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The population analysis approach is an important tool for clinical pharmacology in aiding the dose individualization of medicines.
However, due to their statistical complexity the clinical utility of population analyses is often overlooked. One of the key reasons to
conduct a population analysis is to investigate the potential benefits of individualization of drug dosing based on patient
characteristics (termed covariate identification). The purpose of this review is to provide a tool to interpret and extract information from
publications that describe population analysis. The target audience is those readers who are aware of population analyses but have not
conducted the technical aspects of an analysis themselves. Initially we introduce the general framework of population analysis and
work through a simple example with visual plots. We then follow-up with specific details on how to interpret population analyses for
the purpose of identifying covariates and how to interpret their likely importance for dose individualization.

Introduction

The primary purpose of population pharmacokinetic (PK)
and pharmacokinetic-pharmacodynamic (PKPD) analysis
is to individualize drug choice and dosing regimen. In this
perspective we consider that dose ranging and dose selec-
tion in pre-marketing clinical trials as well as culmination of
knowledge to develop a product label are all versions of
dose individualization which are not conceptually differ-
ent from that faced in the clinic. Dose individualization in
this setting is therefore an overarching term that accounts
for both how dosing requirements vary across individuals
as well as an understanding of sources of variability in dose
requirements.

Dose individualization is achieved by understanding
the onset, magnitude and duration of drug effects that
result from a given dose and dosing regimen and how
these effects vary over the target population. Readers are
referred to our companion review [1] for an introductory
discussion on PKPD models.

The population approach we see today arose from the
development of the conceptual framework of population
analysis in 1972 to 1977 [2, 3]. From 1977 there was a trickle
of papers over the next 10 years, until 1985 where there
was an exponential growth in publications.The application
of population analysis methods to therapeutic problems

has led to on-going methodological and software devel-
opment which in turn has resulted in further and more
complex applications.

The first population analysis software application
NONMEM (NONlinear Mixed Effects Modeling [4–6]) still
accounts for the majority of the literature (Table 1).
Readers are referred to other papers that describe the
history of software development for population analysis
[e.g. 7, 8].

The discipline of population analysis shares a common
history with clinical pharmacology and, importantly,
the same fundamental aim. Yet, the results of population
analyses are often viewed with scepticism by those not in
the field, particularly by practising clinicians [9]. This may
be attributed to a perceived lack of relevance to clinical
practice, the inaccessible nature of the methodology
and the use of complex equations and statistical jargon in
published papers. As a result the clinical utility of models
that are developed in the population analysis setting is
diminished.

Aim

There are many general reviews [e.g. 7, 9–15] and introduc-
tory articles [e.g.16,17] on population analyses and it is not
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the intention of this article to emulate those works. The
purpose of this review is to provide a tool to interpret and
extract information from population PKPD analysis publi-
cations. This review is aimed at those readers who have
heard about population analyses but have not conducted
the technical aspects of an analysis themselves.

What is a population analysis?

In this review, we use the term population analysis (also
termed repeated measures modelling, nonlinear mixed
effects modelling and nonlinear hierarchical modelling) to
refer to a set of statistical techniques that can be used to
learn about the average response in a population as well as
the variability in response that arises from different
sources.We use the term response to refer to any biomarker
or event that might be measured clinically. Readers are
referred to Pillai [7] for a detailed overview of population
analysis.The approach has also been reviewed recently in a
model based drug development setting [18] and in rela-
tion to modelling vs. non-modelling techniques from a sta-
tistical stand point [19].

Population analysis is the application of a model to
describe data that arise from more than one individual.
The process does not require that each study individual
provides sufficient data to characterize completely their
own PK or PKPD profile. Population analysis methods allow
borrowing of information between individuals to fill in
gaps in the PK and PD profiles. In doing so the method
allows the use of sparse sampling study designs. The influ-
ence of patient characteristics (such as renal function) on
the PK or PKPD profile can be quantified from the data set
as well as any remaining unexplained variability between
patients.

