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Purpose: This paper describes a noniterative estimator for the energy dependent information from

photon counting detectors with multibin pulse height analysis (PHA). The estimator uses the two

function decomposition of the attenuation coefficient [R. E. Alvarez and A. Macovski, Phys. Med.

Biol. 21, 733–744 (1976)] and its output is the line integrals of the basis set coefficients. The output

noise variance and bias is compared to other noniterative estimators and to the Cramèr-Rao lower

bound (CRLB).

Methods: The estimator first computes an initial estimate from a linearized maximum likelihood

estimator. The errors in the initial estimates are determined at a set of points from measurements on

a calibration phantom. The errors at these known points are interpolated to create two-dimensional

look up tables of corrections to the initial estimates. During image acquisition, the linearized maxi-

mum likelihood estimate for each data point is used as an input to the correction look up tables, and

the final output is the sum of the estimate and the correction. The performance of the estimator is

compared to generalizations of the polynomial and rational polynomial estimators for multibin

data. The estimators are compared by the mean square error (MSE) and its components, the bias,

and the variance of the output. The variance is also compared to the CRLB. The performance is

simulated with two to five bins PHA data. The CRLB at a fixed object thickness is also computed

as a function of the number of bins.

Results: For two bin data, all the estimators’ variances are equal to the CRLB. With three or more

bins, only the proposed estimator achieves the CRLB while the others, which were not optimized

for noise performance, have much larger output variance. The bias of the proposed estimator is

equal to the polynomial estimator for calibration phantoms with 40 or more steps, that is, 1600

combinations of basis materials, but is larger than the rational polynomial bias. In all cases at the

photon counts tested, the MSE is essentially equal to the variance, indicating that the bias errors are

negligible compared to the variance.

Conclusions: The estimator provides a noniterative method to compute the energy dependent infor-

mation from multibin PHA data that achieves the CRLB over a wide range of operating conditions

and has low output bias. The estimator can be calibrated based on the measurements of a calibration

phantom; so, it does not require measurements of the x-ray energy spectrum or the detector

response functions. VC 2011 American Association of Physicists in Medicine.

[DOI: 10.1118/1.3570658]
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I. INTRODUCTION

One of the principal reasons for the interest in photon count-

ing detectors for medical x-ray imaging is their ability to

extract energy spectrum information through pulse height

analysis (PHA).1 These detectors can analyze the photons

into two or more energy bins but most prior research on solv-

ing the equations for the energy dependent information2

assumed only two effective spectra.3–7 In this paper, I

describe an estimator for multibin PHA data and show that

its output noise variance is equal to the Cramèr-Rao lower

bound (CRLB) (Refs. 8 and 9) over a wide range of operat-

ing conditions. Since the estimator achieves the CRLB, we

can be assured that no other unbiased estimator has a smaller

noise variance. Other advantages of the estimator include

that it can be calibrated based on transmission data of a cali-

bration phantom with the x-ray system; so, it does not

require measurements of the x-ray energy spectrum or the

detector response functions. Also, the estimator is nonitera-

tive; so, it can be computed rapidly with a fixed maximum

computation time.

Prior research on estimators for the energy dependent in-

formation3–7 emphasized deterministic errors with a low

noise data and computation time. While these errors are im-

portant, they are only part of a broader measure of perform-

ance that is widely used in estimator theory, the mean square

error (MSE). The MSE is the expected value of the square of

the difference of the output and the actual value and is equal

to the sum of the variance and the square of the bias (see

Sec. 2.4 of Kay8). The bias is the difference of the expected

value of the output and the actual value while the variance is

the expected value of the square of the difference of the out-

put and its mean value. The deterministic errors correspond

to the bias, but in medical imaging systems, the variance can
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be significantly larger than the square of the bias; so, both

are measured in this paper. Prior noniterative methods such

as the polynomial and rational polynomial3 estimators can

be generalized for more than two spectra but, since they

were not designed to take into account the noise properties,

their output noise variance with multibin data is much larger

than the proposed estimator. The proposed estimator has

comparable bias to the polynomial and rational polynomial

estimators so it has a much smaller MSE.

The maximum likelihood approach (see Sec. 2.4 of Van

Trees9 and Chap. 7 of Kay8) can be applied with multibin

PHA data to produce estimators with desirable characteris-

tics including being asymptotically unbiased and efficient,

i.e., with output variance equal to the CRLB. However, as

previously implemented, maximum likelihood estimators

(MLE) require an iterative maximization with the data at

each pixel or CT scanner channel. For example, Roessl and

Proksa10 discuss the theory of an iterative MLE for multibin

PHA data, and Schlomka et al.11 describe its experimental

implementation. While this is impressive work, their method

has substantial problems for clinical utilization. One problem

is computation. Iterative methods can potentially fail to con-

verge and have long, unpredictable computation times.

