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Abstract
The Drosophila gene expression pattern images document the spatial and temporal dynamics of
gene expression and they are valuable tools for explicating the gene functions, interaction, and
networks during Drosophila embryogenesis. To provide text-based pattern searching, the images
in the Berkeley Drosophila Genome Project (BDGP) study are annotated with ontology terms
manually by human curators. We present a systematic approach for automating this task, because
the number of images needing text descriptions is now rapidly increasing. We consider both
improved feature representation and novel learning formulation to boost the annotation
performance. For feature representation, we adapt the bag-of-words scheme commonly used in
visual recognition problems so that the image group information in the BDGP study is retained.
Moreover, images from multiple views can be integrated naturally in this representation. To
reduce the quantization error caused by the bag-of-words representation, we propose an improved
feature representation scheme based on the sparse learning technique. In the design of learning
formulation, we propose a local regularization framework that can incorporate the correlations
among terms explicitly. We further show that the resulting optimization problem admits an
analytical solution. Experimental results show that the representation based on sparse learning
outperforms the bag-of-words representation significantly. Results also show that incorporation of
the term-term correlations improves the annotation performance consistently.
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1. INTRODUCTION
Gene expression in a developing embryo is modulated in particular cells in a time-specific
manner. This leads to the development of an embryo from an initially undifferentiated state
to increasingly complex and differentiated form. The patterning of the model organism
Drosophila melanogaster along the anterior-posterior and dorsal-ventral axes represents one
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of the best understood examples of a complex cascade of transcriptional regulation during
development. Systematic understanding of the regulatory networks governing the patterning
is facilitated by the atlas of patterns of gene expression, which has been produced by the in
situ hybridization technique and documented as digital images [24,10]. Such images capture
the spatial and temporal patterns of gene expression at the cellular level and provide
valuable resources for explicating the gene functions, interactions, and networks during
Drosophila embryogenesis [12,4]. To provide text-based pattern searching, the gene
expression pattern images in the Berkeley Drosophila Genome Project (BDGP) high-
throughput study are annotated with anatomical and developmental ontology terms using a
controlled vocabulary (CV) [24,25] (Figure 1). Currently, the annotation is performed
manually by human curators. However, the number of available images is now rapidly
increasing [11,6,27,26]. It is therefore important to design computational methods to
automate this task [8].

The gene expression pattern annotation problem can be formulated as an image annotation
problem, which has been studied in computer vision and machine learning in the case of
natural images. Although certain ideas from natural image annotation can be employed to
solve this problem, significant challenges remain. Specifically, the gene expression pattern
images are currently annotated collectively in small groups based on genes and
developmental stages (time) using a variable number of terms in the original BDGP study
(Figure 1). Since not all terms assigned to a group of images apply to every image in the
group, we need to develop approaches that can retain the original group information of
images. It has been shown that the annotation performance can be adversely affected if such
groups are ignored, i.e., assuming that all terms are associated with all images in a group
[8,7,13]. Moreover, images in the same group may share certain anatomical and
developmental structures, hence, the terms in the CV are correlated. It is thus desirable to
exploit this correlation information in the annotation process. In addition, the Drosophila
embryos are 3D objects, and they are documented as 2D images taken from multiple views.
Since certain embryonic structures can only be seen in specific two-dimensional projections
(views), it is beneficial to integrate images with different views to make the final annotation.

In this paper, we present a systematic approach for annotating gene expression pattern
images. We consider both improved feature representation and novel learning formulation to
boost the performance of this annotation task. The proposed feature representation scheme is
motivated from the bag-of-words scheme commonly used in visual recognition problems. In
this approach, features are extracted from local patches on the images, and they are
quantized to form the bag-of-words representation based on a pre-computed codebook. In
our approach, visual features are extracted from local patches on each image in a group, so
that the group information of images is retained as in the BDGP study. To integrate images
with multiple views, we propose to construct a separate codebook for images with the same
view and represent each image group as multiple bags. One major limitation of the bag-of-
words approach is that each feature vector is only quantized to the closest code-book word,
resulting in quantization errors. To overcome this limitation, we propose to encode each
feature vector using multiple codebook words simultaneously. Specifically, we propose to
determine the number of codebook words and their weights used to represent each feature
vector automatically using the sparse learning framework.

