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Abstract
Hematopoietic stem cell (HSC) transplantation is a potentially curative treatment for numerous
hematologic malignancies. The transplant procedure as performed today takes advantage of HSC
trafficking; either egress of HSC from the bone marrow to the peripheral blood, i.e. mobilization,
for acquisition of the hematopoietic graft, and/or trafficking of HSC from the peripheral blood to
bone marrow niches in the recipient patient, i.e. HSC homing. Numerous studies, many of which
are reviewed herein, have defined hematopoietic regulatory mechanisms mediated by the 20-
carbon lipid family of eicosanoids, and recent evidence strongly supports a role for eicosanoids in
regulation of hematopoietic trafficking, adding a new role whereby eicosanoids regulate
hematopoiesis. Short-term exposure of HSC to the eicosanoid prostaglandin E2 (PGE2) increases
CXCR4 receptor expression, migration and in vivo homing of HSC. In contrast, cannabinoids
reduce hematopoietic progenitor cell (HPC) CXCR4 expression and induce HPC mobilization
when administered in vivo. Leukotrienes have been shown to alter CD34+ cell adhesion,
migration, and regulate HSC proliferation, suggesting that eicosanoids have both opposing and
complimentary roles in the regulation of hematopoiesis. Since numerous FDA approved
compounds regulate eicosanoid signaling or biosynthesis, the utility of eicosanoid based
therapeutic strategies to improve hematopoietic transplantation can be rapidly evaluated.
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Introduction
Stem cell migration is a common feature of hematopoiesis, occurring both during
development and throughout life. Hematopoietic stem (HSC) and progenitor (HPC) cells
continuously traffic to and from their bone marrow niche (1), and the egress of
hematopoietic cells from bone marrow into the periphery can be facilitated by various
agents, such as cytokines or chemotherapy, a process termed mobilization (2, 3). Circulating
HSCs can home to the bone marrow and lodge within specific microenvironmental niches
that support their survival, self-renewal and differentiation, and only HSC homing to this
bone marrow niche are able to sustain hematopoiesis long-term (4, 5). These trafficking
processes form the basis of modern hematopoietic transplantation, which is routinely used to
treat patients with leukemias, cancer, and hematologic and genetic diseases. Sources of HSC
for transplant include bone marrow, mobilized peripheral blood (MPB) and umbilical cord
blood (UCB). While bone marrow was the traditional source of HSC for transplantation,
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MPB has become the preferred source for hematopoietic grafts (6, 7), and the use of UCB
for transplants is steadily increasing (8). Hematopoietic reconstitution after transplantation is
a multi-step process, but with some sources of HSCs, efficacy is limited by inadequate HSC
number, inability to migrate/home to marrow niches, and poor engrafting efficiency and
self-renewal (9–11).

Considerable research, much of which is discussed in this issue of Leukemia, has focused on
pathways governing HSC trafficking, with the goal of understanding and translating these
findings to improve hematopoietic transplantation. Research strategies designed to increase
HSC mobilization from bone marrow to peripheral blood in order to obtain an enhanced
MPB product, or to enhance homing of HSC into the recipient bone marrow for enhanced
hematopoietic engraftment are being evaluated in pre-clinical and clinical models. While
cytokines, chemokine/chemokine receptor interactions and adhesion molecules have been
the major targets of attention for improvement of HSC mobilization and homing, recent
evidence has begun to elucidate the role of bioactive lipids as regulators of HSC migration.
In particular, an emerging role for the 20-carbon lipid eicosanoids in hematopoietic
trafficking suggests new avenues and therapeutic strategies for clinical improvements in
hematopoietic transplantation. Here we review what is known about eicosanoids and
regulation of hematopoiesis and hematopoietic cell trafficking, present novel effects of
eicosanoids on cell trafficking, and discuss potential strategies for improvement in
hematopoietic stem cell transplantation based on modulation of eicosanoid signaling and/or
synthesis.