For the purposes of this review, we constructed a PK
model for a gentamicin-like drug that incorporates the
central elements relevant to a population analysis. This
drug displays one compartment model characteristics
with a volume of distribution (20 l) and clearance (4 l h–1)
and the dose is administered by intravenous bolus. We
used this PK model to simulate plasma concentration–time
data for 30 patients who received a single intravenous
bolus dose of 420 mg (6 mg kg–1 for a 70 kg individual),
where each patient provided seven blood samples at times
0.25, 0.5, 1, 2, 4, 8 and 12 h following dosing (Figure 1).
A population analysis was then conducted on the simula-
tion ‘dataset’.

A population model for our data will consist of three
elements: (1) A model for the typical response – this is the
response for a typical (average) patient, (2) a model for
heterogeneity and (3) a model for uncertainty.

1. A model for the typical response
This is sometimes also called a structural model. For phar-
macokinetics this would be a compartmental model that
describes the plasma drug concentration over time (see
Figure 2A).

The pharmacokinetic model that describes our
gentamicin-like drug at a specific time (t) is:

y t
V V

t( ) = −( )dose CL
exp . (1)

where CL is clearance and V is volume of distribution which
will be estimated as a part of the modelling process.

2. A model for heterogeneity
We use the term heterogeneity in population analysis to
describe the variability between individuals. This is also
termed between subject variability (BSV) or interindividual

Table 1
Population analysis software

Software*
Number of
publications†

First year indexed on
MEDLINE and EMBASE

NONMEM 2456 1980
NPEM (NonParametric

Expectation Maximization)
or NPAG (NonParametric
Adaptive Grid)

139 1991

PPharm 4 1996
WinBUGS or related 27 1998‡

Monolix 30 2007
MCPEM (Monte Carlo

Parametric Expectation
Maximization)

4 2007

*Phoenix NLME has been recently released but no publications yet cite use of this
software. †Only about half of publications on MEDLINE or EMBASE mention the
software in the title or abstract. ‡The first use appears to relate to a nonlinear
hierarchical modelling application in SAS.
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Figure 1
Observed concentration–time data for 30 individuals
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variability (IIV). This involves two distinct models. Firstly, a
model is developed to describe predictable reasons why
individuals are different and secondly a model is devel-
oped to quantify the remaining source of random variabil-
ity when we have exhausted our ideas of why individuals
are different from one another. The latter model is a statis-
tical model for random variability.

We quantify both predictable and unpredictable vari-
ability in a population to characterize not only the typical
response of the population, but also to predict the likely
range of responses that may occur. In the case of our PK
example we now see the range of model predictions in
Figure 2B encompass the observed plasma concentration
data of our PK example.

If we consider our pharmacokinetic example (Equa-
tion 1), we now end up with two equations with Equation 3
directly substituted into Equation 2:

y
V V

ti
i

i

i

i

= −( )dose CL
exp (2)

CL CL CLNR CRi ife ci= + × + (3)

We use CLCR as an abbreviation for creatinine clearance and
CLNR as an abbreviation for non-renal clearance. Note that
Equation 3 has the same form as simple linear regression
(see Figure 3). Here we show a model for renal clearance
fe i× CLCR , where fe = fraction of unchanged drug elimi-
nated by the kidneys (i.e. the slope), and non-renal clear-
ance (i.e. the intercept). We see that CL for the ith individual
is dependent on this individual’s CLCR and non-renal clear-
ance.However, including these processes into Equation 3 is
still insufficient to describe completely the variability in CL
and hence there is some remaining (residual) variability
which we attribute to random variability between patients
(the scatter around the regression line in Figure 3). The
term ci is the difference of patient i from the mean patient
with this level of renal function and the variance of c over
all individuals is the between-subject-variance. We could
assume that c is normally distributed, but as shown in
Figure 4A this would result in implausible (negative or
zero) values of CL. In this particular case,we would consider
that c assumes a log-normal distribution which results in
no zero or negative values of CL (Figure 4B). A log normal
distribution is one in which the natural logarithm transfor-
mation of the variable c is normally distributed. The actual
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Figure 2
(A) The observed concentration–time data overlaid with the median pre-
dicted concentration from the PK model. (B) Observed concentration–
time data overlaid with the median and 2.5th and 97.5th percentiles of the
predicted concentrations from the PK model
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Figure 3
Individual estimates of systemic drug CL vs. creatinine clearance. The line
is the regression line and the intercept represents non-renal clearance
and the slope represents the fraction of drug cleared unchanged by the
kidneys. The vertical difference of any individual from the regression line
represents the difference of that individual from the population average
and is given by c (Equation 3)
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value for the difference of any given patient from the
average patient is then obtained by exponentiating the
value of c.

