surface, positive

outward from the cell (z direction); rotation is about an axis

parallel to the first principal direction of the S4-S3 complex,

located 5 Angstrom away from its center. The axes of rotation and

translation were chosen to comply with the geometrical constraints

imposed by the S4-S5 linker and to reduce the probability of a

steric overlap of the S4-S3 complex with neighboring segments.

Based on our recent loop closure technique [18], we found that the

loop between the S3 and S2 segments is sufficiently large not to

impose significant geometrical constraint. Based on experimental

data [19,20], we allow S4-S3 to move outward up to 6 angstrom

and inward up to 14 angstrom (in 0.2 angstrom steps) and rotate 1

radian in the clockwise and counter clockwise directions (in 0.05

radian steps).

Energy Landscape. Energy landscapes were constructed at

multiple membrane potentials by computing the total electrostatic

potential of a voltage sensor at all the conformations it assumes in

the configuration space described above. The transmembrane

potential adds a uniform electric field to the dielectric region

(protein and membrane); it approaches zero outside this region.

The potential energy of steric interactions was modeled with the

Lennard–Jones potential [21]. Axis of rotation was adjusted by

trial and error to eliminate any steric clashes between backbone

atoms and also major clashes between side chain atoms. A penalty

function was also applied for outward and inward motion of S4–

S3 beyond 4 and 8 Angstroms respectively, to mimic the

geometrical constraint imposed by the S4–S5 linker.

The electrostatic interactions between the four voltage sensors

of the tetrameric channel are negligible as they are located far

from each other. Therefore, we only consider the internal

interactions within one voltage sensor plus its interaction with

the S5–S6 complex of the neighboring subunit. Figure 4A shows

the energy landscape for a voltage sensor at two different

membrane potentials. Three minima associated with one activated

state and two resting states [10,11,22] are distinguishable and

encircled. As the net gating charge moving with S4–S3 is positive,

increasing the membrane potential reduces the potential energy

almost linearly in the positive z direction (outward S4–S3

conformations). As a consequence, at higher membrane potentials

the local minima in the energy landscape shift in the positive z

direction.

Steady State Distribution of Voltage Sensors. If the

membrane has been kept at a constant potential long enough,

the distribution of voltage sensors in the configuration space is

stationary (steady state condition). Figure 4B shows the

distribution of voltage sensors among different conformations

of configuration space for two membrane potentials, 2100 mV

and +60 mV. These distributions are calculated using equa-

tions (48) and (49) with C1 = kT and neglecting the second order

term. Depolarizing the membrane potential causes the S4–S3

complex to transition to more outward locations. It moves

outward up to 12 Angstrom and rotates up to 0.5 radians during

this transition.

Transient Distribution of Voltage Sensors During Voltage

Clamp Test. Transition of the probability distribution from one

equilibrated distribution to another in response to a sudden

change in membrane potential was computed using equation (43)

taking into account the cooperativity of the four subunits during

channel opening [15]. Scaling both friction coefficients together

only scales the dynamic response in the time domain; it does not

affect the shape of the response function in any other way.

Therefore, the friction coefficients can be calibrated based on the

time scale of the experimentally measured macroscopic current.

Using the experimentally recorded currents, the friction coefficient

was calibrated to fz = 0.5*1023 kg/s in z direction and fQ =

12.5*1023 kg.Ang2/s in Q directions. The higher order frictions

were neglected. Comparison of these friction coefficients requires

transformation to a common dimension. An equivalent trans-

lational friction coefficient for rotation about an axis can be

derived as:

fzEQQ~
fQ

a2
ð50Þ

Where a is the root mean square distance of the moving residues

with respect to the axis of rotation. a is about 5 Angstrom in our

simulation and we choose fQ = a2fz = 25fz so that resistance to

motion is similar for the two degrees of freedom.