Eicosanoids
The eicosanoid family of lipids include the prostaglandins along with prostacyclins and
thromboxanes, leukotrienes and endocannabinoids, most of which are formed by oxidation
of 20-carbon essential fatty acids. Eicosanoids affect all organs, tissues, and cells (12).
Prostaglandin E2 (PGE2) is the primary metabolite of arachidonic acid and the most
abundant eicosanoid. PGE2 is a known mediator of cancer, fever, inflammation,
atherosclerosis, blood pressure and strokes, ovulation and numerous other physiological
systems (reviewed in (13, 14).

All nucleated cells can synthesize prostaglandins (14), which occurs in 3 steps: cleavage of
arachidonic acid from phospholipids by phospholipase A2; oxidation by the cyclooxygenase
enzymes (COX1 and COX2) forming the unstable intermediate PGG2, with subsequent
reduction to form PGH2; and isomerization to mature prostaglandins by specific synthases
(15–17) (Figure 1). Non-steroidal anti-inflammatory drugs (NSAIDs) have been developed
that inhibit COX enzymes with selective specificities for COX1 and COX2 (18–20) and
their primary therapeutic effect is due to reduced PGE2 biosynthesis. Based upon its
chemical/metabolic instability, PGE2 is thought to act locally in autocrine or paracrine
fashion (21). Within the bone marrow microenvironment, osteoblasts are a major source of
PGE2 (22–24) and due to their physical proximity to hematopoietic cells in the niche, are
likely a primary source of PGE2 for paracrine regulation of stem and progenitor function.
Macrophages and monocytes also possess strong PGE2 biosynthetic capacity and we have
previously shown that monocyte/macrophage-derived PGE2 plays a physiological role in
hematopoiesis (25–27).

The leukotrienes are biosynthesized by oxygenation of arachidonic acid by 5’-Lipoxygenase
(LOX) and conversion to the unstable intermediate leukotriene A4 (LTA4), which is
enzymatically hydrolyzed to LTB4 or conjugated to glutathione forming the cysteinyl
leukotriene LTC4. Leukotriene C4 is subsequently converted to LTD4 and LTE4 (Figure 1).
Leukotriene formation occurs predominantly in inflammatory cells, including granulocytes,
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mast cells and macrophages, dendritic cells, and B lymphocytes (28), however 12’-LOX in
platelets can convert LTA4 produced by granulocytes to LTB4 and lipoxins (29). LTB4 is
produced at sites of inflammation and stimulates inflammatory leukocyte function (30, 31).
Like prostaglandins, the leukotrienes have a short half-life and are primarily involved in
localized signaling.

The two main endocannabinoids, anandamide and 2-arachidonoyl glycerol (2-AG), are
derivatives of arachidonic acid and are synthesized on demand (32–34). However, since they
are structurally similar to arachidonic acid, they are also substrates for COX enzymes (35–
37), resulting in alternative prostaglandins, with similar and novel effects (35, 38). In
addition, alternative prostaglandins can be readily metabolized into traditional
prostaglandins via esterases or by dehydration (38). Endocannabinoids can also be
metabolized back to arachidonic acid through the action of fatty acid amide hydrolase
(FAAH) or monoacylglycerol lipase (MAGL) (39) (Figure 1). Recycling of endogenous
endocannabinoids for new endocannabinoid biosynthesis can also occur (40). Cannabinoids
can stimulate the production of prostaglandins (41), and likewise, PGE2 can stimulate
synthesis of 2-AG intermediates (42). In summary, it is clear that eicosanoid biosynthesis is
highly interactive and changes in biosynthesis or cell signaling pathways can alter overall
eicosanoid balance and produce eicosanoids with similar or opposing functions.

