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Abstract
MRI techniques have been developed that can noninvasively probe the apparent diffusion
coefficient (ADC) of water via diffusion weighted MRI (DW-MRI). These methods have found
much application in cancer where it is often found that the ADC within tumors is inversely
correlated with tumor cell density, so that an increase in ADC in response to therapy can be
interpreted as an imaging biomarker of positive treatment response. Dynamic contrast enhanced
MRI (DCE-MRI) methods have also been developed and can noninvasively report on the
extravascular extracellular volume fraction of tissues (denoted by ve). By conventional reasoning
the ADC should therefore also be directly proportional to ve. Here we report measurements of both
ADC and ve obtained from breast cancer patients at both 1.5T and 3.0T. The 1.5T data were
acquired as part of normal standard-of-care, while the 3.0T data were obtained from a dedicated
research protocol. We found no statistically significant correlation between ADC and ve for the
1.5T or 3.0T patient sets on either a voxel-by-voxel or ROI basis. These data, combined with
similar results from other disease sites in the literature, may indicate that the conventional
interpretation of either ADC, ve, or their relationship are not sufficient to explain experimental
findings.
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1. Introduction
The microscopic thermally-induced behavior of molecules moving in a random pattern is
referred to as self-diffusion or Brownian motion. The rate of diffusion in cellular tissues is
described by means of an apparent diffusion coefficient (ADC), which largely depends on
the number and separation of barriers that a diffusing water molecule encounters in a
specified time interval [1]. Diffusion weighted magnetic resonance imaging (DW-MRI)
methods sensitive to water diffusion have been developed to map the ADC, and in well-
controlled situations the variations in ADC have been shown to correlate inversely with
tissue cellularity [2]. More specifically, as the number and density of barriers increases, the
ADC will decrease because water molecules are not able to diffuse as far per unit time as
they would in a free solution. This interpretation has been of particular (recent) interest to
the cancer imaging community where changes in the ADC have been interpreted to report
on the ability of various anti-cancer therapies to kill tumor cells. There are mounting pre-
clinical and clinical data indicating that exposure of tumors to both chemotherapy and
radiotherapy consistently leads to measurable increases in conventional measurements of
ADC in cases of favorable treatment response [3–6]. Studies in humans have shown that
ADCs in both normal tissues and benign lesions have significantly higher ADCs compared
to those of malignant breast lesions [7,8]. Furthermore, recent results indicate that the ADC
is a promising quantitative biomarker for assessing the response of breast tumors to
neoadjuvant chemotherapy [9,10].

In parallel with developments of DW-MRI, there have been advances in tissue
characterization based on the quantification of the kinetics of injectable MRI contrast agents.
The most common MRI contrast agents are gadolinium-based chelates which are
pharmaceuticals administered intravenously to patients and are designed to change the
contrast between different tissues by decreasing a tissue’s native T1 and/or T2 relaxation
times. Except in the healthy brain, these agents pass from the circulation into the
extravascular, extracellular interstitial volume of normal tissues. Studies designed to exploit
the change in T1 are referred to as dynamic contrast enhanced MRI (DCE-MRI; reviewed in
[11]). In a typical DCE-MRI procedure, MR images are collected before, during, and after a
CA is injected into an appropriate peripheral vein of a patient. Each image corresponds to
one time point, and each pixel in each image set gives rise to its own signal time course
which can be analyzed with a mathematical model. The parameters that are typically
returned from such analysis are the volume transfer constant (Ktrans), the extravascular
extracellular volume fraction (ve) into which the agent distributes, and the blood plasma
volume fraction (vp).

In this contribution, we compare and correlate the DW-MRI measure of cellularity (ADC)
with the DCE-MRI derived measure of extravascular volume fraction (ve) for multiple
voxels in a series of patients. Conventional models of ADC and DCE parameters would
suggest that these two parameters should be directly related; that is, as the volume of
extracellular space increases (as ve increases) water diffusion should be less restricted and
therefore the ADC should also increase. However, in the one paper studying this relationship
in the literature (to the best of our knowledge) there was no relationship found between these
two parameters [12]. Moreover, our own previous study of treatment effects in breast tumors
found the converse relationship [13]. Using two different DCE protocols, we were able to
explore the relationship between ADC and ve using a number of pharmacokinetic models to
return estimates of ve. Our overall goal is to establish whether ADC and ve are related in the
case of invasive ductal carcinomas in human breast cancer patients.
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2. Methods
Patient data were acquired at 1.5T as part of a clinical standard-of-care exam and at 3.0T as
part of a research study, so we have divided the following sections along those lines.