In the design of learning schemes for the annotation task, we consider formulations that can
incorporate the correlations among terms explicitly. Since not all terms are correlated and
the degrees of correlation for different pairs of terms vary, we propose a regularization
framework that imposes local constraints on the models so that only models for correlated
terms are constrained to be similar. We further show that the resulting optimization problem
admits an analytical solution. Experimental results on the images from the FlyExpress
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database (www.flyexpress.net) show that the representation based on sparse learning
outperforms the bag-of-words representation significantly. Results also show that
incorporation of the term-term correlations improves the annotation performance
consistently.

2. FEATURE EXTRACTION AND CODEBOOK CONSTRUCTION
2.1 Feature Extraction

The images in the FlyExpress database [10] have been standardized semi-automatically,
including alignment. We propose to use local features extracted from local patches on the
images for the annotation task, since such features are more robust than global features [16].
The methods for localizing patches on images can be categorized into three classes including
affine-region-detector-based methods [17], sampling-based methods [19], and regular-patch-
based methods [3]. We extract dense features on regular patches on the images, since such
features are commonly used for aligned images. Due to the limitations of the image
processing techniques, local variations may exist on the images. Thus, we extract invariant
features from each regular patch. In this paper, we apply the SIFT descriptor [14] to extract
local visual features, since it has been applied successfully to other image-related
applications [16]. Specifically, each feature vector is computed as a set of orientation
histograms on 4 × 4 pixel neighborhoods, and each histogram contains 8 bins. This leads to
a SIFT feature vector with 128 (4 × 4 × 8) dimensions on each patch. Note that although the
invariance to scale and orientation no longer exists since we do not apply the SIFT interest
point detector, the SIFT descriptor is still robust against the variance of position,
illumination and viewpoint.

2.2 Codebook Construction
The images in the BDGP high-throughput study are annotated collectively in small groups
based on the genes and the developmental stages. We propose to encode each image group
as a feature vector based on the bag-of-words and the sparse coding representations. Both of
these two schemes are based on a pre-computed codebook, which consists of representative
local visual features computed on the images. The codebook is usually obtained by applying
a clustering algorithm on a subset of the local features, and the cluster centers are then used
as the visual words of the codebook.

The 3D nature of the embryos and the 2D layout of the images determine that certain body
parts can only be captured by images taken from certain views. We propose to construct a
separate codebook for images with the same view. In particular, we consider images taken
from the lateral and the dorsal views, since the number of images from other views is small.
For each stage range, we build a separate codebook for images with each view. Since the
visual words of the codebooks are expected to represent the embryonic structures, the
images used to build the codebooks should contain all the embryonic structures that the
system is expected to annotate. Hence, we extract codebook images in a way so that each
embryonic structure appears in at least 10 and 5 images for lateral and dorsal views,
respectively, based on the total number of images with each view. The SIFT features
computed from regular patches on the code-book images are then clustered using the k-
means algorithm. Since this algorithm depends on the initial centers, we repeat the algorithm
with ten random initializations from which the one resulting in the smallest summed within-
cluster distance is selected. The number of clusters (i.e., the codebook size) is set to 2000
and 1000 for lateral and dorsal images in the experiments, respectively.
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3. IMAGE GROUP REPRESENTATION
The proposed image group representation scheme is motivated from the bag-of-words
approach commonly used in image and video analysis problems [21,18]. In this approach,
invariant features are extracted from local patches on images or videos, and each feature in a
test image or video is then quantized based on a pre-computed codebook. Hence, an entire
image or video is represented as a global histogram counting the number of occurrences of
each word in the code-book. To integrate images taken from multiple views of the 3D
embryos, we propose to extract local visual features from each image in a group and
represent the images in the same group with the same view as a bag of visual words. Groups
that contain images with multiple views can thus be represented as multiple bags of visual
words, one for each view. The bags for multiple views can then be concatenated to annotate
the image groups collectively. One limitation of the bag-of-words approach is that features
are only quantized to the closest visual words, which may cause quantization errors. We thus
propose to enhance the bag-of-words approach using sparse coding techniques. Experiments
in Section 5 show that such technique improves the annotation performance consistently.