We can now show what the predictive plots would look
like if we found that CLCR described 50% of the between-
subject variability (heterogeneity) in CL and the remaining
50% of the variability is unexplained (assumed to be
random). When we account for CLCR in the model, we find
that the range of model predictions for plasma concentra-
tion over time for the 2.5th and 97.5th percentiles of the
population is now reduced (Figure 5).

3. A model for uncertainty.
This is a statistical model that describes why our models
from Equations 1 and 2 do not match our observations

exactly. Uncertainty is also called residual error. It is
assumed that uncertainty arises from (at least) four
sources: (i) process error – where the dose or timing of dose
or timing of blood samples are not conducted at the times
that they are recorded, (ii) measurement error – where the
response (e.g. concentration) is not measured exactly due
to assay error, (iii) model misspecification – where the
models we propose in Equations 1–3 are in reality too
simple and (iv) moment to moment variability within a
patient.

The final component to add to our analysis must
account for the uncertainty in our model predictions. It is
usual, but not essential, to assume that the uncertainty is
entirely random and due to error. We can add this into our
model by introducing the term eij [for error], which is the
error for the jth observation for the ith individual. We show
this for our PK model by

y
V V

t eij
i

i

i

i
ij ij= −( ) +

dose CL
exp (4)

This error represents the (residual) difference of the
model prediction from the data. In the pharmacokinetic
example it is usual (but not essential) to consider e to be
normally distributed.

Why are population PKPD
analyses performed?

To anyone who has performed a population analysis the
process is almost as involved and convoluted as the
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Figure 4
The distribution of values of CL in the population. (A) Allows the distribu-
tion to be normal. The verticle line at 0 indicates the lower bound of
biologically acceptable values. Here 2.3% of the predicted values of CL are
unrealistic. (B) Allows the distribution to be lognormal. Negative (or zero)
values of predicted CL are not allowed
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Figure 5
Predicted concentrations from the PK model that does not include the
covariate CLCR (solid line). Predicted concentrations from a PK model that
includes the covariate CLCR as a covariate on CL (dashed lines). Including
the covariate CLCR in the model reduces the unexplained variability in
the model predictions and hence improves the reliability of the model
predictions
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original study that yielded the data. It is therefore some-
times easy to confuse the process and the goal. Popula-
tion analyses are a useful tool, but not the goal. Here we
describe four major reasons why population analyses
might be performed. All of these reasons can be related
back to either determining that individuals are different,
understanding why they are different and accounting for
their differences and hence are all globally linked to our
notion of the broader picture of dose individualization.

Descriptive population analyses
A descriptive population analysis is used to provide a
description of the current data. Although there are a wide
range of reasons why this might be performed, two are
described here. Firstly, population analyses are often con-
ducted in late phase clinical trials as a method to predict
drug exposure (e.g. area under the concentration–time
curve) in individuals within the population without the
need for intensive sampling from all individuals (see [20]).
These predictions are used to examine correlations
between safety or efficacy measures and individual expo-
sure. Secondly, a population analysis may simply be con-
ducted to assess which PK or PKPD models best describe
the study data. In this case, a series of candidate models are
constructed and, using goodness of fit analysis, the model
which best agrees with the data is determined (see, for
example,Waterhouse et al. [21] for design of an experiment
for this purpose and Hennig et al. [22] for the application of
the design). In this latter scenario the study would need to
be designed to power for appropriate model selection (e.g.
see [23]).