Another problem is that the method by Roessl and Proksa

and Schlomka et al. requires knowledge of the incident

energy spectrum at high resolution and the effective energy

response of each bin. This is problematic for clinical installa-

tions since, due to aging of components, the sputtering of an-

ode material on the x-ray tube window, and other effects, the

spectra and detector response may change and must be meas-

ured periodically. The measurements required for the itera-

tive algorithm use specialized instruments and techniques

and would be difficult to carry out in a clinical environment.

An alternative is to estimate the spectrum from transmis-

sion measurements.5,6 However, it is unclear whether the

reconstructed spectra are sufficiently accurate. Indeed, the

spectrum reconstruction methods were suggested principally

for objects that are too large or too small for practical con-

struction of a calibration phantom. The method described

here is based directly on calibration phantom measurements

without the intermediate step of estimating the spectrum.

I compare the performance of the estimator to generaliza-

tions of the polynomial and rational polynomial approxima-

tions for multibin data. The performance is measured using a

Monte Carlo simulation. The estimators are compared by the

bias, the variance, and the MSE of the output with noisy data.

The variance is also compared to the CRLB. The perform-

ance is simulated for detectors with two to five bins PHA.

II. METHODS

The operation of the proposed estimator is shown in Fig. 1.

The estimator uses the two function decomposition of the

x-ray attenuation coefficient2 and its output is the line inte-

grals of the basis set coefficients. These line integrals can be

considered to be the components of a two-dimensional vec-

tor, A, called the A-vector here, and the output for each pixel

or CT scanner channel is a point in a two-dimensional space,

called the A-plane. Since the two function decomposition

accurately approximates the attenuation coefficient if the

material has no K-edges within the energy region of interest,

the A-plane data completely characterize the information

that can be extracted by an x-ray imaging system.

The first step in the estimator is to compute an initial esti-

mate based on a linearized MLE. This transforms the detector

data to the two-dimensional A-plane regardless of the number

of bins in the PHA. The initial estimate can be implemented

as a matrix multiplication so it can be computed rapidly with-

out iteration. Since the x-ray transmission is a nonlinear func-

tion of A, the initial estimate will have errors. In the second

step, the errors in the two components of the A-vector are cor-

rected using data from two-dimensional look up tables that

are computed based on measurements with a calibration phan-

tom using the imaging system x-ray source and detectors.

Since the estimator uses look up tables with A-vectors as

inputs, it will be referred to as the A-table estimator.

In this section, the initial estimator is first derived. Next, a

calibration phantom that can be used to provide data to com-

pute the estimator parameters is described. I then show how

the calibration phantom data can be used to compute the ini-

tial estimator parameters and the correction look up tables.

The variance will be compared with the CRLB, so I derive

an expression for the CRLB variances in terms of the system

parameters. I then describe generalizations of the polynomial

and rational polynomial estimators for more than two effec-

tive spectra and methods to compute the parameters of these

estimators from the calibration phantom data. Finally, I

describe the methods to measure the performance of the esti-

mators based on Monte Carlo simulator data.

II.A. A linearized MLE

The purpose of the initial estimator is to provide A-plane

data that are close enough to the noise-optimal estimate so

that the corrections applied from the look up tables can pro-

vide accurate, near noise-optimal, results. The initial estima-

tor is based on a linearized MLE with some modifications as

noted below. The performance of the complete A-table esti-

mator is determined by the interaction of the initial estimator

and the correction factors.

The derivation of the initial estimator is based on a linear-

ized model of the multibin PHA measurements. The model

uses the two function decomposition2 of the x-ray attenuation

coefficient, which is applicable with lower atomic number

FIG. 1. The A-table estimator block diagram. See text for the definitions of

the measurement data vector L, the transfer matrix M, and the covariance R

as well as for a description of the operation.
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materials without K-edges in the diagnostic energy region.

This method is well-known but will be described here to intro-

duce notation. The attenuation coefficient l(r,E) at each point

r in the object at photon energy E can be decomposed as,

lðr;EÞ ¼ a1ðrÞf1ðEÞ þ a2ðrÞf2ðEÞ
where a1(r) and a2(r) are the basis set coefficients and f1(E)

and f2(E) are the basis functions. Since the basis functions

are known a priori, all the information is carried by the basis

set coefficients. We cannot measure these coefficients

directly. Instead, we infer them from measurements of the

transmitted flux through the object with two or more source

spectra. The x-ray source, typically an x-ray tube, produces

photons with an energy spectrum ssource(E), which can be ei-

ther the photon number spectrum n(E) or the photon energy

spectrum q(E)¼En(E) depending on the type of detector

used. The detector area and the exposure time are assumed

to be included in the spectrum values. The spectrum of the

x-ray photons transmitted through the object is

sTransðEÞ ¼ ssourceðEÞe�
Ð

lðr;EÞdt; (1)

where
Ð

lðr;EÞdt dt is the line integral of the attenuation

coefficient on a line from the x-ray tube focal spot to the de-

tector. Using the basis set decomposition, the line integral

can be expressed asð
lðr;EÞdt ¼ A1f1ðEÞ þ A2f2ðEÞ; (2)

where Ai ¼
Ð

ai rð Þdt, i¼ 1,2. The line integrals A1 and A2

will be considered to be the components of a vector A. The

x-ray imaging system can then be considered to map the

object x-ray attenuation onto a set of points in an abstract

two-dimensional vector space, the A-plane.

