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Abstract

Background: Clinical use of selective inhibitors of cyclooxygenase (COX)-2 appears associated with increased risk of
thrombotic events. This is often hypothesised to reflect reduction in anti-thrombotic prostanoids, notably PGI2, formed by
COX-2 present within endothelial cells. However, whether COX-2 is actually expressed to any significant extent within
endothelial cells is controversial. Here we have tested the effects of acute inhibition of COX on platelet reactivity using a
functional in vivo approach in mice.

Methodology/Principal Findings: A non-lethal model of platelet-driven thromboembolism in the mouse was used to assess
the effects of aspirin (7 days orally as control) diclofenac (1 mg.kg21, i.v.) and parecoxib (0.5 mg.kg21, i.v.) on thrombus
formation induced by collagen or the thromboxane (TX) A2-mimetic, U46619. The COX inhibitory profiles of the drugs were
confirmed in mouse tissues ex vivo. Collagen and U46619 caused in vivo thrombus formation with the former, but not latter,
sensitive to oral dosing with aspirin. Diclofenac inhibited COX-1 and COX-2 ex vivo and reduced thrombus formation in
response to collagen, but not U46619. Parecoxib inhibited only COX-2 and had no effect upon thrombus formation caused
by either agonist.

Conclusions/Significance: Inhibition of COX-1 by diclofenac or aspirin reduced thrombus formation induced by collagen,
which is partly dependent upon platelet-derived TXA2, but not that induced by U46619, which is independent of platelet
TXA2. These results are consistent with the model demonstrating the effects of COX-1 inhibition in platelets, but provide no
support for the hypothesis that acute inhibition of COX-2 in the circulation increases thrombosis.
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Introduction

It was first suggested over a decade ago that inhibitors of

cyclooxygenase (COX)-2 might increase thrombotic risk [1,2].

Support for this idea quickly followed in the results from clinical

trials of selective COX-2 inhibitors. For example, in the Vioxx

Gastrointestinal Outcomes Research (VIGOR) study, an increased

rate of myocardial infarctions was reported in patients receiving

the selective COX-2 inhibitor, rofecoxib, compared to the non-

selective COX-1/COX-2 inhibitor, naproxen [3]. It has since

become clear that almost all agents that inhibit COX-2, i.e. both

selective COX-2 inhibitors and non-selective, non-steroidal anti-

inflammatory drugs (NSAIDs), are associated with some pro-

thrombotic tendency [4,5,6,7,8,9,10]. It is often hypothesised that

this reflects inhibition of COX-2 in the vascular endothelium, and

therefore reduced production of anti-thrombotic prostanoids,

notably prostacyclin (PGI2). Despite this hypothesis there is

remarkably little evidence from histochemical studies for the

expression of COX-2 by healthy endothelial cells, where COX-1

appears to be the dominant isoform [7,9,11,12,13]. Indeed, it may

be that other consequences of COX-2 inhibition, notably increases

in fluid retention and blood pressure [6,7,9,12,14], provide better

mechanistic explanations of the pro-thrombotic effects of drugs

that inhibit COX-2.

Prostanoids are synthesised de novo without storage and generally

have short half lives within the body [12,15,16]. As such, any

contribution of COX-2-derived prostanoids to platelet reactivity

should be sensitive to acute application of COX-2 inhibitors. Here

we have tested this reasoning using the injectable, selective COX-2

inhibitor, parecoxib [17], in an established mouse model of in vivo
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thrombosis. For comparison and to confirm the role of platelet

COX-1-derived thromboxane (TX) A2 in this model, we have also

studied the effects of an injectable form of the non-selective

NSAID, diclofenac, and chronic oral dosing with aspirin. Using

this approach we find no evidence for an effect of acute COX-2

inhibition on thrombotic responses in vivo.

Results

Characterisation of thrombotic response
Injection of collagen (50 mg.kg21, i.v) caused an increase in

platelet accumulation in the lung that peaked around 100 seconds

before gradually returning to baseline within 10 minutes (Figure 1).

