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Abstract
Recent preclinical and clinical evidence suggests that the stearoyl-CoA desaturase-1 (Scd1)
enzyme plays a key role in the regulation of triglyceride (TG) biosynthesis and insulin sensitivity,
and in vitro studies have found that antipsychotic medications up-regulate Scd1 mRNA
expression. To investigate these effects in vivo, rats were treated with risperidone (1.5, 3, 6 mg/kg/
d), paliperidone (1.5, 3, 6 mg/kg/d), olanzapine (2.5, 5, 10 mg/kg/d), quetiapine (5, 10, 20 mg/kg/
d), haloperidol (1, 3 mg/kg/d) or vehicle through their drinking water for 40 d. Effects on liver
Scd1 mRNA expression and an index of Scd1 activity (the plasma 18:1/18:0 ratio, ‘deaturation
index’) were determined, as were postprandial plasma triglyceride (TG), glucose, insulin, and
polyunsaturated fatty acid (PUFA) levels. All atypical antipsychotics increased the plasma
18:1/18:0 ratio, but not liver Scd1 mRNA expression, at doses found to also increase plasma TG
levels. Among all rats (n=122), the plasma 18:1/18:0 ratio accounted for 56% of the variance in
TG concentrations. The plasma 18:1/18:0 ratio was also positively associated with erythrocyte and
heart membrane phospholipid 18:1n-9 composition. All antipsychotics except risperidone
increased glucose levels at specific doses, and none of the antipsychotics significantly altered
insulin levels. The plasma 18:1/18:0 ratio accounted for 20% of the variance in glucose levels.
Plasma omega-3 and omega-6 PUFA levels were inversely correlated with the plasma 18:1/18:0
ratio and TG and glucose levels. These in vivo data demonstrate that different atypical
antipsychotic medications increase the plasma 18:1/18:0 ratio in association with elevations in
postprandial TG levels, and that concomitant elevations in PUFA biosynthesis oppose these
effects.
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1. Introduction
Treatment-emergent hyperlipidemia, clinically significant weight gain, and insulin
resistance are frequently observed in schizophrenic patients following chronic exposure to
some atypical antipsychotic medications, and may increase risk for coronary heart disease
and type 2 diabetes (Henderson, 2007; Meyer, 2001; Newcomer, 2007). The severity of
hyperlipidemia and insulin resistance have been found to be greater following treatment
with the atypical antipsychotics olanzapine and quetiapine compared with risperidone and
typical antipsychotics (Garman et al., 2007; Meyer & Koro, 2004; Newcomer et al., 2002).
Moreover, postprandial (non-fasting) triglyceride (TG) levels, which are a stronger predictor
of cardiovascular risk (Eberly et al., 2003; Langsted et al., 2008; Bansal et al., 2008), are
greater following treatment with olanzapine and quetiapine compared with risperidone and
typical antipsychotics (Meyer et al., 2008; Smith et al., 2010). Furthermore, greater
increases in glucose levels in response to a oral glucose bolus are observed in patients
treated with olanzapine compared with risperidone (Smith et al., 2009). Despite this body of
clinical evidence, however, the mechanisms mediating antipsychotic-induced elevations in
TG synthesis and insulin resistance remain poorly understood.

Emerging evidence from rodent and clinical studies suggest that stearoyl-CoA desaturase-1
(SCD1, Δ9-desaturase) plays a central role in regulating TG biosynthesis and insulin
sensitivity. SCD1 mediates oleic acid (18:1n-9) synthesis from stearic acid (18:0), and 18:1
is a substrate required for the de novo synthesis of phospholipids, cholesteryl esters, and TG
(Paton & Ntambi, 2009). Mouse studies have demonstrated that Scd1 mutation is associated
with reductions in Scd1 activity (liver and plasma 18:1/18:0 ratios) and deficits in TG
biosynthesis (Attie et al., 2002; Miyazaki et al., 2000, 2001). Consistent with TG being
stored in adipose tissue, Scd1 mutant mice also exhibit reduced adiposity independent of
body weight gain, and are resistance to diet-induced obesity (Ntambi et al., 2002). Scd1
mutant mice also exhibit increased insulin sensitivity (Rahman et al., 2003). Similarly,
pharmacological inhibition of the Scd1 enzyme reduces elevated TG and glucose levels in
rodent disease models (Issandou et al., 2009; Uto et al., 2010). In human subjects, elevations
in the plasma 18:1/18:0 ratio (‘desaturation index’), a validated index of SCD1 enzyme
activity, is positively correlated with plasma TG levels and insulin resistance (Attie et al.,
2002; Flowers & Ntambi, 2009; Mar-Heyming et al., 2008; Paillard et al., 2008; Warensjo et
al., 2007). This body of evidence suggests that SCD1 expression and activity are required
for TG biosynthesis and regulate insulin sensitivity.