Prostaglandin E2: Inhibitory or Stimulatory to Hematopoiesis?
Numerous studies by us and others spanning a period of more than 20 years from the early
1970s to the mid 1990s demonstrated that PGE2 inhibits mouse and human myeloid
progenitors cells, defined as colony forming units-granulocyte macrophage (CFU-GM) and
macrophage (CFU-M), in vitro (25, 26, 43–46). A physiological role for PGE2 in regulation
of hematopoiesis, particularly as a negative feedback regulator of myelopoiesis was further
defined by studies in mice differing in PGE synthetic capacity (27, 47); demonstration of
abnormal PGE2 responses in patients with leukemia (43, 44, 46, 48, 49); prognostic
association of disordered PGE2 response in patients with myelodysplastic syndromes (MDS)
(50); abnormal hematopoietic progenitor cell response in patients cured of germ cell tumors
but progressing to acute leukemia (51); and association of HPC response to PGE2 with
clinical response to Interferon-γ in patients with chronic myelogenous leukemia (CML),
chronic lymphocytic leukemia (CLL), and Hodgkin's disease (52, 53).

Not all studies, however, demonstrated an inhibitory effect of PGE2. Studies by Fehrer and
Gidali in 1974 showed that short-term PGE2 treatment of murine marrow cells in vitro
increased the number of day 9 colony forming unit – spleen (CFU-S) in cell cycle (54). An
increase in CFU-GM in S-phase was also seen after PGE pulse exposure of human marrow
(55). However, early studies evaluating in vivo dosing of PGE2 in mice led to little or no
increase in hematopoiesis (56). We later demonstrated that repetitive in vivo PGE2
administration inhibits CFU-GM frequency and cell cycle rate, and decreases marrow and
spleen cellularity (57–60); whereas, short-term in vitro exposure to PGE2 stimulated
proliferation and cell cycle of quiescent cells and an increase in HPC, suggesting a
stimulatory effect of PGE2 on HSC (61, 62). Further studies identified that dose, timing and
duration of exposure were critical factors that determined positive or negative effects of
PGE2.

Hematopoietic Stem Cell Regulation by Prostaglandin E2

Interest in the regulatory roles of PGE2 on hematopoiesis has recently increased and new
studies have provided further insights into hematopoietic regulation and possible therapeutic
applications with PGE2. Studies by North et al. demonstrated that zebrafish embryos treated
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with a long-acting derivative of PGE2, 16,16 dimethyl-PGE2 (dmPGE2), had an increase in
HSC production, while treatment with an NSAID or COX knockout decreased HSC number
during embryogenesis (63). In a zebrafish kidney marrow irradiation-recovery assay,
dmPGE2 increased kidney marrow repopulation, and ex vivo pulse exposure to dmPGE2
increased the repopulating capacity of murine bone marrow cells in a competitive
repopulation assay.

While these studies demonstrated that PGE2 affects HSCs, the mechanisms of action of
PGE2 on HSC were not determined. Wnt signaling, particularly in the contexts of
hematopoietic stress, ageing or disease, play an important regulatory role on HSCs
(reviewed in 64). Prostaglandin E2 signaling through the EP2 and EP4 receptors results in
phosphorylation of GSK-3 and increased β-catenin signaling (65), which is downstream of
the Wnt pathway and signaling specifically through the EP4 receptor has been shown to
directly increase β-catenin suggesting synergistic cross-talk between COX2 and Wnt
pathways (66). In a follow-up study to those by North et al., PGE2 signaling was shown to
stabilize β-catenin in HSC and promote survival and proliferation during embryogenesis
(67) demonstrating the in vivo significance of PGE2/Wnt interactions. Recently, we
demonstrated that PGE2 increases survival and proliferation of HSC (68), and exposure to
PGE2 increased the anti-apoptotic protein Survivin, which we have previously reported to be
required for HSC to enter and progress through cell cycle (69, 70), providing further
mechanistic insights into the regulation of HSC by PGE2. In the context of pulse exposure to
enhance hematopoietic transplantation, an important clinical translation of these described
studies, we suggest a model in which PGE2 facilitates enhancement of engraftment by a
multipart mechanism. PGE2 increases survival and self-renewal of HSC, through regulation
of Wnt/ β-catenin, Survivin and possibly unidentified pathways, and increases CXCR4
expression enhancing homing and tethering of HSC in the bone marrow. The effect of PGE2
on CXCR4 expression is critical to its ability to enhance HSC homing and engraftment and
is described in further detail below.

