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Endothelium-dependent hyperpolarization:
out of the dish and into the brain
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Certain agonists are known to dilate cerebral arteries
and/or arterioles by hyperpolarizing the endothe-
lium through activation of endothelial intermediate-
conductance calcium-activated K channels (IKCa or
KCa3.1) alone or in combination with small-conduc-
tance calcium-activated K channels (SKCa or KCa2.X,
most likely KCa2.3) (Faraci et al, 2004; Marrelli et al,
2003; McNeish et al, 2006; You et al, 1999). A major
component of this dilatory mechanism involves
spread of the endothelial hyperpolarization to the
vascular smooth muscle (VSM) through myo-en-
dothelial gap junctions (Bryan et al, 2005). This
hyperpolarization relaxes VSM by reducing cyto-
plasmic Ca2 + through closing voltage-operated cal-
cium channels that reside in the plasmalemma of
VSM but not endothelium. Although traditionally
known as endothelium-derived hyperpolarizing fac-
tor, a more appropriate term for this mechanism of
dilation is endothelium-dependent hyperpolariza-
tion (EDH), as no ‘factor’, per se, is transferred
between cells (Bryan et al, 2005).

Utilizing techniques that covered a spectrum from
single-cell K + currents to isolated pressurized par-
enchymal arterioles (PAs) to laser Doppler perfusion,
a measure of cerebral blood flow (CBF), Hannah et al
(this issue) now demonstrate that this EDH mechan-
ism does not require receptor stimulation but is
active in the basal state and is responsible for helping
to maintain a resting CBF. Although it has been
known that IKCa and SKCa are expressed by endothe-
lium, this is the first time that K+ currents from these
channels have been measured in freshly isolated
endothelial cells from cerebral vessels and the first
for any arteriole. Given the difficulty in obtaining
single-cell currents in freshly isolated endothelium
in general, the fact that these were from arterioles is

impressive. More importantly, Hannah et al demon-
strated that IKCa and SKCa contribute to the resting
tone of PA and contribute significantly to resting
CBF. Combined blockade of IKCa and SKCa decreased
CBF by B15%, a response similar to that produced by
the inhibition of NO. Whereas previous studies have
demonstrated EDH as an important mechanism in
isolated vessels, Hannah et al now show that it is an
important mechanism in vivo during resting conditions.

Several observations point to the fact that EDH is a
major regulator of CBF: (1) EDH is more important
than NO as a dilator mechanism in isolated PA upon
activation of P2Y2 receptors (You et al, 1999); (2)
EDH contributes to resting CBF and the resting tone
of arterioles (Hannah et al, this issue) (Cipolla and
Bullinger, 2008; Cipolla et al, 2009); (3) EDH is as
important as NO in controlling resting CBF (Hannah
et al, this issue); and (4) EDH dilations persist or are
even upregulated in cerebral vessels, following a
number of pathological states, when NO bioavail-
ability is diminished (Cipolla and Bullinger, 2008;
Cipolla et al, 2009; Golding et al, 2001; Marrelli et al,
1999; Prisby et al, 2006). Thus, EDH must be consi-
dered as a significant mechanism for the regulation
of CBF and as a potential target for increasing CBF in
pathological states where flow has been compromised.
Certainly, more in vivo studies, similar to the one
highlighted by this editorial, are needed to fully
understand the role of EDH in the cerebral circulation.
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