A number of in vitro studies have found that different antipsychotic medications up-regulate
the expression of multiple lipogenic genes regulated by the sterol regulatory element-
binding protein (SREBP) including SCD1 (Ferno et al., 2005; Lauressergues et al., 2010;
Polymeropoulos et al., 2009; Raeder et al., 2006). Moreover, schizophrenic patients treated
with olanzapine exhibit greater SCD1 mRNA expression in peripheral blood cells compared
with drug-free patients (Vik-Mo et al., 2008). However, SCD1 mRNA expression and
activity are regulated by myriad of dietary and hormonal factors not accounted for in prior
studies, including glucose, polyunsaturated fatty acids (PUFA), insulin, and leptin. For
example, both omega-3 and omega-6 PUFAs repress Scd1 expression at the level of
transcription and mRNA stability (Landschulz et al., 1994; Ntambi, 1999; Sessler et al.,
1996). Omega-3 PUFAs also reduce elevated TG levels in rodent disease models (Hassanali
et al., 2010; Lu et al., 2011; Mustad et al., 2006) and in schizophrenic patients treated with
atypical antipsychotic medications (Caniato et al., 2006; Peet et al., 2002). In previous
studies we found that chronic treatment with different antipsychotic medications up-regulate
PUFA biosynthesis in rats (McNamara et al., 2009a, 2011). Together, these findings suggest
that antipsychotic effects on Scd1 expression and activity are modulated by PUFAs, and
emphasize the importance of dietary PUFA intake.
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The primary objective of the present study was to determine the effects of chronic exposure
to different antipsychotic medications on liver Scd1 mRNA expression and activity in vivo,
and to determine associations with postprandial TG, glucose, insulin and PUFA levels.
Based on the evidence reviewed above, our specific prediction was that chronic exposure to
atypical antipsychotic medications would up-regulate hepatic Scd1 mRNA expression and
activity, and that these effects would be positively correlated with postprandial TG levels
and inversely correlated with omega-3 PUFA levels.

2. Materials and methods
2.1. Animals and diet

Adult (P56) male Long-Evans hooded rats were purchased from Harlan-Farms Indianapolis,
IN. Upon arrival, all rats were maintained on the same custom research diet (TD.04285,
Harlan-TEKLAD, Madison, WI). This diet contained casein (vitamin-free) 200 g/kg, L-
cystine 3 g/kg, sucrose 270 g/kg, dextrose monohydrate 99.5 g/kg, corn starch 200 g/kg,
maltodextrin 60 g/kg, cellulose 50 g/kg, mineral mixture AIMN-93G-MX 35 g/kg, vitamin
mixture AIN-93-VX 10 g/kg, choline bitartrate 2.5 g/kg, TBHQ (antioxidant) 0.02 g/kg).
The diet contained 18:0 (9.4% of total fatty acids) and oleic acid (6.7% of total fatty acids).
For complete diet lipid composition see Table 1 in McNamara et al. (2008). Rats were
housed 2 per cage, and food and fluids were available ad libitum. Paired housing was
selected to avoid confounding effects of single-housing stress on primary outcome measures
(Perez et al., 1997). Rats were maintained under standard vivarium conditions on a 12:12 h
light:dark cycle. Food (g/kg/d) and fluid (ml/kg/d) intake and body weight were routinely
recorded. Rats were sacrificed by decapitation on P99-101 in a counter-balanced manner
relative to the removal of food hoppers at 9:00 am. Trunk blood was collected into EDTA-
coated tubes, plasma isolated by centrifugation, and erythrocytes washed 3x with 4°C 0.9%
NaCl. Heart and liver samples were also collected. All samples were stored at −80°C deg.
All experimental procedures were approved by the University of Institutional Animal Care
and Use Committee, and adhere to the guidelines set by the National Institutes of Health.