Clinical trials are currently exploring the utility of ex vivo exposure to PGE2 to enhance
HSC engraftment. However, the ability to clinically modulate PGE2 signaling in vivo may
provide future therapeutic applications. An early study by Gidali and Feher in 1977,
primarily evaluating CFU-S, suggested that in vivo dosing of PGE2 in mice led to little or no
increase in hematopoiesis (56). Extensive studies by our laboratory in the 1980s showed that
repetitive in vivo PGE2 administration inhibits CFU-GM frequency and cell cycle rate, and
decreases marrow and spleen cellularity (57–60), however utilization of competitive
repopulation assays, definitive assays of HSC function, were not performed. In a recent
study by Frisch et al., repeated administration of PGE2 for 16 days in vivo, expanded short-
term, but not long-term, HSC in transplantation models (71). This regimen resulted in
changes in the bone marrow niche, suggesting that the in vivo effects of PGE2 on HSC and
HPC may include indirect mechanisms. However, high doses of PGE2 (~120 μg/mouse)
were administered for extended periods of time, and control vehicle alone showed a ~2-fold
increase in the percentage of Lineageneg Sca-1+ c-kit+ (LSK) cells after 16 days, while PGE2
treatment showed ~3-fold increase over the same time period (71). The effects of vehicle
may be suggestive of inadvertent stress effects on hematopoiesis in this system. Moreover,
the effects of PGE2 on hematopoiesis at physiological concentrations may be different than
those observed using pharmacologic doses, as previously suggested (56). Additional studies
evaluating in vivo modulation of PGE2 signaling, both at a receptor level and on
biosynthesis, are necessary to fully explore the therapeutic potential of the prostaglandin
pathway.
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Hematopoietic Regulation by other Eicosanoids
The cannabinoids have been implicated in positive and negative effects on mature cells of
the immune system (72, 73); however, little is known about their effects on early
hematopoietic cells. Anandamide can act as a synergistic growth factor for HPC (74) and
has a pro-apoptotic effect on erythrocytes (75). The endocannabinoid 2-AG also stimulates
proliferation of HPC (76), and has recently been shown to increase CFU-GEMM colony
formation and cell migration (77). Furthermore, activation of cannabinoid CB receptors on
murine embryonic stem cells promotes hematopoietic differentiation (78). In addition, Non-
Hodgkin’s lymphoma cells have abnormally high levels of CB2 receptor expression (79),
suggesting a potential proliferative role for cannabinoids.

Leukotrienes, like other eicosanoids, are produced in the marrow microenvironment (80),
and 5’-LOX is found in HPC (81). While PGE2 inhibits HPC proliferation and COX
inhibitors enhance HPC production in vitro, the leukotrienes LTB4, LTC4 and LTD4
increase mouse and human HPC (82–84), which is inhibited by 5'-LOX inhibitors (82, 83,
85). Moreover, PGE stimulates erythropoiesis (86, 87), while LTB4 and LTC4 inhibit early
and late erythroid progenitor cells (88). Similarly, LOX inhibitors enhance erythropoiesis. In
mice, dual COX inhibition enhances HPC recovery (85), while selective 5’-LOX inhibitors
decrease CFU-GM and blast colony-forming cells (CFU-BL) (82). The addition of LTB4 to
UCB cells cultured with growth factors enhances HPC proliferation with concomitant
reduction in total CD34+ cells, while the selective LTB4 receptor antagonist CP105696
enhances production of CD34+ cells and blocks HPC proliferation (89). Overall, the
available data suggest that LTB4 signaling decreases HSC self-renewal and increases
differentiation, while blocking LTB4 receptor signaling increases HSC self-renewal and
blocks their differentiation. This is in contrast to PGE2 which enhances self-renewal (68),
and blockade of PGE2 biosynthesis enhances HPC production (90). Whether enhanced HPC
production observed upon inhibition of PGE2 synthesis in vivo is a direct consequence of
lack of PGE2-mediated HSC self-renewal remains to be determined. In any case, the use of
PGE2 or a leukotriene receptor antagonist or LOX inhibitor in the post-transplant setting
may favor self-renewal. In addition, since blockade of COX enzymes makes more
arachidonic acid available to the LOX pathway (84, 91), the use of a COX inhibitor post-
transplant could promote HSC differentiation via direct inhibition of PGE2 synthesis and/or
increased synthesis of leukotrienes.