The PHA detector analyzes the energy of individual pho-

tons and counts the number that fall within a set of energy

bins during the exposure time. The mean values of the

counts Nk are the integrals of the spectrum of the photons

incident on the detector times the effective response function

of the bin dk(E). In an idealized model, dk(E) is a rectangle

function that is one inside the bin and zero outside but it can

also model other responses. Using (1), the mean values are

Nk ¼
ð

dkðEÞnsourceðEÞe�
Ð

lðr;EÞdtdE: (3)

Substituting the expression for the line integral (2), we can

see that the counts are functions of the A-vector

NkðAÞ ¼
ð

dkðEÞnsourceðEÞe�A1f1ðEÞ�A2f2ðEÞdE: (4)

The measurements will be summarized as components of a

vector I. Because of the exponential form of the transmission

equations [Eq. (1)], the logarithms of the measurements

L¼�log(I/I0) can approximately linearize them, where the

components of I0 are the expected values with no object in the

beam. The negative is used to give positive quantities since

the measurements decrease with increasing object thickness.

From (4), we see that the vector L is a function of A.

Figure 2 shows the near linearity of L(A).

To derive a linearized model, we can use a vector

Taylor’s series expansion of L(A) about a mean value �A

Lð�Aþ dAÞ ¼ Lð�AÞ þ @L

@A
dAþ… : (5)

Expanding about the origin, where �A ¼ 0, and noting that,

by definition, L(0)¼ 0, we can drop the higher order terms

to obtain a linear model

LðAÞ � @L

@A
A; (6)

where the gradient @L=@A is evaluated at the origin. The

gradient is a matrix M with coefficients

Mij ¼ �
@ logðIi=Ii0Þ

@Aj
¼ � 1

Ii

@Ii

@Aj
:

Substituting the integral expression for the measurements

Mij ¼
Ð

fjðEÞdiðEÞsiðEÞe�A1f1ðEÞ�A2f2ðEÞdEÐ
diðEÞsiðEÞe�A1f1ðEÞ�A2f2ðEÞdE

:

Defining the normalized spectrum

ŝiðEÞ ¼
diðEÞsiðEÞe�A1f1ðEÞ�A2f2ðEÞÐ
diðEÞsiðEÞe�A1f1ðEÞ�A2f2ðEÞdE

; (7)

Mij ¼
ð

fjðEÞŝiðEÞdE ¼ fjðEÞ
� �

i
: (8)

That is, the coefficients of the M matrix are the average or

effective values of the basis set functions over the normal-

ized spectra ŝiðEÞ. The number of rows of M is equal to the

number of spectra or bins in a PHA detector and it has two

columns, one for each component of the A-vector.

The MLE requires a probabilistic model for the L mea-

surement data and I will use a multivariate normal distribu-

tion, which is widely used to model x-ray imaging system

data.12 Then, the linear model with noise is

Lwith noiseðAÞ ¼MAþ w; (9)

where w is a zero mean multivariate normal random variable

whose covariance depends on A.

FIG. 2. Three-dimensional plot of L as a function of A for data from a single

bin. Note that L is approximately linear. There are comparable plots for the

logarithm of data from other bins.
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The MLE for this linearized system is derived in standard

textbooks [see Eq. (4.25) of Kay8]

ÂMLE ¼ ðMTR�1
LjAMÞ�1

MTR�1
LjALwith noise: (10)

where RLjA is the covariance of the L data. The matrices M

and RLjA are determined from the calibration data as shown in

Secs. II B and II C so that the leading factor of Eq. (10),

ðMTR�1
LjAMÞ�1

MTR�1
LjA, can be precomputed resulting in a

single matrix. The initial estimate is therefore a matrix multi-

plication times the measurement vector Lwith noise so it can

be computed rapidly.