Predictive population analyses
Once a population analysis has been completed, simula-
tions from the population model can be used to answer
various ‘what-if’ questions. For instance, what dose and
dose interval will maximize the ability to achieve a particu-
lar therapeutic goal [24, 25], or minimize the occurrence of
an adverse effect [26]. There are almost limitless possibili-
ties for ‘what-if’ scenarios and they should be viewed as
hypothesis-generating in many cases.

Designing clinical trials
A special case of predictive population analysis is to
develop a population PKPD model to perform a sophisti-
cated power analysis to design a future clinical trial (see
[27]).This allows ‘what-if’ scenarios to be explored.We have
retained designing clinical trials under a separate heading
since the rigour required in a population analysis in this
setting is generally greater than for a standard population
PKPD analysis. In a standard power analysis, the number of
subjects can be calculated with knowledge of the size of
the difference in treatment effect of clinical interest and
the variability in the population. A standard power analysis
cannot easily account for the influence of different patient
characteristics between the prior study and new study,

non-compliance, drop-outs, different dosing regimens and
a range of other possible scenarios (see Holford et al. [28]
for a recent review).

Identification of covariates
Finally, the identification of covariates is often perceived as
the most important clinical output of a population analysis
as it provides a basis for dose individualization. A covariate
is a patient characteristic which may be phenotypic (e.g.
bodyweight or renal function) or genotypic (e.g. CYP2C9
*1*1 for warfarin [29, 30]). Equation 3 provides an example
model that might be used to describe the relationship
between CL and CLCR. If a drug has a relatively narrow
therapeutic window, and if the relationship between CL
and CLCR is statistically and clinically significant, then cor-
recting for CLCR will account for heterogeneity in the popu-
lation and lead to enhanced patient safety.

Interpretation of
population analyses

Interpretation and subsequent extraction of information
from a population analysis depends on what the clinician
wants to learn from the analysis. In the ideal setting the
purpose that the reader has will align with the aim of the
population analysis. For instance, if the clinician was inter-
ested in learning about the influence of covariates then
this should be sourced from a report that has this as its
primary aim. In this case it is straightforward to extract the
information directly from the population analysis.

In circumstances when it is not possible to find a pub-
lished population analysis that aligns directly with the
aims of the clinician, then some critical interpretation of
the results may be necessary.Say we are interested in cova-
riate identification. Since this may not have been the
primary purpose of the original population analysis then
there may not necessarily have been rigorous testing of
any covariate relationships that were reported. In this case,
we must ask two questions of the reported covariates: (i)
was the design appropriate to identify a covariate relation-
ship and (ii) was the covariate relationship significant?

Design of covariate population analyses
The design of population analyses that are used to extract
information about covariates can be assessed based on the
distribution of covariates in the study population and the
number of subjects in the study.

In the former case studying patients with normal renal
function will not yield an adequate assessment of renal
clearance (i.e. from Equations 2 and 3) even for a drug that
is extensively renally cleared. For example, of the seven
population analyses for enoxaparin found in a cursory
search of the literature, four identified renal clearance as a
significant covariate [31–34] while three did not [24, 35,
36], even though the fraction excreted unchanged is
approximately 0.8.

Interpretation of population analyses for clinicians
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In the latter case, if there are too few patients in the
study (low power) then the analysis will not be able to
identify correctly covariate relationships due to random
noise. Hence, low power studies are more likely to find
spurious and exaggerated effects. In this regard it is recom-
mended that a minimum of 50 to 100 patients are required
to provide accurate estimates of covariate effects in a
population analysis setting (readers are referred to Ribbing
& Jonsson [37] for a detailed evaluation).

Significance of covariate relationships
For a given population analysis, not all covariates inc-
luded in the final population model are necessarily sig-
nificant and not all significant covariates are included
in the final population model. This potentially confusing
situation requires a means of understanding the signi-
ficance of any reported covariates. Generally, this can
be accomplished by assessing; biological plausibility,
clinical significance, statistical significance and a reduc-
tion in unexplained between subject variability. It should
be noted that the acceptance of a covariate under any
one of these criteria does not automatically indicate that
the other criteria will also be considered to be true.
For instance, it is possible for a covariate to be statistically
significant but not clinically significant nor biologically
plausible.