It is clear that prostaglandins, cannabinoids and leukotrienes have important roles in
hematopoietic homeostasis, and evaluating their responses is critical to understanding
eicosanoid function and development of eicosanoid-based therapeutic strategies for
improvements in hematopoietic transplantation. The remainder of this article will focus on
experimental systems that highlight the effects of eicosanoids on HSC and HPC in the
context of how they can be used to affect trafficking to bone marrow, i.e. homing, in order to
improve HSC delivery, and directed egress from bone marrow, i.e. mobilization, in order to
obtain more HSC and HPC for transplant.

Prostaglandin E2 Increases Hematopoietic Homing
Homing is a description of the ability of HSC and HPC to traffic from the peripheral blood,
where they are injected intravenously for hematopoietic transplantation, to the bone marrow
hematopoietic niche, where they can lodge, self-renew and differentiate to successfully
repopulate the host’s blood forming system. Homing is a rapid process, which is measured
in hours (or at most 1–2 days) (92), and should be separated from the concept of
“engraftment”, which is more a description of the culmination of events pre- and post-
homing of HSC. Homing of HSC to bone marrow appears to be regulated by the same

Hoggatt and Pelus Page 5

Leukemia. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



processes responsible for HSC retention within the bone marrow niche, many of which are
discussed in this issue of Leukemia. Adhesion molecules aid in trafficking, leukocyte rolling,
transendothelial migration, and ultimate tethering in the marrow, and several adhesion
molecules have been implicated as contributing to HSC and HPC tethering in the bone
marrow hematopoietic niche; notably the integrins α4β1 – very late antigen-4 (VLA-4) (93–
96), α5β1 – very late antigen-5 (VLA-5) (93, 95–97), α4β7 – lymphocyte Peyer’s patch
adhesion molecule-1 (LPAM-1) (98), the alpha 6 integrins (Laminins) (99, 100), CD44 (96,
101), E-selectins (102–104), and others, and are essential for proper bone marrow homing of
HSC (95, 97–100, 105, 106). Similarly, the CXCR4/SDF-1α axis is a critical component of
HSC homing to the bone marrow (107), and increases in CXCR4 receptor expression on
HSC either with growth factors (105), or by gene overexpression (108, 109) significantly
increases HSC homing and engraftment.

PGE2 increases CXCR4 receptor expression on murine (68) and human (68, 110) HSC and
HPC. In light of this increase in CXCR4 mediated by PGE2, we evaluated the ability of a
short in vitro treatment with PGE2 to increase the migration of HSC and HPC to SDF-1α.
Mouse bone marrow cells were FACS sorted for the SKL population that is enriched for
HSC, and CD34+ cells from human UCB and G-CSF MPB samples were acquired by
magnetic antibody isolation. After short-term treatment with PGE2 in vitro, the ability of
SKL, UCB CD34+ and MPB CD34+ cells to migrate to SDF-1α was evaluated using an in
vitro transwell assay. Treatment with PGE2 significantly increased transwell migration of
each of these hematopoietic cell populations (Figure 2A). To further evaluate if increased
chemotaxis observed with PGE2- treated cells led to a functional increase in HSC bone
marrow homing, we utilized a novel head- to-head homing assay, where FACS purified SKL
cells from C57Bl/6 mice (CD45.2) and B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1) mice
were treated with either PGE2 or vehicle and transplanted competitively into lethally
irradiated hybrid C57Bl/6 / BOYJ hybrid mice (CD45.1/CD45.2). Analysis of homed SKL
cells in recipient bone marrow demonstrated that PGE2 treatment enhanced SKL cell
homing compared to cells treated with vehicle (Figure 2B).