Equation (43) was solved using the Finite Difference (FD)

method to simulate the transition of probability distribution during

step depolarization from resting potential of 2100 mV to a test

potential of +60 mV (activation test), and also during step

repolarization from the depolarized potential of +60 mV to the

test potential of 2100 mV (deactivation test). These transitions

and the resultant open probability were visualized for the

activation and the deactivation tests in two supplement movies

(Movies S1 and Movie S2). By increasing the membrane

potential from the resting potential of 2100 mV to the test

potential of +60 mV, the transition starts with a rapid outward

translation and counter clockwise rotation of the voltage sensors to

an intermediate conformation, from which they gradually diffuse

to a final conformation associated with an additional energy

minimum at +60 mV (Movie S1).

To check the accuracy of the FD scheme we computed the

difference between 1 and the integral of probability distribution

(over the configuration space) during the transition:

e1(t)~

ðð
z,Q

PFD(z,Q,t)dzdQ{1 ð51Þ

Where PFD(z,Q,t) is the FD solution of equation (43). e1(t) was less

than 1027 (,0.00001% error). Additionally, we computed the

difference between the probability distribution when the FD

simulation approaches steady state (t = 1000 ms) and the proba-

bility distribution at steady state calculated analytically using

equation (48):

e2~

ðð
z,Q

PFD(z,Q,tf ~1000 ms){Pss(z,Q)
� �

dzdQ{1 ð52Þ
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e2 for the voltage clamp test from 2100 mV to +60 mV was less

than 1026 (less than 0.0001%). To ensure the accuracy of the FD

solver, we refined the integration intervals. The FD solver

maintained a relative error less that 1027 throughout the gating

duration (Figure 5A).

Discretization of the configuration space was fine enough to

capture all variations in energy smoothly; the maximum relative

discretization errors over the energy landscape at all membrane

potentials were less than 3% in z direction and less than 1% in h
direction (Figure 5B).

Activated and Resting States. At the open state the S4–S3

complex is in an outward position, and during channel closing it

moves inward between 7 and 13 Angstroms [19]. The probability

distribution at +60 mV shows two high probability regions for

voltage sensor conformations. Based on the above experimental

observations, the region centered at z = 2 and Q = 0.2 is the

activated conformation, that at z = 25 and Q = 0.6 is the

intermediate resting conformation and that at z = 210 and

Q = 0.7 is the deep resting conformation. An outward

conformation of the S4-S3 complex that allows channel opening

is termed an activated conformation. The exact border between

resting and activated conformations cannot be determined

experimentally. We assume that the channel remains in the

activated state within 2 Angstrom inward movement of S4-S3

relative to its position in the crystal structure [10,11,13] (z = 0 and

Q = 0 in configuration space is associated with the crystal structure

conformation). The channel can transition to the open state only if

the S4-S3 complexes of all four subunits are in the activated state.

The permissive state is the channel state when all four subunits are

in their activated states. The cooperative transitions of the channel

from the permissive state to the open state and from the open state

to the permissive state are modeled by Markovian transitions with

transition rates a and b, respectively.

Transitions to the open state reduce the concentration of

voltage sensors in activated states (and consequently in resting

states) at depolarized membrane potential due to flux of channels

from the permissive state to the open state. Below we explain how

to incorporate the cooperativity between the four subunits during

transition to the open state in order to calculate the channel open

probability. This extends the application of our previous

Figure 4. Energy landscapes and their associated steady state distributions (in configuration space) for two different membrane
potentials. A) Energy landscapes at two different membrane potentials Vm = 2100 mV (top) and +60 mV (bottom). Increasing membrane potential
shifts minimum energy conformations of the S4–S3 complex toward more outward positions (right side of the energy landscape). Ellipses highlight
the energy minima. Vertical black line is the border between resting and activated states. B) Steady state distribution of voltage sensors in the
configuration space at a particular membrane potential; Vm = 2100 mV (top) and +60 mV (bottom). Channels mainly reside in minimum energy
conformations (highlighted by the ellipses). Note that the brightness scale is logarithmic. White vertical line marks the border between resting and
activated states. In response to a sudden change in membrane potential, voltage sensors distribution varies gradually toward the steady state
distribution associated with the new membrane potential (Movies S1 and S2).
doi:10.1371/journal.pone.0020186.g004
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formulation [15] to problems that simulate the conformational

changes of the voltage sensor in continuum configuration space

(rather than a discrete Markov model).