2.1 Data acquisition at 1.5T
Data were acquired from 13 patients as part of the clinical, standard-of-care, breast MRI for
diagnostic and staging purposes. DW-MRI and DCE-MRI were performed using a Philips
1.5T Achieva MR scanner (Philips Healthcare, Best, The Netherlands) prior to neoadjuvant
chemotherapy and following completion of the first cycle of chemotherapy. A 4-channel
receive double-breast coil covering both breasts was used for all imaging (In-vivo Inc.,
Gainesville, FL).

DW-MRIs were acquired with a single-shot spin echo (SE) echo planar imaging (EPI)
sequence in three orthogonal diffusion encoding directions (x, y, and z), with two b-values (0
and 500 s/mm2), FOV = 320×320 (bi-lateral), and an acquisition matrix of 100×97
reconstructed to 160×160. SENSE parallel imaging (acceleration factor = 2) and spectral
presaturation with inversion recovery (SPIR) fat saturation were implemented to reduce
image artifacts. Subjects were breathing freely, with no gating applied. The patient DWIs
consisted of 20 transverse slices with slice thickness = 5 mm (no slice gap) and TR\TE =
4280\43 ms, Δ = 20.6 ms, and δ = 10.9 ms, respectively, number of signal averages (NSA) =
6, for a total scan time of 5 min and 43 s.

Data for a T1 map were acquired with a 3D RF-spoiled gradient echo multi-flip angle
approach with a TR = 7.9 ms, TE = 1.3 ms, and ten flip angles from 2 to 20 degrees in two
degree increments. The acquisition matrix was 240×240×30 over the same FOV as above.
There was one signal acquisition, and a SENSE factor of 2 for an acquisition time of 5 min
and 37 sec. The dynamic scans used a TR\TE = 5.3\2.6 ms with a flip angle of 10° and an
acquisition matrix of 448×448×150 over the same FOV as above. Each 150-slice set was
collected in 90 seconds at eight time points for approximately twelve minutes of scanning. A
catheter placed within an antecubital vein delivered 0.1 mmol/kg of the contrast agent
gadopentetate dimeglumine, Gd-DTPA, (Magnevist, Wayne, NJ) over 20 seconds (followed
by a saline flush) after the acquisition of one baseline dynamic scan.

2.2 Data acquisition at 3.0T
Data were acquired from nine patients with locally advanced breast cancer who were
enrolled in an ongoing clinical trial. The patients provided informed consent and the study
was approved by the ethics committee of our cancer center. DW-MRI and DCE-MRI were
performed using a Philips 3T Achieva MR scanner (Philips Healthcare, Best, The
Netherlands) prior to neoadjuvant chemotherapy and four patients were also scanned
following completion of the first cycle of chemotherapy; thus, we had 13 total data sets. A
4-channel receive double-breast coil covering both breasts was used for all imaging (In-vivo
Inc., Gainesville, FL).

DW-MRIs were acquired with a single-shot spin echo (SE) echo planar imaging (EPI)
sequence in three orthogonal diffusion encoding directions (x, y, and z), with two b-values (0
and 600 s/mm2), FOV = 192×192 (uni-lateral), and an acquisition matrix of 96×96. SENSE
parallel imaging (acceleration factor = 2) and spectrally-selective adiabatic inversion
recovery (SPAIR) fat saturation were implemented to reduce image artifacts. Subjects were
breathing freely with no gating applied. The patient DWIs consisted of 12 sagittal slices with
slice thickness = 5 mm (no slice gap), TR = 2255 ms, TE = ‘shortest’ (43, 48, or 51 ms), Δ =
20.7, 23.2, or 24.9 ms, and δ = 11.6, 10.6, or 10.2 ms, respectively, NSA = 10, for a total
scan time of 2 min and 42 s.