The response to the TXA2 mimetic, U46619 (210 mg.kg21, i.v) was

greater in magnitude than that to collagen but shorter lasting - the

maximum was achieved after 40 seconds returning to baseline

within 2–3 minutes.

Effect of chronic aspirin dosing on COX-1 activity ex vivo
The production of TXA2 by platelets was reduced 87%

(p,0.01) in blood taken from mice that had received 7 days

administration of 100 mg.kg21.day21 p.o. aspirin, but not

significantly altered in blood from mice receiving lower doses (all

p.0.05). Based on these results the dose of 100 mg.kg21.day21

p.o. was chosen for studies using the in vivo thrombosis model.

Effect of chronic aspirin dosing on thrombotic response
Treatment of mice with aspirin significantly reduced the time to

peak (vehicle, 1.3460.07 min; aspirin, 0.7960.04 min; Figure 2A,

p,0.05) and the total peak area (vehicle, 27.169.4%.min; aspirin,

6.961.6%.min; Figure 2C, p,0.05) of the response to collagen.

Aspirin did not affect the response to U46619 (Figure 2B and D).

Effect of acute diclofenac and parecoxib dosing on
COX-1 and COX-2 activity ex vivo

In blood taken after acute administration of a standard clinical

dose of diclofenac (1 mg.kg21; i.v.) both COX-1-dependent

production of TXA2 by platelets (Figure 3A) and the COX-2-

dependent production of PGE2 by LPS-induced J774 macrophag-

es was strongly inhibited (Figure 3B). In comparison only COX-2

activity was inhibited in blood taken after acute administration of

parecoxib (0.5 mg.kg21, i.v.; Figure 3A and B).

Effect of diclofenac or parecoxib on thrombotic response
to collagen or U46619

Diclofenac produced similar effects on in vivo thrombosis to

aspirin; namely a reduction in time to peak (control, 1.2460.06 min;

diclofenac, 0.7560.13 min; Figure 4A, p,0.05) and a reduction in

total peak area (control, 29.565.0%.min; diclofenac, 13.16

1.2%.min; Figure 4C, p,0.05). Parecoxib, in contrast, did not alter

any parameter of the thrombotic response to collagen (Figure 4A and

C). Neither diclofenac nor parecoxib significantly affected throm-

bosis induced by U46619 (Figure 4B and D).

Discussion

The association of COX-2 inhibitors with increased risk of

cardiovascular events has prompted a wide search for the causative

mechanisms. A current leading hypothesis is that COX-2 is

expressed in the endothelium and is responsible for the production

of the vasodilating and anti-thrombotic prostanoids, particularly

PGI2. This hypothesis remains controversial, however, as

immunoreactive COX-2 is generally absent from healthy

endothelium in vivo and in vitro whereas COX-1 is relatively

abundant [7,11,12,13]. Therefore we have sought to further our

understanding of this area by functionally exploring the impact of

a selective COX-2 inhibitor parecoxib on platelet reactivity, in vivo,

in mice. We have found that, whilst this model could clearly reveal

the well established anti-thrombotic effects of platelet COX-1

inhibition by chronic aspirin administration [18,19] or acute

diclofenac administration, it did not indicate any pro-thrombotic

effect of selective COX-2 inhibition.

Figure 1. Representative pooled curves of platelet response.
Radioactivity levels were recorded following administration of either
collagen (50 mg.kg21, i.v.; n = 7; upper panel) or U46619 (210 mg.kg21,
i.v.; n = 7; lower panel). Data is represented as % change from baseline
(mean 6 SEM) and plotted over time.
doi:10.1371/journal.pone.0020062.g001
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This study employed the modified pulmonary thromboembo-

lism model described by Tymvios et al [20]. In this model,

radioactively-labelled donor mouse platelets are injected into a

recipient mouse and allowed to equilibrate, before administration

of an agonist via the femoral vein. A subsequent increase of

radiation, due to thrombi formation, can then measured in the

pulmonary bed. As such, platelet reactivity can be determined

where under the physiological influence of endogenous mediators

[21], such as endothelium-derived prostanoids, an environment

that is impossible to faithfully replicate either in vitro or ex vivo.