Biological plausibility requires that the covariate makes
(bio)logical sense, for example CL increases rather than
decreases with increasing weight.

Clinical significance implies that the dosing regimen
would be modified in accordance with the covariate. For
example if only 20% of a drug is eliminated renally, then
although creatinine clearance may be included in the
model as a statistically significant covariate, it is unlikely
that the difference in CL would be significant over a typical
range of renal function values and hence this covariate
would not be clinically significant.

Statistical significance can be assessed by either global
or local tests. Global tests are commonly used and describe
the overall fit of the model to the data.When covariates are
added to the model then it is expected that the model
should provide a better fit to the data. If using NONMEM
this is usually assessed by the difference in successive
objective function values between the model with the
covariate and without the covariate1. A reduction in the
objective function by more than 3.84 units (for one added
covariate) represents a statistically significant improve-
ment in model fit (P < 0.05). Local tests are aimed at deter-
mining the significance of the parameter that describes
the covariate relationship. In Equation 3 this is the param-
eter fe and we would assess its significance by determining

whether the confidence interval for fe includes the null
value, in this case 0. Confidence intervals can be calculated
(asymptotically) using standard methods 95% CI(fe) = fe �
1.96 ¥ SE(fe) where the population analysis report should
provide the standard error estimate of fe. It should be
noted that global tests and local tests do not always agree,
in which case (generally) global tests are preferred.

A reduction in unexplained variability implies that
dosing based on the covariate value (e.g. dosing based on
weight or creatinine clearance) will improve the predict-
ability of the drug effect.To determine a reduction in unex-
plained variability you need to have access to the variance
estimates for the base model and also the full covariate
model. The base model is the best model without covari-
ates and the full covariate model is the (best) final model
once all covariates have been added into the base model.
Unexplained variability between subjects is provided by
the remaining between subject variance (based on
NONMEM convention we use the symbol W for this vari-
ance). The difference in the estimated variance of the
model parameter in the population (e.g. between subject
variance of CL) between the full covariate model and base
model provides the potential size of benefit. The relative
reduction in variance (W) is therefore,

Relative reduction in unexplained variability 
base full

=
−Ω Ω

ΩΩbase
(5)

Note, if the population analysis reports the %CV
(percent coefficient of variation) as the measure of
between subject variability then the variance can be
approximated by W ª (CV%/100)2. It is desirable to see a
large reduction in the variance (30–50% or more) but this is
relatively uncommon and sometimes a modest reduction
by 5–10% is reasonable. It is worth noting that not all
important and statistically and clinically significant covari-
ates result in a reduction in the unexplained variability.
Nevertheless this is a useful guide.

As an example, in the paper by Green & Duffull [24],
the aim of this population analysis was to recommend
an appropriate individualized dosing regimen for
obese patients based on identification of a covariate (lean
bodyweight) to predict CL. Here the authors state that
lean bodyweight was a significant covariate for CL and
total bodyweight for V. The base model is given in table 2
of their text and the full covariate model in table 3 of their
text. This was reported as statistically significant using the
global goodness of fit measure (the objective function
value of NONMEM). We see a significant reduction in the
unexplained variability between patients of approximately
30%. Clinical relevance was evaluated by simulating differ-
ent dosing regimens with and without the covariate of
interest and showed the potential clinical utility of dosing
based on lean bodyweight as it reduced the probability of
excessive concentrations by up to 50%.

1The objective function of NONMEM is proportional to the sum of
squared differences of the observations from the model prediction.
Smaller values represent a better fit. The value can be negative in which
case larger negative numbers represent a better fit than smaller negative
numbers.
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Conclusions

In summary, population analysis is a powerful technique
that can be used to understand the time course of drug
effects. Although these analyses can be statistically
complex their application is well-grounded in the prin-
ciples of clinical pharmacology. These powerful methods
provide a method to quantify how well a given dosing
regimen will achieve a desirable target and how this
dosing regimen can best be modified to meet an indi-
vidual patient’s needs.
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