Arlinghaus et al. Page 3

Magn Reson Imaging. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Data for a T1 map were acquired with a 3D RF-spoiled gradient echo multi-flip angle
approach with a TR\TE of 7.9\1.3 ms and ten flip angles from 2 to 20 degrees in two degree
increments. The acquisition matrix was 192×192×20 (full-breast) over a sagittal square field
of view (22 cm2) with slice thickness of 5 mm, one signal acquisition, and a SENSE factor
of 2 for an acquisition time of just under 3 minutes. The dynamic scans used identical
parameters and a flip angle of 20°. Each 20-slice set was collected in 16.5 seconds at 25 time
points for approximately seven minutes of scanning. A catheter placed within an antecubital
vein delivered 0.1 mmol/kg of Magnevist over 20 seconds (followed by a saline flush) after
the acquisition of three baseline dynamic scans for the DCE study. The diffusion, T1, and
dynamic image volumes were all acquired with the same center location, making them
inherently co-registered.

2.3 Data analysis for 1.5T data
The diffusion data sets were fit to Eq. (1) to return ADC values on a voxel-by-voxel basis:

(1)

where S0 denotes the signal intensity in the absence of diffusion gradients, b reflects the
strength and duration of a diffusion-sensitizing gradient, and S(b) is the signal intensity in
the presence of the diffusion-sensitizing gradient. Voxels for which Eq. (1) could not fit the
data were set to zero and not included in the subsequent analysis.

The dynamic and multi-flip angle T1 data were down-sampled to match the resolution of the
DWI data. Pre-contrast T1 values, T10, were computed from the multi-flip angle data by
fitting to Eq. (2):

(2)

where α is the flip angle, S0 is a constant describing the scanner gain and proton density, and
we have assumed that TE ≪ T2

*. Voxels for which Eq. (2) could not fit the data were set to
zero and not included in the subsequent analysis. The T10 values were then used in
conjunction with T1-weighted images to obtain a T1 time course for pharmacokinetic
analysis.

The 1.5T data were acquired in the clinical setting, so the temporal resolution was not
optimal for kinetic modeling, and therefore a model that requires characterization of only the
washout portion of the arterial input function (AIF) was selected; the model is given by:

(3)

where D = dose of contrast agent in mmol/kg, R1 = 1/T1 and we set, as has been done
previously for breast cancer studies, a1 = 3.99 kg−1, a2 = 4.78 kg−1, m1 = 0.144 min−1, m2 =
0.011 min−1 [14]. The ΔR1 time courses are then fit to Eq. (3) to extract Ktrans and ve on a
voxel-by-voxel basis. This model (and variations thereof) has previously been used in the
analysis of low temporal resolution DCE-MRI data of the breast (see, e.g., [15]–[17]). The
fitting routine employs a standard gradient-expansion, nonlinear, least-squares, curve-fitting
algorithm written in the Interactive Data Language (Research Systems, Boulder, CO, USA).

Arlinghaus et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Voxels for which the fitting algorithm did not converge, or converged to non-physical
values (i.e., Ktrans > 5.0 min−1, ve > 1.0, or any parameter below 0.0) were set equal to zero.

2.4 Data analysis for 3.0T data
ADC values were computed in a similar fashion as described above in section 2.3. The data
obtained at 3.0 T were part of a dedicated research study, so we were able to acquire the
DCE data at a much higher temporal resolution which afforded more rigorous quantification
than the 1.5 T data.