Cannabinoids Increase Hematopoietic Progenitor Cell Mobilization
Recent evidence suggests that cannabinoids, signaling through the peripheral CB2 receptor,
inhibit SDF-1α induced and CXCR4 mediated chemotaxis of Jurkat T-cells (111) and
activated human peripheral T-cells (112). In addition, hematopoietic cell lines transfected
with cannabinoid receptor migrate in response to the endogenous cannabinoid, 2-AG (113),
and 2-AG can act as a chemoattractant for dendritic cells (114). Stimulation of cannabinoid
receptors reduces adhesion molecule expression (115, 116), transendothelial migration of
monocytes (116), and regulates myeloid progenitor trafficking by alterating chemokines and
chemokine receptors (116, 117). Cannabinoids have also been reported to affect matrix
metalloproteinase-9 (MMP-9) production (118) in a number of cell lines and can modulate
neutrophil function (119, 120). Taken together, these data suggest that cannabinoids could
play a role in hematopoietic mobilization, through interference in the SDF-1α/CXCR4 axis,
reduction in adhesion and/or release of MMP-9, which can degrade adhesion molecule
interactions between HSC and HPC with the bone marrow niche (121), or through other
undefined mechanisms.

While many of the above effects attributed to cannabinoids have been defined in mature
blood cells, little research has explored their function on HSC and HPC. Using a number of
different antibodies and flow cytometry, we were able to clearly detect CB receptors on
immunophenotypically defined mouse and human HSC (not shown). We utilized the dual
CB1 and CB2 agonist CP55940 (122) and examined its effects on expression of CXCR4 and
the adhesion molecule VLA-4 on SKL cells in vitro, compared to cells treated with
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dmPGE2. As we previously reported, short term in vitro treatment with dmPGE2 increased
expression of CXCR4 on treated SKL cells (Figure 3A). In addition, dmPGE2 also increased
SKL VLA-4 expression. In contrast, SKL cells treated with cannabinoids demonstrated
significant reduction in both CXCR4 and VLA-4, suggesting that cannabinoids may be able
to facilitate release of hematopoietic stem and progenitor cells from bone marrow niches.

In order to directly evaluate the effects of cannabinoid receptor agonists on HPC
mobilization, BALB/c mice were treated with single injections of the CB1 selective agonist
ACEA (123), the CB2 selective agonist GP1a (124), or the dual CB1 and CB2 agonist
CP55940 and CFU-GM in peripheral blood were quantitated after 2 hours. Single
administration of the CB2 selective agonist GP1a and the dual CB1/CB2 agonist CP55940
mobilized CFU-GM to peripheral blood to a significant degree (Figure 3B); whereas, the
CB1 selective agonist ACEA had only marginal mobilizing activity. In separate groups of
mice, we also evaluated combination mobilization with G-CSF and the dual CB1/CB2
agonist CP55940. Mice were mobilized with a standard 4-day regimen of G-CSF alone (50
μg/kg, bid X 4 days) or the G-CSF regimen plus a single dose of CP55940 administered on
day 5, 16 hours after the last dose of G-CSF and 2 hours prior to sacrifice. The addition of a
single dose of CP55940 to the G-CSF regimen significantly increased CFU-GM
mobilization compared to G-CSF alone (Figure 3C). These data suggest that CB receptor
ligation, particularly CB2, rapidly mobilizes CFU-GM, and that CB receptor activation
enhances mobilization by G-CSF, likely by an effect on inhibition of CXCR4 signaling, or
reductions in integrin adherence, since the kinetics of mobilization are consistent with the
kinetics of mobilization by the CXCR4 antagonist AMD3100 and/or VLA-4 inhibitors. It
should be noted that these effects of cannabinoids on CFU-GM mobilization are in contrast
to a previously published study that showed that the CB2 receptor mediates retention of
immature B cells in bone marrow sinusoids (125), perhaps suggesting cell-type specific
mobilization responses. While these studies clearly indicate mobilization of HPC, further
analysis of the full repertoire of HPC and HSC mobilized by cannabinoids, will aid in the
potential future development of cannabinoid/cannabinoid receptor based mobilization
strategies.