Steady State Open Probability. At steady state the net

transition to and from the open state is zero and the probability

distributions of the voltage sensors in configuration space are

independent of each other. The open probability can be calculated

as [15]:

Oss~
aC4

Ass

aC4
Asszb

~
C4

Ass

C4
Assz

b
a

ð53Þ

Where CAss is the steady state probability of voltage sensors in

activated conformations with no transitions to the open state:

CAss~

ðð
Activated

Pss(z,Q)dzdQ ð54Þ

The steady state open probability was calculated at all the test

potentials assuming b=a~0:02. The resultant steady state open

probabilities are plotted for different test potentials in Figure 6.

The simulated curve has the typical S shape dependence on

membrane potential. Note that there was no need to incorporate a

voltage dependent transition between the permissive and open

states to obtain this curve [14].

Transient Open Probability. We showed previously how to

include the cooperativity of channel opening in computing

channel open probability from the probability distribution of its

subunits in a discrete Markov model [15]. An analogous approach

is also applicable to a continuous distribution in the configuration

space. Distribution of voltage sensors in the subunit configuration

space changes during channel opening because of 1. redistribution

of existing voltage sensors in the subunit configuration space in

response to the altered (depolarized) membrane potential, 2.

entrance or exit of subunits to or from the subunit configuration

space via a net transient flux, F(t), from or to the open state.

Therefore, the transient probability distribution in subunit

configuration space, PC, is the sum of the probability distribution

of the subunits that are initially in the subunit configuration space,

and the probability distribution of the subunits that enter or exit

the configuration space from or to the open state, PE:

PC(z,Q,t)~PE(z,Q,t)z(1{O0)PR(z,Q,t) ð55Þ

Where O0 is the initial open probability. PR shows the distribution

of the subunits that are initially in the configuration space (its

integral over the subunit configuration space is set to 1). Therefore,

probability distribution of the subunits that are initially in the

configuration space among all the subunits (taking into account the

subunits that are in open state as well) would be (12O0)PR, because

only (12O0) of the subunits are initially in the subunit

configuration space.

The transient flux can be determined using the transition rates a
and b:

Figure 5. Finite Difference (FD) error in the numerical simulation. A) Time variations of the FD error for different integration steps. Each curve
shows the integral over the configuration space of the difference between the solution with a given time step (Dt) and the solution with the finest
time step (Dt0 = 50 ns) as a function of time. FD simulations are reasonably accurate when they converge. Dt = 2.5 ms was chosen in the simulations.
B) Maximum relative discretization error in energy landscapes at different membrane potentials.
doi:10.1371/journal.pone.0020186.g005

Figure 6. Steady state activation curve computed at several
membrane potentials. Solid line shows the simulation results;
dashed line is from experimentally measured currents.
doi:10.1371/journal.pone.0020186.g006
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F (t)~bO(t){aA(t) ð56Þ

where A(t) is the probability of the channel occupying the

permissive state. As a subunit can transition to the open

conformation from any activated conformation, we express the

channel open probability, O(t), in terms of two activated-state

probabilities, UA and RA, defined as follows [15]:

O(t)~O0{

ðt
0

F (t)dt ð57Þ

F (t)z

ðt
0

F (t)½aUA(t{t)4zb�dt~{a(1{O0)RA(t)4zbO0 ð58Þ

UA(t)~

ðð
Activated

PU (z,Q,t)dzdQ ð59Þ

RA(t)~

ðð
Activated

PR(z,Q,t)dzdQ ð60Þ

Where PU is the solution of equation (43) (where there is no net

flux to or from the open state) when all subunits are initially in

activated conformations distributed proportionally to their final

steady state distribution (no subunit is initially in resting

conformation), and UA is probability of activated state under this

condition. RA is the probability of activated state associated with

the redistribution of the subunits that are initially in the subunit

configuration space. Once the net flux, the open probability and

the permissive state probability were computed using the above

equations, flux from the open to the permissive state, bO(t), and

from the permissive to the open state, aA(t) can be determined.