3.1 The Bag-of-Words Approach
After the codebooks for both views are constructed, the images in each group are quantized
separately for each view. In particular, features computed on regular patches on images with
a certain view are compared with the visual words in the corresponding codebook, and the
word closest to the feature in terms of Euclidean distance is used to represent it. Then the
entire image group is represented as multiple bags of words, one for each view. Since the
order of the words in the bag is irrelevant as long as it is fixed, the bag can be represented as
a vector counting the number of occurrences of each word in the image group.

Let a1, ···, ad ∈ ℝr be the d cluster centers (codebook words) and let u1, ···, us ∈ ℝr be the s
features extracted from images in a group with the same view, where r is the dimensionality
of the local features (r = 128 for SIFT). Then the bag-of-words vector x is d-dimensional,
and the i-th component xi of x is computed as

where δ(a, b) = 1 if a = b, and 0 otherwise, and ||·|| denotes the vector 2-norm. Note that

, since each feature is assigned to exactly one word.

Based on this construction, the vector representation for each view can be concatenated so
that the images in a group with different views are integrated. Let xl and xd be the bag-of-
words vector for images in a group with lateral and dorsal views, respectively. Then the bag-
of-words vector x for the entire image group can be represented as

The length of the final vector representing an image group is 3000 (2000+1000) in our
implementation. To account for the variability in the number of images in each group, we
normalize the bag-of-words vector to unit length.

Ji et al. Page 4

KDD. Author manuscript; available in PMC 2011 May 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2 The Sparse Coding Approach
One major limitation of the bag-of-words approach is that the representation is obtained by
the hard assignment approach in which a local feature vector is only assigned to its closest
visual word. It could be the case that a feature vector is very close to multiple words in the
codebook, and it is thus desirable to represent this feature vector using all of them. Indeed, a
recent study has shown [20] that the soft assignment approach that assigns each feature
vector to multiple visual words based on their distances usually results in improved
performance. However, there is no principled way to determine the number of visual words
to which a feature vector should be assigned. In the following, we propose to address this
issue by relying on the sparse learning framework.

Let A = [a1, ···, ad] ∈ ℝr×d denote the codebook matrix in which  are the visual words.
Given a feature vector u, the traditional bag-of-words approach assigns u to the closest
visual words and represents u as a d-dimensional vector x in which the entry corresponding
to the closest visual word is one, and all other entries are zero. This reduces to computing x
by solving the following optimization problem:

(1)

subject to the constraint that only one entry in x is one, and all other entries are zero. A
natural extension of this hard assignment approach is to remove the constraint on x. This,
however, may yield x that is not sparse at all, i.e., the local feature u is mapped to a large
number of visual words simultaneously.

To achieve a compromise between these two extreme cases, we propose to compute x by
solving the following optimization problem:

(2)

where λ > 0 is a tunable parameter and  denotes the vector 1-norm. The
problem in Eq. (2) is the ℓ1-regularized regression problem called “lasso” [22] with the
additional nonnegativity constrain. It is well-known the solution to this problem is sparse in
the sense that many entries in x will be set to zero. Recently, many algorithms for solving
the lasso problem have been proposed such as the coordinate descent algorithm [5].

4. A LOCAL REGULARIZATION FORMULATION
Given the bag-of-words and the sparse coding representations of image groups, we develop
a framework for annotating the gene expression pattern images in this section. The proposed
framework can incorporate the correlations among different terms by constraining the
models for correlated terms to be similar. We further derive an analytical solution to the
resulting problem.

4.1 The Proposed Formulation

Let  be the data matrix derived from the bag-of-words or the sparse
coding representations, where xi ∈ ℝd is the representation for the ith image group (sample),
and let Y ∈ ℝn×k be the label indicator matrix defined as
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(3)

where n is the number of training samples, d is the data dimensionality, and k is the number
of terms. Given a prescribed loss function ℓ(·, ·), we propose to build k models  by
minimizing the following regularized empirical risk function:

(4)

where , Ω(·) is some regularization functional, and λ > 0 is the regularization
parameter. Many multi-task learning formulations constrain the multiple models by
employing different forms of regularization on f [2,1].