II.B. The calibration phantom

The initial estimator parameters and the correction look

up tables can be computed from measurements with the cali-

bration phantom shown in Fig. 3(a). The phantom is made

from step wedges with accurately known dimensions and

made of materials, such as acrylic plastic and aluminum,

whose chemical composition spans the range of atomic num-

bers of materials found in the object. The maximum thick-

nesses of the step wedges are chosen to span the attenuation

of the subjects. For the simulations, these were chosen to be

5 cm of aluminum and 30 cm of acrylic plastic. The phantom

can be placed in the imaging system and measurements

made using the same x-ray technique as would be used for

the object. In a CT system, the gantry would be fixed to

make measurements of the projections of the phantom. If

the responses of the channels are substantially different, the

phantom could be constructed wide enough to fit over all the

channels and scanned across the detector so the data are

measured for each channel. The calibration data could then

be used to compute MLE parameters and correction look up

tables for individual channels. The scanning procedure and

the extraction of the measurements from the system data can

be automated and done under software control.

If we use the calibration material basis set13 so the basis

functions f1(E) and f2(E) are the attenuation coefficients of

the step wedge materials, then the A-vector components are

the thicknesses of each type of material in the phantom. As a

result, we can sort the calibration phantom data to give the

measurement vector L at a rectangular lattice of points on

the A-plane shown in Fig. 3(b).

II.C. Linear MLE parameters from calibration phantom
data

Equation (10) gives the estimated ÂMLE for a given meas-

ured data vector L. Its evaluation requires the effective attenu-

ation coefficient matrix M and the covariance matrix R.

These can be computed from the calibration phantom data.

The effective attenuation coefficient matrix M is approxi-

mated as the coefficients of a least squares regression of L as a

function of A with the calibration data. In the linearized model

(6), M is the gradient at the origin but, for the implementation

of the MLE, I use the average over the calibration data

Lcalibration ¼MAcalibration: (11)

The matrices Lcalibration and Acalibration are measured with the

calibration phantom and we can use least squares to find the

coefficients M that are the best fit to the data. This will give

an average value of M over the complete phantom but, since

the linear MLE will be used as an initial estimate, this gives

sufficient accuracy.

The covariance can be computed from measurements on

a uniform region of the step wedge so all the measurements

are samples of the random data for a constant A-vector. The

sample covariance will then be an estimate of R. Even

though the expansion in Eq. (6) is about the origin, I found

that better results were obtained by using the covariance

from the center of the calibration region, 2.5 cm of alumi-

num and 15 cm of acrylic plastic. Thus, the computation of

both the gradient M and the covariance R do not precisely

use the linearized model of Eq. (6). However, when used

with the correction table discussed in Sec. II D, the overall

estimator produces small errors.

II.D. The correction look up table

We can also use the calibration phantom data to compute

the error correction look up tables. Since the overall

FIG. 3. Calibration phantom. (a) Two sets of step wedge phantoms made

from known materials and with equal increments are used. The measure-

ments provided data at points on a rectangular lattice on the A-plane are

shown in (b).
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mapping from L to A is nonlinear, we expect the linearized

MLE to produce errors. The calibration data give us the

actual values of the A-vectors for the L data at the grid of A-

plane points in Fig. 3(b). By subtracting the actual A values

from the linear MLE outputs at these points, we can compute

the errors. Figure 4(a) shows the errors as arrows from the

actual values to the initial estimates.

As shown in Figs. 4(b) and 4(c), the errors are smooth

two-dimensional functions for each A-vector component.

We can use the smoothness of these functions to compute a

two-dimensional look up table by interpolating between the

values determined from the calibration phantom data.

The inputs to the correction look up tables are the outputs

of the initial estimator, that is, the arrow heads in Fig. 4(a).

They are, therefore, not on a rectangular lattice. However, we

can use the MATLAB gridfit function14 or similar techniques to

interpolate them onto a rectangular lattice suitable for the

look up tables. The gridfit function interpolates between non-

uniformly spaced points by solving a set of simultaneous

equations for the parameters of a hypothetical flexible plate

that approximates the data. By using this function, we can

compute a high-resolution, rectangular look up table that can

be used for fast computation of the corrections from individ-

ual measurements during the operation of the system.

Due to random noise fluctuations, it is possible, although

improbable, for the initial estimator output to be outside the

region of the A-plane covered by the look up tables. This

can be dealt with in two ways. The first is to use the extrapo-

lation capability of the gridfit function to expand the region

of coverage. The function’s algorithm allows the calibration

data to be extrapolated smoothly for small regions outside

the region with data. I expanded the calibration region by

20% about its centroid. Data that fall outside this region

were assigned the calibration table values on the nearest

boundary on a line joining the point and the calibration table

centroid, as shown in Fig. 5.

The accuracy of the estimator depends on the spacing

between the calibration points and therefore on the number of

steps in the step wedges. This accuracy is studied using the

Monte Carlo simulation as described in Sec. II G.

II.E. The CRLB

The performance of the estimators was compared to the

CRLB. As discussed in Sec. I, this is a lower limit for the

variance of any unbiased estimator. Estimators that achieve

the CRLB are called “efficient.” In our case, the covariance

of the noise in Eq. (9) depends on the estimated parameters.