A Role for Leukotrienes in Hematopoietic Trafficking?
Leukotrienes are known mediators of allergic inflammation and asthma, however there is
little information on their role in hematopoietic stem and progenitor trafficking. LTB4 has
been shown to increase the migratory capacity of dendritic cells (126, 127), and T-cell
subsets (126). It is also a potent chemoattractant for polymorphonuclear leukocytes and
regulates transendothelial migration (128, 129), which is at least partially mediated by
regulation of adhesion molecules. While LTB4 can induce migration of mature blood cells,
only the cysteinyl leukotriene LTD4 can induce chemotaxis and transendothelial migration
of CD34+ progenitors (130), which is mediated in part by regulation of VLA-4 and VLA-5
adhesion (131). However, in vivo treatment with a LTD4 receptor antagonist does not result
in mobilization of CD34+ cells (131) possibly due to low baseline levels of LTD4 in steady
state bone marrow. Evaluation of the use of leukotriene antagonism in combination with
other mobilizing agents has not yet been explored. It remains to be determined if modulation
of leukotriene activity either in vivo or ex vivo will have any efficacy in enhancing
hematopoietic transplantation.

The Yin and Yang of Eicosanoid Regulation
In many physiological systems, prostaglandins, leukotrienes and endocannabinoids exhibit
compensatory or opposing roles (reviewed in Table 1). The action of many NSAIDs, which
block the production of PGE2, may also act by increasing signaling via endocannabinoids
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(132). PGE2-glycerol has been shown to mobilize calcium, activate signal transduction
pathways (133) and have neurological effects opposite of those induced by 2-AG (134).
Furthermore, prostaglandins and leukotrienes have been shown to have numerous opposing
roles in pulmonary fibrosis (135) and in other systems they may act in a coordinate fashion
(136). It is particularly noteworthy that cannabinoid ligands block CXCR4 signaling (111,
112) and neutrophil migration (120, 137), which one would expect to negatively affect
homing, but enhance spontaneous release from marrow facilitating mobilization as we have
demonstrated. In contrast, PGE2 enhances CXCR4 expression and signaling, which
facilitates hematopoietic homing, but may result in dampening of mobilization responses.
Future studies evaluating combination eicosanoid therapies, which take into account these
opposing functions, are likely to lead to novel approaches to regulate hematopoietic
trafficking and improve transplantation protocols. The current availability of numerous FDA
approved pharmaceuticals that specifically regulate biosynthesis and signaling of
prostaglandins, leukotrienes and cannabinoids will facilitate rapid translation of eicosanoid
based therapeutic research, both at the level of graft isolation or measured in terms of graft
performance.
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Figure 1. Schematic of eicosanoid biosynthesis
Activation of c-phospholipase A2 releases arachidonic acid from phospholipids.
Cyclooxygenase (COX) enzymes, which can be inhibited by non-steroidal anti-
inflammatory drugs (NSAIDs), convert arachidonic acid into the Prostaglandin H2
intermediate, which is then converted to the various prostaglandins by distinct prostaglandin
synthases . Similarly, 5- lipoxygenase (5-LOX) converts arachidonic acid into Leukotriene