We build a model for each term in the one-against-rest manner. Since certain groups of
terms from the CV are highly correlated, it is desirable to constrain the models for correlated
terms to be similar. In this paper, we use the Pearson’s correlation coefficient computed on
columns of the label indicator matrix Y as our measure of term correlation. Figure 2 shows
the Pearson’s correlation coefficients computed on two data sets from stage ranges 11–12
and 13–16 with 50 and 60 terms, respectively. It can be observed that a significant number
of terms show different degrees of correlation. To visualize the correlation graph, we show
in Figure 3 one of the connected components in the correlation graph in stage range 13–16
after removing correlations below 0.3. We can observe that all terms in this graph are related
to the sensory system. Based on these observations, we propose a particular form of
regularization that can constrain the models for correlated terms to be similar.

In the following, we consider linear models:

which is parameterized by the weight vector wi ∈ ℝd and the bias bi ∈ ℝ. Let C ∈ ℝk×k be
the term-term correlation matrix in which Cpq measures the correlation between the pth and
the qth term. Note that the proposed formulation is independent of the methods used to
measure the correlations among terms, and any other methods can be used for this purpose.
Since terms can be positively or negatively related, the entries in C can be either positive or
negative. To capture the correlations among terms encoded into C, we propose to solve the
following optimization problem:

(5)

where W = [w1, ···, wk] ∈ ℝd×k, G denotes the index set with the magnitudes of the
corresponding entries in C above a pre-specified threshold μ, i.e., G = {(p, q): |Cpq| ≥ μ}, ||
·||F denotes the Frobenius norm, λ1 > 0 and λ2 > 0 are two regularization parameters, and
g(Cpq) is the weight for the regularization on terms p and q. In this paper, we set

. In this model, the weight vectors for models corresponding to correlated terms
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are constrained to be similar, weighted by the strength of the correlation. Moreover,
negatively-related terms are also taken into account by considering the sign of the
correlation coefficient.

4.2 An Equivalent Formulation
In the following, we consider the least squares loss

for the formulation in Eq. (5). This leads to the following optimization problem:

(6)

Note that we have assumed that both X and Y are centered in terms of rows, and thus the bias
term can be ignored. We show in the following that the optimal W admits an analytical
solution, which only involves the singular value decomposition (SVD) and matrix and
vector operations.

Note that . To reformulate the problem in
Eq. (6) into a compact matrix form, we need to introduce an additional variable. For the mth
constraint in G, which encodes the correlation between the pth and the qth terms, define hm
∈ ℝk as a vector whose pth and qth entries are nonzero, and all other entries are zero as:

(7)

Based on this definition, it is easy to verify that the problem in Eq. (6) can be expressed
equivalently as:

(8)

where H = (h1, ···, hg) ∈ ℝk×g and g = |G| is the size of the set G.

4.3 The Main Algorithm
We show that the problem in Eq. (8) admits an analytical solution. Taking the derivative of
the objective function in Eq. (8) with respect to W and setting it to zero, we obtain that

(9)

Let  and  be the SVD of X and H, respectively, where U1 ∈ ℝn×n,
V1 ∈ ℝd×d, U2 ∈ ℝk×k and V2 ∈ ℝg×g are orthogonal, and Σ1 ∈ ℝn×d and Σ2 ∈ ℝk×g are
diagonal. Then the equality in Eq. (9) can be expressed as
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(10)

Multiplying  and U2 from the left and right, respectively, on both sides of Eq. (10), we
obtain that

(11)

Denote

Then Eq. (11) can be expressed as

(12)

Note that Σ̃1 is positive definite, and hence  for all i. It follows that W ̃ can be obtained
as

(13)

After W ̃ is computed, the original weight matrix W can be recovered as . This
leads to the main algorithm in Algorithm 1 for computing the optimal W.

In Algorithm 1, the dominant computational cost is the SVD’s of X and H. The two
regularization parameters λ1 and λ2 can be tuned using double cross-validation. Note that for
different values of λ1 and λ2, the SVD’s of X and H need to be computed only once. Thus,
the overall procedure for parameter tuning is efficient.