DCE-MRI data were analyzed by the fast exchange limit formalism [11]. With this
assumption, the longitudinal relaxation rate constant, R1 (≡1/T), is given by Eq. (4):

(4)

where r1 is the CA longitudinal relaxivity, R10 is the pre-CA longitudinal relaxation rate
constant, and Ct is the time course of the concentration of CA in tissue. To compute Ct, we
use the standard model both with and without a plasma term. The standard model without a
plasma term computes Ct as follows:

(5)

where Ktrans is the CA volume transfer rate constant, ve is the extravascular-extracellular
volume fraction, and Cp(t) is the concentration of CA in blood plasma (i.e., the AIF). A
more complex “extended” model incorporates the blood plasma volume fraction, vp:

(6)

DCE-MRI data were also analyzed with the fast exchange regime formalism [18,19]. With
this assumption, the longitudinal relaxation rate constant, R1 (≡1/T), is given by Eq. (7):

(7)

where R1i is the intracellular R1, τi is the average intracellular water lifetime of a water
molecule, and fw is the fraction of water that is accessible to mobile CA. In the analysis
below, R1i was set equal to R10 and fw was set to 0.8 as has been done previously [20]. The
AIF was derived on an individual patient basis from the signal intensity time obtained from
the axillary artery [21].
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Data from each DCE-MRI study were fit on a voxel-by-voxel basis with Eqs. (4) and (5) or
Eqs. (4) and (6) or Eqs. (5) and (7) to yield estimates of Ktrans, ve (Eqs. (5) and (6)), and vp
(Eq. (6)) or τi (Eq. (7)). As described in Section 2.3, voxels for which the fitting algorithm
did not converge or converged to non-physical values were set equal to zero.

2.5 Statistical analysis
Correlation and linear regression analysis were performed on the ADC and ve maps to test
the hypothesis that these parameters are directly correlated. We computed the Pearson
correlation coefficient, and the slope and intercept of the best fit line when ve was regressed
on ADC for both ROI and voxel level data. The ROI was selected as the volume of tissue
showing enhancement greater than 25% above baseline after injection of the contrast agent.
This was done for the ADC and ve data computed for each patient at 1.5 T, as well as the
ADC and ve data computed by all three models employed in the 3.0T DCE-MRI analysis.

3. Results
3.1 Results at 1.5T

Figure 1 displays the central slice of a representative patient. The parametric ve (obtained
using Eq. (3)) and ADC maps are displayed in panels a and b, respectively, while panel c is
the initial area under the curve map using the data from the first 120 seconds to identify the
lesion (arrow). The model fit approximately 75% of the enhancing signal intensity time
courses. Visually, there does not appear to be a spatial relationship between the two maps,
and this is confirmed in Panel d where the Pearson correlation value (r = 0.05) is displayed.
While plotting all data from all slices for a particular patient is too cumbersome to examine,
all the data were used when computing the overall correlation coefficient. When this was
done, none of the patients displayed a significant relationship between these two parameters,
as summarized in the far right column of Table 1 (the 95% confidence intervals on the
correlation coefficient are also presented). The Pearson correlation values range from r =
−0.34 to 0.28, showing an extremely weak relationship between these parameter values; the
changes in ve explain a maximum of only 12% of the variance in the ADC values.
Averaging over each patients’ individual voxels to yield one ADC and one ve value per
patient and then performing a group analysis also did not yield a strong correlation, as
summarized by Figure 2, where the Pearson correlation value (r = 0.37; approximately 14%
of the variance in ADC explained by ve values), the slope (1×10−3), and intercept (0.0085)
are presented.

3.2 Results at 3.0T
Figure 3 displays the central slice of a representative patient. The parametric ve (obtained
using Eqs. (4) and (5)) and ADC maps are displayed in panels a and b, respectively, while
panel c is the initial area under the curve map using the data from the first 120 seconds to
identify the lesion (arrow). This model also fit approximately 80% of the enhancing signal
intensity time courses. Again, there does not appear to be a spatial relationship between the
two maps, and this is confirmed in Panel d where the Pearson correlation value (r = 0.19) is
displayed for this patient. Similar to the 1.5T data, none of the patients displayed a strong
correlative relationship between these two parameters, as summarized in the second to last
column on the right of Table 1. (The first column of the Table indicates which patient and
which scan in the format of ‘Patient x-y’, where x is the patient number and y is the scan
number’ y=1 is the pre-treatment scan, and y=2 is the post-one cycle of therapy scan.) The
Pearson correlation values range from r = −0.24 to 0.31, also showing an extremely weak
relationship between these parameter values; the changes in ve explain a maximum of only
10% of the variance in the ADC values. Similar to the 1.5T data, averaging over each
patients’ individual voxels to yield one ADC and one ve value per patient and then
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performing a group analysis also did not yield a strong correlation, as summarized by Figure
4a where the Pearson correlation value (r = 0.32, approximately 10% of the variance in
ADC explained by ve values), slope (8×10−3), and intercept (1.3×10−3) are presented.