The CRLB in this general normal case is derived in Sec. 3.9

of Kay.8 It is the inverse of the Fisher information matrix F

whose elements are given by Eq. (3.31) of this reference.

Translating this equation to our notation, the elements of

the matrix are

½FðAÞ�ij ¼Mð:; iÞTR�1Mð:; jÞ þ 1

2
tr R�1 @R

@Ai

R�1 @R

@Aj

� �
;

(12)

where M(:, i) is column i of M and tr[] is the trace of the

matrix in the brackets.

The CRLB will depend on the point in the A plane so that

the matrices in (12) need to be evaluated for the specified

point. We can use the normalized transmitted spectrum Eq. (7)

with Eq. (8) to compute M. The covariance matrix of the loga-

rithm of the photon counts is derived in my previous paper15

FIG. 4. Initial estimator errors. Part (a) shows the errors derived from the

calibration phantom data. Parts (b) and (c) show the corrections for each of

the A-vector components as a function of the initial values Âintial.

FIG. 5. Algorithm for data that fall outside calibration region. The calibra-

tion table is extrapolated using the gridfit function as shown by the light

circles. For data that are outside this region, the table value at the nearest

boundary on a line joining the point and data centroid is used. This is the

point marked with the X.

2328 Robert E. Alvarez: Estimator for multibin PHA 2328

Medical Physics, Vol. 38, No. 5, May 2011



R ¼
1=N1

. .
.

1=NK

2
64

3
75:

In this equation, Nk is the parameter of the Poisson distribu-

tion of the counts of bin k and can be computed for a speci-

fied A-vector using Eq. (18). To complete the evaluation of

F(A), we also need the derivative @R=@Ai. This is the deriv-

ative of each element of R with respect to the scalar Ai.

Since R is diagonal, we only need the derivative of each di-

agonal element

@

@Ai

1

Nk

� �
¼ � 1

N2
k

@Nk

@Ai
¼ �Mki

Nk
; (13)

which can be computed at each point from M and Nk.

II.F. Polynomial and rational polynomial estimators

We can derive estimators by generalizing methods dis-

cussed in the literature for the two spectra. One method that

is widely used is a polynomial approximation to the inverse

transformation. With two spectra, the second order approxi-

mation is

A1 ¼ c0 þ c1L1 þ c2L2 þ c3L2
1 þ c4L1L2 þ c5L2

2; (14)

A2 ¼ d0 þ d1L1 þ d2L2 þ d3L2
1 þ d4L1L2 þ d5L2

2; (15)

where Lk¼�log(Ik/Ik0), k¼ 1,2. The equations are linear in

the coefficients so that they can be determined with a least

squares fit to data from a calibration phantom such as in

Fig. 3. The polynomial approximation can be generalized to

more than two bins or spectra. For example, with three meas-

urements, a second order multinomial would be

A1 ¼ c0 þ c1L1 þ c2L2 þ c3L3

þ c4L1L2 þ c5L1L3 þ c6L2L3

þ c7L2
1 þ c8L2

2 þ c9L2
3; (16)

with a similar expression for A2. Clearly, as the number of

measurements increases, the number of terms and therefore

the difficulty in calibrating without over fitting increase

rapidly.

The magnitude of the gradient of the inverse transforma-

tion is largest near the origin, which is counter to the behav-

ior of polynomials whose gradient magnitude increases with

distance from the origin. In order to approximate the inverse

function more accurately, Cardinal and Fenster3 suggested

ratios of polynomials, whose gradient magnitude can

increase near the origin. They only considered two measure-

ment spectra but this can be generalized to multiple spectra.

Since the A1 and A2 surfaces go through the origin, the de-

nominator must have a constant term. The rational second

order multinomial function for three measurements is

A1 ¼
c0 þ c1L1 þ c2L2 þ c3L3 þ c4L1L2 þ c5L1L3 þ c6L2L3 þ c7L2

1 þ c8L2
2 þ c9L2

3

1þ c10L1 þ c11L2 þ c12L3

(17)

with a similar equation for A2.

This equation is nonlinear in the coefficients so an iterative

method, such as the MATLAB implementation of the Leven-

berg–Marquardt algorithm, nlinfit, must be used to estimate

the coefficients fcig from the calibration data. Since the num-

ber of coefficients increases rapidly with the number of spec-

tra, the fitting process becomes ill-conditioned.

II.G. The Monte Carlo simulator

A Monte Carlo simulator was used to compute random

data to test the performance of the estimators. The simulator

assumed an x-ray tube source whose spectrum was computed

using the TASMIP algorithm of Boone and Seibert.16 The tube

voltage was 120 kV. The algorithm produces a photon num-

ber spectrum at 1 keV intervals from 1 keV to a photon

energy equal to the tube voltage times the electron charge.