4.4 Discussion
The proposed formulation is related to the fused lasso [23], which encourages the sparsity of
the difference between coefficients in single-response regression problems. In particular, the
sum of the absolute values of differences between consecutive coefficients are regularized in
fused lasso. Motivated by fused lasso, the graph-guided fused lasso (GFlasso) was proposed
in [9] to constrain the weight vectors of correlated tasks in multiple-response regression
problems. A key difference between our formulation and those based on fused lasso is that
we regularize the two norm of the differences between the weight vectors for related tasks,
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while those based on the fused lasso use the one norm regularization. This leads to different
procedures for solving the resulting problem. In particular, it has been shown [9] that the
GFlasso formulation involves a quadratic programming problem, which is computationally
expensive for problems such as the annotation of gene expression patterns. In contrast, our
formulation results in an analytical solution, and the parameter tuning is efficient, since the
computationally dominant part needs to be performed only once for different values of the
regularization parameters.

5. EXPERIMENTS
In this section, we report and analyze the annotation results obtained by applying the
proposed approach to images in the Fly Express database (http://www.flyexpress.net/).

5.1 Experimental Setup
The size of images in the FlyExpress database is standardized to 128 × 320 pixels, and the
radius and spacing of the regular patches to extract local features are set to 16 pixels in the
experiments. The non-negative lasso problem in Eq. (2) is solved by adapting the coordinate
descent algorithm [5] to incorporate the non-negativity constraint. The continuous process of
Drosophila embryogenesis is divided into 16 stages, which are then grouped into 6 stage
ranges (1–3, 4–6, 7–8, 9–10, 11–12, and 13–16) [24,25]. Since most of the CV terms are
stage-range specific, we annotate the image groups according to their stage ranges
separately. The first stage range contains only 2 terms, and we do not report the performance
in this stage range. For other stage ranges, we begin with the 10 terms that appear in the
largest number of image groups, and then we add additional terms in the order of their
frequencies with a step size of 10. This results in different numbers of data sets in each stage
range, depending on the number of CV terms in that stage range. The extracted data sets are
randomly partitioned into training and test sets using the ratio 1:1 for each term. For each
data set, we randomly generate 30 training/test partitions, and the average performance is
reported. We use the AUC and F1 score as the performance measures. To assess the
performance across multiple terms, we report both the macro-averaged and the micro-
averaged F1 scores. The threshold value μ for the correlation coefficient is tuned
empirically, and it is fixed to 0.3 in the experiments. The regularization parameters λ1 and λ2
are tuned using double cross-validation. Note that for different values of λ1 and λ2, the SVD
of X and H need to be computed only once. The code for the proposed formulation is
available at http://www.public.asu.edu/~sji03/annotation/.

5.2 Evaluation of Annotation Performance
We assess the performance of the proposed local regularization formulation on 18 data sets
from 5 stage ranges. We evaluate the effectiveness of the bag-of-words and the sparse
feature representations in the following subsection, which shows that the sparse feature
representation yields significantly higher performance in all cases. Hence, we use the sparse
feature representation in this experiment. To demonstrate the effectiveness of this
formulation, we report the results obtained by applying linear support vector machines
(SVM) separately for each term in the one-against-rest manner. To compare the performance
achieved by the proposed formulation based on the sparse feature representation with
existing approaches, we report the performance of the methods in [8] based on pyramid
match kernels (PMK). All three formulations proposed in [8], denoted as PMKstar,
PMKclique and PMKkcca are reported. All the model parameters are tuned using cross-
validation. The performance in terms of AUC, macro F1 and micro F1 for the five methods
is reported in Tables 1, 2 and 3, respectively.
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We can observe from the results that among the five methods, LRsoft outperforms the other
four methods in all cases. In particular, LRsoft outperforms SVMsoft significantly in almost
all cases. Since both of these methods are based on the sparse feature representation, this
shows that the proposed local regularization formulation is effective in exploiting the
correlations among terms. Both LRsoft and SVMsoft outperform the three methods based on
pyramid match kernels. This demonstrates that the sparse feature representation is more
effective than the pyramid match kernel method.