The middle column of Table 2 shows that analyzing the DCE data with the extended model
(Eq. (6)) yields very little change in the correlation coefficients for each patient data set. The
extended model was able to fit 66% of the enhancing voxels. Again, just as with the
previous two analyses, averaging over each patients’ individual voxels to yield one ADC
and one ve value per patient and then performing a group analysis also did not yield a strong
correlation, as summarized by Figure 4b where the Pearson correlation value (0.20;
approximately 4% of the variance in ADC explained by ve values), slope (8×10−3), and
intercept (9×10−4) are presented.

The far right column of Table 2 presents the results of analyzing the DCE data with the FXR
model (Eq. (7)); in this final case, the model fit 73% of the enhancing voxels. Again there is
very little correlation between the two parameters. And just as in the previous three analysis,
averaging over each patients’ individual voxels to yield one ADC and one ve value per
patient and then performing a group analysis also did not yield a strong correlation, as
summarized by Figure 4c where the Pearson correlation value (0.44; approximately 19% of
the variance in ADC explained by ve values), slope (1.82×10−3), and intercept (2.7×10−4)
are presented.

4. Discussion
While in vivo measurements of water diffusion in tissues via MRI is a mature field, the
explanation of why ADC values change and our knowledge of how contrast agents perfuse
and diffuse through tissue spaces is not complete. DCE-MRI analyses are typically built on
compartmental models which make a number of assumptions that may not be always valid,
potentially leading to errors in the estimation of ve. In particular, in some regions the
delivery of contrast agents may not rely entirely on perfusion via the vasculature but instead
at least some of the contrast agent may diffuse into the voxel or into adjacent regions, and
the compartmental models do not account for this. Current models assume that each voxel
has a single intravascular compartment that introduces the contrast agent and that the only
volume with which it mixes is the extracellular volume of the same voxel. In situations
where these assumptions break down, the results returned from the models may not be
correct.

While there have been several efforts aimed at validating Ktrans (reviewed in [22]), there
have been very limited published studies attempting to validate ve by comparison with
histology. In general, these studies have focused on well-controlled pre-clinical mouse
studies where histological sections can be compared to the corresponding in vivo imaging
data. One such study actually found no significant difference between DCE-MRI and
histological estimates of ve in four mouse melanoma cell lines [23]. The authors did note,
however, that there were a number of important limitations to their study; namely, that the
tumor lines employed were well vascularized and did not develop large necrotic regions.
Furthermore, the investigators were careful to eliminate any areas that included necrosis
based on the histological slices. Another pre-clinical study [24] also found that there was no
statistical difference between histology and DCE-MRI estimates of ve. However, this result
was only reported for the “top five” volume normalized Ktrans values; that is, a relationship
held between DCE-MRI and histological estimates of ve when looking at the most well-
vascularized regions. Though such a relationship did not exist in our study (data not shown),
it is possible that the elimination of necrotic regions can improve the relationship between ve
and ADC; but this would be very difficult to assess without ex vivo (post-mortem) alignment
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of histological data to imaging data—data that is difficult to acquire in clinical studies.
However, another pre-clinical study did not find a strong correlation between ve (or Ktrans)
and histomorphological parameters [25]. The authors concluded this was mostly likely due
the heterogeneity of tumor tissue found at the sub-voxel level. The fact that ve cannot be
accurately measured in areas that are poorly perfused means there could be sections of
tumor tissue with inaccurate ve estimates and a wide range of ADC values [12], and this
would hinder any attempts at testing for a statistical relationship between the two
parameters.