Open probabilities for a series of voltage clamp tests from

resting potential of 2100 mV to test potentials of 240, 220, 0,

20, 40 and 60 mV were simulated and compared with

experimentally recorded currents for the same protocol in

Figure 7. The simulated transient open probabilities are similar

to the experimentally recorded currents; both exhibit a sigmoidal

shape (initial delay), biphasic activation (fast then slow) and slower

activation at lower test potentials. In these simulations, the central

difference method was used for FD simulations and the trapezoidal

method was used to compute numerical integrations. The values

of a and b were calibrated to 0.2 /ms and 0.004 /ms. The current

traces are similar to those calculated using Monte Carlo

simulations and an intermediate Markov model in our previous

study [10,11]. However, the different choice of configuration space

in this study resulted in significantly lower energy barriers, so that

scaling the membrane potential was not needed in the simulations

presented here.

The trajectory of conformational changes within the configu-

ration space can be estimated using equation (38). Figure 8 shows

one motion trajectory of the average motion in configuration

space. Although, the high frequency vibrations of the S4-S3

complex are averaged out, the motion trajectory of gradual

conformational changes exhibits a stochastic behavior. Confor-

mational changes of the Kv7.1 voltage sensor along this motion

trajectory are animated [23] in Movie S3.

Discussion

Molecular motion of particles under the influence of a

conservative force field was analyzed and equation (38) was

derived for simulating the average motion trajectory. At the high

friction limit, where ‘‘the effect of the Brownian forces on the velocity of the

particle (friction term) is much larger than that of the external

(conservative) force’’ [24], Langevin equation is reduced to a form

similar to equation (38):

vi~
f s
i

fi

{
1

fi

LW(xj)

Lxj

ð61Þ

where f s
i represents the stochastic force associated with thermo-

dynamic collisions. In equation (61) the stochastic velocity term,
f s
i
fi

,

is proportional to the stochastic force, f s
i . However, from Newton’s

second law of motion, velocity is proportional to the time integral

of the force. This discrepancy is a consequence of eliminating the

inertial term from the Langevin equation at the high friction limit.

Figure 7. The first 150 ms of the open probability in a series of voltage clamp tests from rest potential of 2100 mV to test
potentials of 240, 220, 0, 20, 40 and 60 mV. Simulated currents (panel A) closely resemble measured currents (panel B), with slight amplitude
difference.
doi:10.1371/journal.pone.0020186.g007
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While this approximation is justified between collisions, it is not

applicable during collisions. Also, in equation (61) the autocorre-

lation of stochastic velocity is usually considered a Dirac delta

function. However, equation (38) does not make this assumption;

in fact, the autocorrelation decreases gradually over Dt. As a

consequence, the prediction of equation (61) for the stochastic

component of the motion is inaccurate. Finally, unlike equation

(61), application of equation (38) is not limited to problems where

the conservative force is approximated to be constant over the

diffusion length (
ffiffiffiffiffiffiffiffiffi
DDt
p

). For ion channels that undergo large

conformational changes over Dt this approximation could be

inaccurate. In fact equations (38) and (43) enable the application of

Brownian approach for studying the large and gradual conforma-

tional changes of proteins.

In our modeling approach, the friction coefficients, fi and vij,

are considered as the calibrating parameters. The temperature

dependent constant, C1, is also a calibrating parameter of the

model. However, we chose C1 = kT based on the Einstein–

Smoluchowski relation, derived for ideal gases. We also assumed

that the friction coefficient is the same along all degrees of

freedom, as we had no reason to include anisotropy. This reduces

the calibrating parameters of the modeling framework to a single

friction coefficient, fi (i.e. fz for the practical example of this

paper).