For this study, we chose two thrombotic agonists - collagen and the

TXA2 mimetic, U46619. Collagen is known to be a key physiological

activator of platelets [22,23] and collagen-induced platelet aggrega-

tion is at least partly driven by platelet COX-1-derived TXA2,

making this response sensitive to aspirin treatment [24,25,26,27,28].

U46619 mimics the effects of platelet-derived TXA2 but is not

affected by inhibition of platelet COX-1 [24,27,28]. Moreover, in

vitro, at least, both collagen- and U46619-induced platelet aggrega-

tions are sensitive to inhibition by PGI2 [29,30,31].

In order to confirm the model’s suitability and sensitivity we first

examined the effects of oral aspirin dosing, a well established anti-

thrombotic treatment, on responses to collagen and U46619. It

has previously been shown that the effective oral doses of aspirin in

the mouse are substantially higher than those in humans [32].

Indeed, upon testing the ability of mouse platelets to synthesise

TXA2, following 7 days of aspirin treatment, we found that a dose

of 100 mg.kg21day21 was required in order to achieve significant

reductions; approximately 100x that required in man [18,19].

Regardless, at this dose, which inhibited platelet TXA2 produc-

tion, in vivo thrombotic responses to collagen but not U46619 were

impaired, thus validating the model and confirming the role of

platelet TXA2 synthesis in it.

The roles and influences of COX-1 and COX-2 in collagen and

U46619-induced thrombosis in vivo were determined by acute

administration of the non-selective COX-1/COX-2 inhibitor,

diclofenac, and the selective COX-2 inhibitor, parecoxib. In these

acute studies we deliberately used intravenous application of

parecoxib and diclofenac to produce therapeutically relevant levels

of drugs within the circulation. Data from our studies using orally

administered aspirin demonstrated the common observation that

to produce effects upon the target enzymes NSAIDs need to be

given orally to mice at doses very much higher than those used in

humans. In a study such as the one presented here, where drugs

are being used for their pharmacological selectivities, this clearly

presents an important problem; i.e. are drugs still selective at these

much higher doses. Because prostanoids are very short lived in the

circulation and their enzymatic sources are still a matter of debate,

measurement of circulating prostanoid levels is of little assistance

in determining drug activities. We therefore took blood from the

animals following injection of drugs or vehicle and tested the levels

of active drugs by bioassay in defined systems; i.e. employing

COX-1-dependent formation of TXA2 in platelets, and COX-2-

dependent formation of PGE2 in mouse monocytes. We have

published such approaches previously [33,34,35]. These studies

confirmed that at the dose used, diclofenac was present in the

blood at a concentration that inhibited both COX-1 and COX-2;

parecoxib was present in the blood at a concentration that

inhibited COX-2 but not COX-1. Diclofenac mimicked the effects

of aspirin – reducing the thrombotic response to collagen without

altering that to U46619. This effect on collagen-induced

thrombosis is consistent with the observed ability of diclofenac to

inhibit platelet TXA2 formation in our experiments, and with the

effects of diclofenac in healthy humans [36,37]. Interestingly,

despite the administration of a dose of diclofenac that strongly

Figure 2. Effect of oral aspirin dosing on platelet response to collagen or U46619. From 6th order polynomial regression analysis time to
peak and total peak area were calculated for responses to collagen (50 mg.kg21, i.v.; panels A and C) and U46619 (210 mg.kg21, i.v.; panels B and D). In
comparison to vehicle, aspirin (100 mg.kg21.day21 p.o. for 7 days) significantly reduced the time to peak (panel A) and total peak area (panel C).
Aspirin had no effect upon responses to U46619 (panels B and D). Data presented as mean 6 SEM, n = 6–7 per treatment group, *p,0.05 by one-way
ANOVA and Dunnett’s post-hoc test.
doi:10.1371/journal.pone.0020062.g002
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inhibits COX-2 ex vivo, no increase in U46619-induced thrombosis

was seen. This suggests that U46619-induced thrombosis is not

acutely suppressed by COX-2-dependent release of prostanoids

from the vascular wall. More compellingly, parecoxib [17], at a

dose observed to inhibit COX-2 with little effect on COX-1, also

did not increase the thrombotic responses to either collagen or

U46619. This, again, suggests that COX-2-dependent PGI2

formation does not suppress platelet reactivity in this model.