The spectra are normalized to produce the experimental pho-

ton number at 1 mAs and 1 m from the tube window. How-

ever, for these simulations, it was necessary to specify a

known total photon number. The spectrum was normalized

by dividing each value by the sum of all the values and then

multiplying by the specified amount to give the specified

number of photons incident on the object during the expo-

sure for each pixel or channel. For the simulations, 106 inci-

dent photons per measurement were assumed.

The transmitted spectrum was computed using Eq. (1).

The object was specified by its A-vector with a basis set con-

sisting of the linear attenuation coefficients of aluminum and

acrylic plastic with an average chemical composition of

C5H8O2.

The counting PHA detector outputs were assumed to be

independent Poisson random variables with parameters equal

to the mean values of the transmitted counts

NkðAÞ ¼
ð

dkðEÞnsourceðEÞe�A1f1ðEÞ�A2f2ðEÞdE: (18)

The bin response functions were nonoverlapping rectangular

functions with widths set so that the number of counts was

equal with a specified object A-vector, 2.5 cm of aluminum

and 15 cm of plastic. The bin widths are thus not equal. The

bin energy regions were fixed and not changed for measure-

ments with other object thicknesses.

The samples of the count data were computed using the

MATLAB poissrnd function. As specified by the documenta-

tion (The Mathworks, Inc.), this function counts waiting

times of events with negative exponential interarrival times

for small values of the parameter and it uses the method by

Ahrens and Dieter for larger values of the parameter.17
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The data input to the estimators is the logarithm of the

counts divided by the zero thickness value. This zero thick-

ness value was assumed to be measured with low noise so

that the mean value was used. Another issue is that the bin

count data may be equal to zero since this value is possible

for a Poisson random variable although highly improbable

with the parameters used. This would cause an error in the

computation of the logarithm. To avoid this problem, a one

was added to all counts. This did not affect the results sub-

stantially since the average number of counts is much larger

than one.

II.H. Estimator performance measurements

The performance of the estimators was measured in terms

of the MSE, the bias, and the variance of the output with

noisy data. In general, the results will depend on the object

attenuation, so they were measured along a set of lines

through the A-plane shown in Fig. 6. The points on each line

correspond to different thicknesses of a particular material.

The results were then plotted as a function of the distance

along this line from the origin, which is proportional to the

material thickness.

II.H.1. Errors with low-noise data vs number of
calibrator steps

Estimates with polynomial, rational polynomial, and A-

table estimators were computed for 25 points along line (b)

in Fig. 6 with deterministic values, i.e., using the mean val-

ues of the data. The errors were the differences between the

estimates of the A-vector components and the actual values.

This was taken to be the bias although the nonlinear transfor-

mation of the mean is not necessarily equal to the mean of

the transformation of the noise. In our case, the near linearity

of the transformation, shown in Fig. 2, implies that the bias

will be close to the transformation of the mean. The average

of the absolute value of the errors is displayed as a function

of the number of steps in the calibrator step wedges.

II.H.2. Estimator variance and MSE

The estimator variance and MSE were simulated as a

function of object thickness for data from a PHA detector

with two to five bins. They were computed for 200 Monte

Carlo trials at each of the points along the lines in the A-

plane in Fig. 6. As discussed above, the variance is the

expected value of the square of the difference of the output

and its mean value. It was estimated using the sample var-

iance of the Monte Carlo trials

varðÂÞ ¼ 1

m� 1

Xm

i¼1

Âi � �̂
A

� 	2

;

where
�̂
A is the mean of the estimator output and m is the

number of Monte Carlo trials. The MSE was computed using

the known value of A at each point

MSEðÂÞ ¼ 1

m

Xm

i¼1

ðÂi � AÞ2:

The covariance used in the linear MLE of the A-table

method was estimated from 5� 104 trials. The incident 120

kV x-ray tube spectrum at each pixel was assumed to have a

total of 106 photons. The bin energy regions were selected to

give an equal number of transmitted photons in each bin at

the attenuation of an object with 2.5 cm of aluminum and 15

cm of plastic. A 40 step calibration phantom was used.

The CRLB was computed at each point along the line

using the formula described in Sec. II E with the transmitted

spectra for the object attenuation at each point.

The standard error of the variance for each point along

the line was computed using the bootstrap method18 with

100 iterations.

II.I. CRLB vs number of bins

The simulator also allows us to compute the CRLB as a

function of the number of PHA bins. The object A-vector

was fixed at 2.5 cm of aluminum and 15 cm of acrylic plas-

tic. The incident spectrum was a TASMIP 120 kV x-ray tube

spectrum with 106 photons. The bin widths were adjusted to

give equal counts in all bins.

III. RESULTS

III.A. Errors vs number of calibrator steps

The average errors with deterministic data are shown in

Fig. 7 as a function of the number of steps of the calibration

phantom shown in Fig. 3. These are the steps for each com-

ponent; so, the number of regions in the phantom is the

square of the number of steps. The polynomial and ratio of

polynomial estimators are given by Eqs. (16) and (17).