To assess the relative performance of LRsoft and SVMsoft on individual terms, we show the
differences of AUC achieved by these two methods for each term on two data sets from
stage ranges 11–12 and 13–16 in Figure 4. In these two figures, the reported performance is
the average values over 30 random trials, and positive bar values show that LRsoft
outperforms SVMsoft, while negative bar values show that SVMsoft outperforms LRsoft. We
can observe that among the 100 terms reported, LRsoft outperforms SVMsoft on 99 terms
except for the term procephalon primordium. A detailed analysis on this term shows that
this term is not related to any other terms after the correlations are thresholded. Thus, no
local regularization is imposed on this term.

5.3 Evaluation of Feature Representation
We compare the performance obtained by the bag-of-words and the sparse learning
representations on three data sets from stage range 4–6 with 10, 20 and 30 terms,
respectively. For each data set, we report the performance of the local regularization
formulation based on the bag-of-words (LRhard) and the sparse learning (LRsoft)
representations in Table 4. We can observe that the proposed sparse feature representation
outperforms the bag-of-words scheme significantly on all three data sets. We observe a
similar trend in other data sets. This shows that the soft assignment approach based on the
sparse learning formulation can potentially reduce the quantization error of the bag-of-words
scheme.

5.4 Evaluation of Local Regularization
To assess the effectiveness of the local regularization in constraining the models for
correlated terms, we visualize the weight matrices on a data set in stage range 13–16 with 60
terms as the regularization parameter λ2 increases gradually in Figure 5. When λ2 = 0, the
models for different terms are decoupled, and thus no regularity is observed in the weight
matrix. As λ2 increases, the weight vectors for correlated models are increasingly
constrained to be similar. This can be observed from the increasingly similar patterns in
certain columns of the weight matrix. This demonstrates that the local regularization
formulation is effective in constraining the models for correlated terms to be similar.

6. CONCLUSION AND DISCUSSION
In this paper, we propose a systematic approach for annotating Drosophila gene expression
pattern images. For the feature representation, we propose to reduce the quantization error
associated with the bag-of-words scheme using the sparse learning technique. Based on this
improved feature representation, we propose a classification formulation using a local
regularization, which accounts for the correlations among different CV terms. We further
show that the resulting regularized formulation admits an analytical solution. The
effectiveness of the feature representation and the local regularization formulation is
evaluated using images from the FlyExpress database.

The codebooks used in this paper are constructed by un-supervised methods. Recent studies
have shown [18,15] that incorporation of the label information in constructing the codebook
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usually results in improved performance. We will explore the supervised codebook
construction in the future. In the current work, we only consider the least squares loss in the
local regularization formulation. We will explore other loss functions, such as the hinge loss,
in the future.
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Figure 1.
Sample image groups and the associated terms in the BDGP database for the gene engrailed
in stage ranges 7–8 (top) and 9–10 (bottom).
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Figure 2.
The Pearson’s correlation coefficients computed on the columns of the label indicator matrix
using two data sets from stage ranges 11–12 (left figure) and 13–16 (right figure) with 50
and 60 terms, respectively.
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Figure 3.
The term-term interaction graph computed using the Pearson’s correlation coefficient for
terms in stage range 13–16. The vertices represent terms and edges represented the
correlations between terms. The graph shown in this figure is one of the connected
components after the correlation coefficients are thresholded at 0.3.
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Figure 4.
Performance differences on individual terms in terms of AUC between LRsoft and SVMsoft
on two data sets from stage ranges 11–12 (top) and 13–16 (bottom) with 50 terms. Positive
bar values show that LRsoft outperforms SVMsoft, while negative bar values show that
SVMsoft outperforms LRsoft.
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Figure 5.
Visualization of the weight matrices on a data set in stage range 13–16 with 60 terms as the
regularization parameter λ2 increases gradually. The weight matrix on this data set is of size
3000 × 60, and only the first 50 rows are shown in each case. Each column in the matrix
corresponds to a model for a term. There are 8 connected components (of sizes 10, 6, 3, 3, 2,
2, 2, and 2) after the correlation coefficients are thresholded at 0.3. For better visualization,
the columns of the weight matrices shown here are grouped according to the connected
components to which they belong, and the groups are shown in decreasing order of size.
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Algorithm 1

The main algorithm

Input: X, Y, H, λ1, and λ2

Output: W

1
Compute SVD as  and 

2

3

4

5

6
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