For simulating the conformational changes of the Kv7.1 ion–

channel during gating, the border between the activated and

resting conformations and the position of the axis of rotation were

calibrated. Note that the position of the axis of rotation is restricted

because of steric clashes. The conformation at z = 0 and Q = 0 in

configuration space is associated with the activated state (based on

homology with Kv1.2 channel and its known crystal structure in

the open state [13]). Channel transitions to the resting state occur

by downward translation of S4 (z,0). The location where this

state transition occurs (the border line in Figure 4) and the exact

position of the axis of rotation were calibrated (along with a and b,

the transition rates between the activated state and the open state)

to provide the best fit between the model prediction and the

experimental steady state activation curve (Figure 6). Moving the

border line shifts the steady state activation curve (about 10 mV

for 1 Angstrom dislocation of the border line) but has negligible

effect on its slope. Therefore, the slope of this curve can serve as a

measure for evaluating the model prediction. This slope represents

the sensitivity of the open probability to variations in the

membrane potential and is replicated closely by the model. The

dielectric constant of the lipid bilayer (as well as the protein) can

affect the conservative force field and consequently the simulated

open probability. Increasing the dielectric constants of the protein

and the lipid bilayer to 8 (from 6) increases the slope of the steady

state activation curve by about 6%, while decreasing it to 4

reduces this slope by about 12%.

The transient open probabilities in a series of voltage clamp tests

(Figure 7) are also used to evaluate the predictive ability of the

model. The friction coefficient fz scales these curves in the time

domain but does not change their shapes; it is calibrated to match

the time course of activation of the simulated currents to that of

the experimental currents.

A methodology for computing the energy landscape and

relating it to the macroscopic current was developed in our

laboratory and presented by Silva et al. [10]. In that approach, the

macroscopic current was estimated using four identical Markov

models representing the four channel subunits. Transition rates of

the Markov model were assumed to be the reciprocal of the first

passage time along an arbitrary path between the minima on the

energy landscape. To overcome the complexity associated with the

cooperativity between the four channel subunits, open probability

was computed through Monte–Carlo simulations. In this paper we

use a direct approach for relating the energy landscape to the

channel open probability. We derive and solve the equation of

motion to find the dynamics of subunit conformational changes in

continuum configuration space. We then compute the open

probability directly from the dynamics, without using an

intermediate Markov model. The cooperativity among subunits

is included analytically, avoiding the time consuming Monte–

Carlo simulations.

Experimental measurements of the dynamics of gradual

conformational changes are extremely difficult to perform, if not

impossible. However, for the case of ion–channels these dynamics

underly the dynamics of open probability, which can be recorded

experimentally as channel conductance (current) under a variety of

different conditions. Therefore, a close match between simulated

and recorded open probability may be used as verification of

appropriate simulations of conformational changes. Consistent

with our previous studies [10,11,22], the energy landscape has two

minima associated with two resting conformations: deep and

intermediate. We envision that a more accurate match can be

obtained by examining all non overlapping conformations using

more than two degrees of freedom. Including more degrees of

freedom can also provide more accurate estimates of the protein

conformation at resting states [25].

Methods

The electrostatic energy of the protein was computed at

different points of its configuration space using MATLAB codes.

Protein and membrane were modeled as continuum dielectrics

with dielectric constant of 6, consistent with the range of 2 to 25

determined for lipid bilayers [26,27,28] and a range of 2 to 20

determined for membrane proteins [29,30,31]. Intra- and extra-

cellular electrolyte was modeled as a continuum with dielectric

constant of infinity. Interfaces of membrane (and protein) with the

abacus environment were modeled by parallel surfaces. The image

Figure 8. A Motion Trajectory in configuration space in
response to a sudden increase in membrane potential from
2100 mV to +60 mV. Protein is initially in deep resting state and in
response to the change of membrane potential transitions to
intermediate resting state, stays there for a while and then transitions
to activated state. The associated conformational changes of the
voltage sensor are visualized for this motion trajectory in Movie S3.
doi:10.1371/journal.pone.0020186.g008
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charge method was used to include the potential energy associated

