Skip to main content
. 2011 May 17;3:3. doi: 10.3389/fnsyn.2011.00003

Figure 1.

Figure 1

Electrophysiological Findings following presynaptic h-tau42 injection. (A) Pre- and post-synaptic potential following a direct electrical stimulation of the presynaptic axon. Synaptic transmission fails in 30 min following h-tau42 preinjection (six subsequent stimuli at 5-min intervals). (B) Similar experiment as in (A) (24 subsequent stimulus are shown at 5-min interval) following h-tau42 injection in a T-817MA-treated squid. Transmission block does not occur within the 2-h period. (C) Repetitive stimulation at 100 Hz following h-tau42 injection results in a step like decrease in post-synaptic response amplitude that slowly progresses (post 1,2,3) but shows small variation in amplitude during a given stimulus train. (D) Similar train stimulus paradigm produced reduction of transmitter release, which recuperated to the 80% amplitude in 15 min (post 1, 2, and 3). (E) Power spectra of spontaneous post-synaptic noise. Noise recording at the post-synaptic terminal (upper and lower panels on the left) were taken at 1-min intervals following h-tau42preinjection. Spontaneous release as determined by synaptic noise power spectrum (right panel) in (E), showed rapid reduction within a 12-min interval (reading taken at a 1/minrate). (F) h-tau42 preinjection produces block of presynatic release (c) without affecting presynaptic inward calcium current (b). Preterminal voltage step were repeated every minutes. For further detail see text and Figure 2.

HHS Vulnerability Disclosure