III.B. Variance and MSE vs object thickness

The variance of the estimates for PHA data with two bins

is plotted in Fig. 8. The CRLB is plotted as a solid line, and

the Monte Carlo results are plotted as individual symbols.

The data correspond to points in the A-plane along line (b)

of Fig. 6. Notice that with two bins all the estimators have

FIG. 6. Lines in A-plane for evaluation of errors. The errors are evaluated

for objects with attenuation A-vectors on this line and plotted as a function

of the distances along the lines from the origin.
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approximately the same variance and all achieve the CRLB.

In this case and the other cases considered below, the MSE

was essentially equal to the variance so that the bias was

negligible.

The variance with three bins is shown in Fig. 9. The A-ta-

ble estimator achieves the CRLB but with three or more

bins, the polynomial and rational polynomial estimators’

variance was much larger, over a factor of 100 in some

cases. The variance of the alternate estimators was equal for

three bins but was different for four bins as shown in Fig. 10.

The variance of the A-table estimator with five bins was

evaluated for all three lines in the A-plane in Fig. 6. The

results are in Fig. 11.

The data for line (b) in Fig. 11 seem to show a deviation

from the CRLB at the largest object thicknesses. The data in

this region are replotted in Fig. 12 with error bars corre-

sponding to 62 standard deviations of the estimates com-

puted using the bootstrap method described in Sec. III A.

III.C. CRLB vs number of bins

The CRLB as a function of the number of PHA bins is

shown in Fig. 13. Recall that the bin widths were adjusted to

give equal counts in all bins so that the widths are not equal.

IV. DISCUSSION

Alvarez and Macovski2 showed that the MLE for two

spectra simply solves the deterministic equations with the

measured data and that the MLE achieves the CRLB.

FIG. 7. The mean of the absolute value of the errors vs the number of steps

of the calibrator step wedges. At each step number, there are three error bars

corresponding to each type of estimator. The errors for the two A-vector

components are plotted separately.

FIG. 8. Variance of estimator output for PHA data with two bins for data on

line (b) in Fig. 6. The results are shown for the A-table, polynomial, and

rational polynomial estimators. The A-vector length is the distance from the

origin on the line. The data are plotted in semilogarithmic scales because of

their wide variation. The CRLB is plotted as the solid curve. In this case, the

variances of all estimators are essentially the same and equal to the CRLB.

FIG. 9. Variance for PHA data with three bins on line (b) in Fig. 6. With

three bins, the polynomial and rational polynomial results are essentially

equal but are much larger than the A-table results, which are shown as black

diamonds. The A-table results are essentially equal to the CRLB.

FIG. 10. Variance for PHA data with four bins on line (b) in Fig. 6. With

four bins, the polynomial and rational polynomial results are different but

are both much larger than the A-table results, which are shown as black dia-

monds. The A-table results are essentially equal to the CRLB.
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Therefore, the output noise variance for all two spectra esti-

mators that solve the equations accurately is essentially the

same and this is reflected in the results in Fig. 8. With three

and four bin data, Figs. 9 and 10 show that the polynomial

and rational polynomial estimators have variance substan-

tially larger than the A-table method, which essentially

achieves the CRLB, and the variances are larger than with

two bin data.

The multibin data could be summed together to produce

two bin data, which would have lower variance than the

results in Figs. 9 and 10, but this would not provide the lower

output noise with increased number of bins shown in Fig. 13.

It may be possible to precompute the maximum likelihood

estimates throughout the L measurement space with an itera-

tive MLE and then compute a polynomial or other function fit

to the data. However, previous iterative MLE implementa-

tions, such as Schlomka et al.,11 required high resolution

measurements of the spectra and detector response that may

not be practical for clinical applications. In addition, the

“curse of dimensionality” would require complex fit functions

with a large number of undetermined coefficients for higher

dimensional data. Other ways of computing a polynomial or

rational polynomial fit are, of course, possible but they cannot

have a smaller variance than the CRLB if they are unbiased.

Figures 11 and 12 show the A-table estimator may have a

small systematic deviation from the CRLB at the largest

object thicknesses. At large thicknesses, the covariance dif-

fers from the average value assumed in the initial linear esti-

mator; so, this leads to errors that are not corrected

sufficiently by the look up table. Nevertheless, Fig. 11 shows

that for almost all the A-plane region of interest, the A-table

estimator achieves the CRLB.

Figure 7 shows the bias errors with deterministic data as a

function of the number of steps in the calibration phantom.

The A-table estimator errors are substantially larger than the

other estimators for small number of steps but become com-

parable to the polynomial estimator errors for 40 steps. The

errors with the rational polynomial estimator are the small-

est. For the range of photon counts studied, which were cho-

sen to be representative of clinical systems, the MSE is

dominated by the variance for all estimators indicating that

the bias does not substantially affect the overall performance

of the estimators.