Taken together, these findings provide no support for the

hypothesis that inhibition of COX-2 in the vascular wall acutely

alters the local haemostatic environment. In particular, any

contribution of COX-2 to the formation of anti-thrombotic

prostanoids should have been strongly diminished by the doses of

parecoxib or diclofenac used in this study, yet no increase in

thrombosis was noted with either treatment. Indeed, there was a

more noticeable, though non-significant, trend to increased

U46619-induced thrombosis in the presence of diclofenac than

in the presence of parecoxib, which might conceivably reflect the

role of COX-1 in the production of anti-thrombotic prostanoids.

In conclusion, we demonstrate here that acute administration of

the selective COX-2 inhibitor, parecoxib, has no detectable effects

in this in vivo model of platelet activation and thrombosis. This

result would appear consistent with the common finding that

COX-1 rather than COX-2 is the predominant COX isoform

present in normal vasculature and provides no support for the

concept of COX-2-dependent anti-thrombotic prostanoid pro-

duction by the healthy blood vessel wall. Of course, the relative

contributions of COX-1 and COX-2 to prostanoid production will

differ in blood vessels with atherosclerotic disease and elevated

expression of COX-2 [5,7], conditions that may be more relevant

to the patient groups that use chronic NSAIDs.

Materials and Methods

Ethics statement
All procedures described in this study were subject to Home

Office approval (PPL 70–7013) under ‘‘The Animals (Scientific

Procedures) Act 1986’’ and local approval from Imperial College

London Local Ethical Review Panel.

Mice
Male BALB/c mice of 7–8 weeks old and 20–25 g (Harlan, UK)

were received a minimum of 7 days before the commencement of

experiments. They were housed on a 12 hour light-dark cycle, at a

temperature of 22–24uC with access to water and food ad libitum.

Aspirin, diclofenac or parecoxib administration
For aspirin dosing, mice received daily oral doses of 1–

300 mg.kg21.day21 via gavage for 7 days. Aspirin (Sigma, UK)

was finely ground using a mortar and pestle before weighing and

suspension in a 4% tragacanth solution (Sigma, UK; in water). For

diclofenac and parecoxib dosing, mice received injectable forms of

diclofenac (1 mg.kg21; VoltarolH, Geigy), parecoxib (0.5 mg.kg21;

DynastatH, Pfizer) or vehicle by tail vein injection.

Ex vivo COX-1 and COX-2 activity assays
30 minutes after dosing as described above, mice subject to each

treatment were killed with CO2 and blood collected from the

inferior vena cava into heparin (10U.ml21 final concentration; CP

Pharmaceuticals Ltd). To determine the level of COX-1 inhibitory

activity following drug administration, 100 ml of each blood

sample was incubated with Ca2+ ionophore A23187 (50 mM;

Sigma) for 30 minutes before termination of COX activity by

addition of diclofenac (1 mM; Sigma) and separation of plasma by

centrifugation. TXA2 production was measured by enzyme

immunoassay (Cayman Chemical, USA) for its stable breakdown

product, TXB2, as an index of platelet COX-1 activity.

To determine the level of COX-2 inhibitory activity following

drug administration, 100 ml of each blood sample was applied to

J774 murine macrophages that had been incubated with LPS

(10 ug.ml21; from E. coli 0111:B4; Sigma) for 24 hours to induce

COX-2. After 30 minutes equilibration period, cells were

stimulated by incubation with Ca2+ ionophore A23187 (50 mM;

Sigma, UK) for a further 30 minutes. COX activity was

terminated by addition of diclofenac (1 mM; Sigma, UK), and

plasma separated by centrifugation. Prostaglandin E2 production

was determined by a homogeneous time resolved fluorescence-

based immunoassay (Cisbio, France), as an index of J774 COX-2

activity.