A4 (LTA4) and then synthesis proceeds to the various leukotrienes. Endocannabinoid (2-
Arachidonoylglycercol) is catabolized by fatty acid amide hydrolase (FAAH) or
monoacylglycerol lipase (MAGL) and can be converted into alternate prostaglandin forms.
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Figure 2. PGE2 increases hematopoietic migration and homing
A.) Mouse SKL cells or human CD34+ cells were treated on ice with 1 μM 16,16-dimethyl
PGE2 (dmPGE2) or vehicle control for 2 hours, washed, and then re-suspended in media
with 10% heat inactivated fetal bovine serum and cultured at 37 °C for 16 hours. After
incubation, cells were washed, re-suspended in RPMI/0.5% BSA, and allowed to migrate to
100 ng/ml recombinant mouse or human SDF-1α through a two-chamber, 6.5 mm diameter,
5 μm pore transwell. Cells migrating to the bottom chamber were enumerated by flow
cytometry, and the % increase in migration over vehicle control determined.
B.) SKL cells from CD45.1 and CD45.2 mice were isolated by FACS sorting and treated
with either dmPGE2 or vehicle. Treated SKL cells were then transplanted competitively,
head-to-head into lethally irradiated (1100 cGys) CD45.1/CD45.2 hybrid mice, allowing for
distinction of vehicle treated, dmPGE2 treated and recipient SKL cells within the same
animal. Sixteen hours post-transplant, hind limb bones were isolated and homed SKL cells
determined by flow cytometry. Mean ± SEM, N=10 mice, each assayed individually, are
shown.
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Figure 3. Cannabinoid agonism rapidly and synergistically mobilizes HPC
A.) Mouse Lineageneg bone marrow was treated with dmPGE2, the cannabinoid agonist
CP55940, or vehicle control. Sixteen hours post-treatment, cells were stained for CXCR4
receptor or VLA-4, and SKL phenotypic markers, and % mean fluorescence intensity (MFI)
compared to control treated cells determined. Data are Mean ± SEM, N=5 mice, each
assayed individually. * P<0.05 compared to vehicle control.
B.) CFU-GM mobilization 2 hours post single administration of 10 mg/kg ACEA, 5 mg/kg
GP1a or 10 mg/kg CP55940. Data are expressed as Mean ± SEM, N=3 mice per group, each
assayed individually. * P<0.05 compared to vehicle control.
C.) Mobilization by G-CSF (50 μg/kg, bid X 4 days), or G-CSF for 4 days followed by a
single dose of CP55940 on day 5. Data are expressed as Mean ± SEM, N=3 mice per group,
each assayed individually. * P<0.05 compared to G-CSF.
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Table 1

Opposing roles of cannabinoids, leukotrienes and prostaglandins.

System Affected Cannabinoids Leukotrienes Prostaglandin E2

CXCR4/CXCL12 ↓(111, 112) ---------- ↑(68, 138, 139)

cAMP ↓(140, 141) ↓(142) ↑↓(143)

Neutrophil Migration ↓(120, 137) ↑(128, 136) ↑(128, 144, 145)

Inflammation ↓(72, 140, 146) ↑(31, 147) ↑(16, 148, 149) ↓(150)

Myleopoiesis ↑(74, 76, 77) ↑(151–153) ↓(25, 26, 62)

Erythropoiesis ↓(75) ↓(88) ↑(86, 87, 154, 155)

Summary of several physiological processes relevant to hematopoiesis and hematopoietic cell trafficking that are regulated by the eicosanoid
system. In most cases, cannabinoids act in an opposing role to prostaglandins, while leukotrienes regulate similar or opposing functions to
prostaglandin. The dual prostaglandin effects shown for some physiological processes are the result of EP receptor subtype differences.
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