with the surface charge distribution caused by charged protein

residues within the membrane [32]. Membrane thickness was

assumed to be 30 Angstrom [33]. The protein was placed within

the membrane so that the upper membrane surface is right above

the E160 residue on the S2 segment. The surface charges were

assumed to be distributed within 7 Angstrom from the interface

(Debye-Hückel length) with a mean distance of 3 Angstrom. When

a charged residue entered the electrolyte environment, the

screening effect of this environment was considered by reducing

its effective charge to zero within 3 Angstrom.

The governing partial differential equation of the motion

(equation (43)) was solved using a central difference FD method

and imposing natural boundary conditions. The FD was

implemented using MATLAB programming environment and

integrated over 50 ns time steps.

Supporting Information

Figure S1 Velocity trace of a particle computed using the

Langevin equation during 10,000 impacts. Panel A) shows the

entire trace and panel B) enlarges the small region marked by red

ribbon in panel A). Dashed lines in panel B) mark the impact

incidents.

(TIF)

Figure S2 Probability density function of the velocity computed

using Langevin model (blue curve) compared with its equivalent

Maxwell-Boltzmann distribution (red curve). The expectation

value of the velocity square is the same for both distributions.

(TIF)

Figure S3 Velocity trace of a particle computed using the model

developed in this paper during 10,000 impacts. Panel A) shows the

entire trace and panel B) enlarges the small region marked by red

ribbon in panel A). Dashed lines in panel B) mark the impact

incidents.

(TIF)

Figure S4 Probability density function of the velocity computed

using the model developed in this paper (blue curve) compared

with its equivalent Maxwell-Boltzmann distribution (red curve).

The expectation value of the velocity square is the same for both

distributions.

(TIF)

Movie S1 Probability distribution of subunits in configuration

space during gating, when the membrane potential increased to

+60 mV from a resting potential of 2100 mV. Vertical dashed

line is the assumed border between resting and activated

conformations. The white vertical curve shows the flux within

configuration space across this border. The net flux from the

permissive state to the open state is shown by the arrow exiting the

subunit configuration space at the top right corner. Open state

probability is shown (color scale) in the square on the upper right

and plotted as a function of time in the right bottom panel.

(WMV)

Movie S2 Probability distribution of subunits in configuration

space during gating, when the membrane potential decreased to

2100 mV from an activated potential of +60 mV. Vertical dashed

line is the assumed border between resting and activated

conformations. The white vertical curve shows the flux within

configuration space across this border. The net flux from the open

state to the permissive state is shown by the arrow exiting the open

state toward the subunit configuration space at the top right

corner. Open state probability is shown (color scale) in the square

on the upper right and plotted as a function of time in the right

bottom panel.

(WMV)

Movie S3 A trajectory of conformational changes during gating,

when the membrane potential is increased from a resting potential

of 2100 mV to a depolarized potential of +60 mV. The two

orange helical segments are the S4–S3 complex. At 2100 mV

they are at their most downward location (deep resting). In

response to increase of membrane potential to +60 mV they move

upward (with slight rotation) to the intermediate resting state.

They stay at that state for a while and then move upward along

with a noticeable rotation to the activated state. Legend in upper

right corner shows the voltage sensor state and in upper left corner

the membrane potential.

(WMV)

Text S1 Langevin equation prediction for the velocity distribu-

tion. The prediction of Langevin equation for the velocity, in

response to a stochastic force with a Gaussian distribution,

contradicts the Boltzmann–Maxwell distribution (a Gaussian

distribution) for the velocity. Compared to a Gaussian distribution

with the same variance, the velocity distribution in Langevin

equation has higher densities for velocity magnitudes in close

vicinity of zero and for large velocity magnitudes.

(DOC)
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