A 40 step calibration phantom requires 1600 data points;

so, the measurements should be extracted automatically

under software control. The dimensions of the calibration

phantom can be built into the software and the data can be

acquired using a standard procedure and with the phantom

placed at a predetermined position. The phantom size and

data acquisition time can be adjusted to give calibration data

with low-noise. An additional scan with technique similar to

that used during patient imaging may be used to provide data

to estimate the noise covariance. This may require different

calibrations for each scan technique but it may be possible to

parametrize the results to adjust them for specific cases.

FIG. 11. Variance for A-table estimator with five bin PHA data. The labels

on the data correspond to the lines in Fig. 6. The CRLB is plotted as a solid

line while the variances are plotted as diamonds.

FIG. 12. Replot of data for the region at the end of line (b) of Fig. 11 with

error bars corresponding to 62 standard deviations. In this region, the var-

iance deviates from the CRLB although the differences are only approxi-

mately twice the standard deviation of the variance estimates from the

Monte Carlo simulation.

FIG. 13. CRLB as a function of the number of PHA bins for an object con-

sisting of 2.5 cm of aluminum and 15 cm of acrylic plastic. The two panels

show the variances of the A-vector components. The number of bins ranges

from 2 to 18.
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Beam divergence implies that the lengths through each

region of the phantom differ slightly. This may be mini-

mized by using nonplanar surfaces in the calibration phan-

tom steps and by computing an effective thickness for the

geometry of each step.

A possible alternative to the look up table is to approximate

the correction functions in the A-plane with two-dimensional

polynomials, sinusoids, or other smooth functions. It may be

difficult to approximate the portion of the correction func-

tions near the origin because of the high gradient there. In

addition, the fact that the sampled functions are not available

on a rectangular grid may cause difficulties in computing the

approximation.

Figure 13 shows that the CRLB decreases as the number

of PHA bins increases and asymptotically approaches a

lower limit. Although the CRLB values for low number of

bins depend on the choice of the bin thresholds, the choice

has less effect as the number of bins increases so that there is

a well defined lower limit. The CRLB is closely related to

the optimal signal to noise ratio (SNR) from statistical detec-

tion theory described in my previous paper.15 The SNR

depends on the full CRLB matrix but the asymptotic

approach of the variances to a lower limit is consistent with

the result in that paper, which shows that the SNR

approaches the Tapiovaara–Wagner19 optimal SNR as the

number of bins increases.

Factors such as pulse pileup, low energy spectral distor-

tion due to charge sharing and K radiation escape, and scat-

ter within the patient were not considered here but are

currently being studied. The success of Schlomka et al.11 in

producing experimental images with an iterative MLE indi-

cates that these problems may be able to be addressed. Fur-

ther, the state of the art of photon counting detectors for

medical imaging is progressing rapidly. For example, in

2007, Iwanczyk et al.20 reported making clinical CT images

with photon counting detectors albeit at reduced dose. Using

the A-table estimator with improved counting detectors and

count rate dependent correction of errors as a preprocessing

step could produce low-noise, energy-selective images.

The use of multibin PHA data to image high atomic num-

ber contrast material is of substantial interest. In this case,

the two function basis is not accurate because of the K-edge

of the contrast material attenuation coefficient within the

energy region of interest. This can be accommodated by

extending the basis set to three functions by adding the

attenuation coefficient of the contrast material. The A-table

estimator may be generalizable to this case. The linear MLE

can be readily extended to three dimensions and 3D look up

tables can be implemented. The calibration phantom would

require additional wedges of the contrast material or perhaps

a material simulating the contrast agent in the surrounding

body tissue. Automated procedures could be used to acquire

the data.

V. CONCLUSION

The operation of a noniterative estimator for the energy

dependent information from photon counting detectors with

multibin pulse height analysis data is described and its per-

formance evaluated using a Monte Carlo simulation. The es-

timator is implemented as a matrix multiplication followed

by a two-dimensional look up table so that its computation

time is fast and predictable. It achieves the Cramèr-Rao

lower bound with all the detector types studied for all object

thicknesses except for a small deviation at large object thick-

ness. Therefore, we are guaranteed that no other unbiased es-

timator can have smaller variance in the region where it

achieves this bound. Its bias is small enough that the mean

square error is dominated by the variance in all cases. The

parameters required to implement the estimator can be

derived from transmission data with a calibration phantom

and do not require measurements of the source spectrum or

the detector energy response functions.

Alternate fast noniterative estimators based on least

squares polynomial and rational polynomial approximations

of the inverse transformation are also studied. While these

estimators provide low bias, their output noise variance, as

implemented here by fitting to noise-free calibration data

without optimization for noise performance, is much larger

than the A-table estimator variance and the Cramèr-Rao

lower bound.
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