Platelet isolation and radio-labelling
Donor mice were anaesthetised with 2.5 mg.kg21 urethane (as

25% solution, i.p; Sigma, UK). Blood was collected from

Figure 3. Effects of diclofenac and parecoxib treatment on
COX-1 and COX-2 activity. Diclofenac (1 mg.kg21, i.v.), but not
parecoxib (0.5 mg.kg21, i.v.), reduced the formation of TXA2 in Ca2+

ionophore-stimulated whole blood (panel A). Whole blood from mice
treated with either diclofenac or parecoxib caused significant inhibition
of PGE2 release from LPS-induced J774 macrophages (panel B). Data
presented as mean 6 SEM, *p,0.001 by one-way ANOVA and
Dunnett’s post-hoc test, n = 3.
doi:10.1371/journal.pone.0020062.g003
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terminally anaesthetised donor mice by cardiac puncture into

acidified citrate-dextrose solution. Platelet rich plasma (PRP) was

obtained by two-step centrifugation (30 g, 3 mins) to remove

extraneous erythrocytes and white blood cells. PRP was

supplemented with an equal volume of Ca2+-free Tyrode’s solution

(CFT: 125 mM glucose, 2.5 mM KCl, 0.4 mM NaH2PO4, 5 mM

glucose, 11 mM NaHCO3, 6.8 mM trisodium citrate, 3.8 mM

citric acid) containing prostaglandin E1 and centrifuged to produce

a platelet pellet. The platelet pellet was washed carefully with

CFT, re-suspended with 1.8 MBq 111Indium oxine and incubated

at room temperature for 5 minutes. Platelets were re-pelleted by a

final centrifugation, washed with CFT and re-suspended in 50 ml

CFT per mouse.

In vivo thrombosis model
The murine in vivo thrombosis model was conducted as previously

published [20]. Briefly, recipient mice were anaesthetised as above

and infused via a tail vein with radio-labelled donor platelets,

prepared as above. Animals were then allowed to equilibrate for 20

minutes before platelet agonists, collagen (50 mg.kg21; Nycomed,

Germany) or U46619 (210 mg.kg21; Cayman Chemical, USA) were

administered via an exposed femoral vein. Platelet responses were

then determined as increases in platelet-associated counts in the

pulmonary vascular bed associated with the platelet agonists. Data

was collected via 1 cm SPEAR (Single Point Extended Area

Radiation) detectors (eV Products, PA, USA) fixed over the

pulmonary vascular bed and recorded on a UCS-20 spectrometer

(Spectrum Techniques, Oak Ridge, TN, USA) using custom made

software (Mumed Systems, London, UK).

Statistical analysis
Results are presented as mean 6 SEM and values of p,0.05

were considered to be significant. Radioactivity counts were

converted into % change from baseline and plotted over time.

Traces were fitting to 6th order polynomial regression curves to

allow the calculation of time to peak and total peak area. All

analysis was performed using Prism 4.0 software (GraphPad

Software, USA).

Author Contributions

Conceived and designed the experiments: ME JAM TDW. Performed the

experiments: PCA NSK ZNZ. Analyzed the data: PCA NSK ZNZ TDW.

Contributed reagents/materials/analysis tools: ME. Wrote the paper: PCA

NSK TDW.

Figure 4. Effects of diclofenac and parecoxib treatment on collagen or U46619-induced platelet response. Diclofenac (1 mg.kg21), but
not parecoxib (0.5 mg.kg21), significantly reduced the time to peak (panel A) and total peak area (panel C) of the thrombotic response to collagen.
Neither diclofenac, nor parecoxib, significantly affected the thrombotic responses to U46619 (panels B and D). Data presented as mean 6 SEM, n = 4–
9 per treatment group, *p,0.05 by one-way ANOVA and Dunnett’s post-hoc test.
doi:10.1371/journal.pone.0020062.g004
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