Diffusion weighted MRI also is not without its limitations and is also incompletely
understood. The above mentioned issue of subvoxel heterogeneity on ADC estimates was
also noted in the Mills et al study [12] where the authors pointed out that glioblastoma
multiforme (the disease in their paper) has areas of microvascular proliferation, necrosis,
edema, increased cellularity can influence ADC measurements in multiple ways. Such
characteristics are found in many tumors (including breast). Additionally, perfusion can
mimic diffusion at low diffusion weighting values (b < ~200 s/mm2), resulting in an
artificial increase in the measured ADC value. In this study, a low b-value of 0 s/mm2 was
used, so there could be varying contributions from perfusion within the tumor, causing any
increase in ADC to be non-uniform. However, it seems unlikely that this would cause a lack
of correlation between ADC and ve. As mentioned earlier, the relationship between the ADC
and extracellular volume has been studied in a controlled manner [2] and is much more
straightforward than the relationship between extracellular volume and ve, as measured by
DCE-MRI. There are also numerous other factors that may affect the ADC other than cell
density (e.g., cell membrane permeability [26]), but in tumors over the time scales relevant
here we would anticipate a strong correlation between ADC and ve. Additional factors that
affect the accuracy of ADC calculation include patient motion, incomplete suppression of
the signal from adipose tissue, artifacts from biopsy markers, and susceptibility-induced
distortions, which worsen as field strength increases, but the values reported here accord
with other and expected values of ADC.

5. Conclusion
We have studied the relationship between the apparent diffusion coefficient returned by the
analysis of diffusion weighted MRI and the extravascular extracellular volume fraction
returned by analysis of dynamic contrast enhanced MRI. We were unable to find a
significant relationship between the parameters even though a variety of common DCE
analyses were explored. As stated in Mills et al. [12], this negative result is of importance
because it indicates that our fundamental understanding of these two imaging parameters
must not be complete. Given the simpler and strong evidence for explanation of ADC, we
postulate that current DCE estimates of ve in corporate assumptions into the data analysis
that are not rigorously valid.
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Figure 1.
Panels a and b depict the parametric maps of the extravascular extracellular volume fraction
and the apparent diffusion coefficient, respectively, of the central slice of a representative
patient. (Note the color bar where the ADC values are given in units of 10−3 mm2/s.) Panel c
depicts the initial area under the contrast enhanced curve so that the enhancing lesion is
easily visualized (arrow). Panel d depicts the scatter plot of the data presented in panels a
and b, and it is clear that there is not a strong correlation between the data sets. These data
were obtained in the clinical setting on a 1.5T scanner.
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Figure 2.
The figure displays data similar to that found in Figure 1d, except these points represent the
average of all voxels for a given patient; the error bars denote the standard error of the mean.
Again, there is not a strong relationship between ADC and ve data obtained at 1.5T.
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Figure 3.
This figure is the 3T data analogous to the 1.5T data displayed in Figure 1. Panels a and b
depict the extravascular extracellular volume fraction and the apparent diffusion coefficient
maps, respectively, and panel c presents the initial area under the contrast enhanced curve to
highlight the lesion (arrow). Panel d shows that, just as in the 1.5T case, there is not a strong
relationship between the two parameters.
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Figure 4.
Just as in the Figure 2 data, when ADC and ve are averaged over all voxels for each patient
scanned at 3T, there is not a strong correlation between the two. Panel a depicts the
correspondence when the standard model (Eqs. (3) and (4)) is used, while panel b depicts the
correspondence when the extended model (Eqs. (3) and (5)) is used. There is little change in
the relationship between the parameters based on the model used to estimate ve.
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Table 1

Patient # # slices # voxels CC (95% CI)

1 8 918 0.058 (−0.0067, 0.12)

2 4 184 −0.086 (−0.23, 0.060)

3 11 1234 0.16 (0.11, 0.22)

4 13 815 −0.13 (−0.20, 0.066)

5 8 213 0.28 (0.15, 0.40)

6 5 640 −0.024 (−0.011, 0.053)

7 9 1629 −0.017 (−0.0066, 0.032)

8 10 1090 −0.029 (−0.088, 0.031)

9 11 1781 0.18 (0.13, 0.22)

10 4 124 0.27 (0.10, 0.43)

11 9 563 0.13 (0.050, 0.21)

12 9 1423 0.25 (0.21, 0.30)
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