2.2. Drug administration
On P60, rats (n=122) were randomly assigned to receive drug vehicle (0.1 M acetic acid
diluted in deionized water), risperidone (1.5, 3, 6 mg/kg/d; supplied by Ortho-McNeil
Janssen Scientific Affairs LLC), paliperidone (1.5, 3, 6 mg/kg/d, supplied by Ortho-McNeil
Janssen Scientific Affairs LLC), olanzapine (2.5, 5, 10 mg/kg/d, supplied by Eli Lilly and
Company), quetiapine (5, 10, 20 mg/kg/d, supplied by AstraZeneca Pharmaceuticals), or
haloperidol (1, 3 mg/kg/d, Sigma-Aldrich Chemicals) through their drinking water (n=8/
drug dose). Doses of risperidone, olanzapine, and haloperidol were selected based on prior
studies finding production of therapeutically-relevant plasma concentrations in rats
following chronic oral administration (Andersson et al., 2002; McNamara et al., 2009a;
Terry et al., 2005). Doses of quetiapine were selected based on prior behavioral and
neurochemical studies finding significant effects within this dose range (Migler et al., 1993;
Tarazi et al., 2002), and to avoid sedative effects observed at higher doses (≥40 mg/kg, Betz
et al., 2005) which could impair food and fluid intake. Drugs were administered through the
rat’s drinking water to avoid daily injection stress and surgical implantation of mini-pumps,
to mimic oral administration in human patients, and to permit maintenance of drug dose in
accordance with age-related increases in body weight and fluid intake. For three days prior
to drug delivery, 24 h water consumption was determined for each cage using bottle weights
(1 g water = 1 ml water), and ml water intake/mean kg body weight calculated. All drugs
were dissolved and diluted in 0.1 M acetic acid to prepare a stock solution (stored at 4 deg)
which was added to tap water at a volume required to deliver the targeted daily dose. To
maintain intake of the targeted daily dose, drug concentrations were adjusted to mean daily
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fluid intake and mean body weight (ml/kg/day) every 3 days. Red opaque drinking bottles
were used to protect drug from light degradation. Rats were maintained on their respective
drug and dose until being sacrificed on P99-101 (39–41 days of treatment). Dehydration was
routinely monitored over the course of the study using the skin tenting method.

2.3. Fatty acid composition
The gas chromatography procedure used to determine plasma, erythrocyte, and heart fatty
acid composition has been described in detail previously (McNamara et al., 2009a). Briefly,
total fatty acid composition was determined with a Shimadzu GC-2014 (Shimadzu Scientific
Instruments Inc., Columbia MD). Analysis of fatty acid methyl esters was based on area
under the curve calculated with Shimadzu Class VP 4.3 software. Fatty acid identification
was based on retention times of authenticated fatty acid methyl ester standards (Matreya
LLC Inc., Pleasant Gap PA). Data are expressed as weight percent of total fatty acids (mg
fatty acid/100 mg fatty acids). All analyses were performed by a technician blinded to
treatment. We focused our primary analysis on the principle substrate and product of Scd1,
stearic acid (18:0) and oleic acid (18:1n-9), respectively. The plasma 18:1/18:0 ratio
(‘desaturation index’) was calculated as an index of liver Scd1 activity (Attie et al., 2002).
Principle plasma PUFAs, including eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic
acid (DHA, 22:6n-3), linoleic acid (18:2n-6), and arachidonic acid (20:4n-6), were also
investigated.

2.4. Plasma TG, glucose, and insulin
Postprandial (non-fasting) plasma TG (GPO-PAP, RANDOX Laboratories Ltd., Antrim
UK), glucose (GOD-POD, Genzyme Diagnostics P.E.I. Inc., Charlottetown, PE, Canada),
and insulin (ELISA, Linco Research, St. Charles MI, USA) concentrations (mg/dL) were
determined using commercially available kits according to the manufacturer’s instructions.
All analyses were performed by a technician blinded to treatment.

2.5. Liver Scd1 mRNA expression
Frozen liver was homogenized (BioLogics Model 300 V/T ultrasonic homogenizer,
Manassas, VA) in Tri Reagent, and total RNA isolated and eluted according to the
manufacturer’s instructions (RNeasy Lipid Tissue Mini Kit, Qiagen, Valencia, CA). RNA
was quantified using a Nanodrop instrument (Nanodrop Instruments, Wilmington, DE).
RNA quality was determined using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA, USA). cDNA was prepared from total RNA using a high-capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA). mRNA levels of stearoyl-CoA
desaturase (Scd1, Rn00594894_m1) were measured in triplicate with real-time quantitative
PCR using an ABI 7500 Real Time PCR System (Applied Biosystems, Foster City, CA).
Data were analyzed by comparing the difference between target (Scd1) and endogenous
control (GAPDH, Rn99999916_s1) cycle thresholds using the comparative Ct method
(Livak et al., 2001).

2.6. Statistical analysis
Within-drug differences in plasma fatty acid composition and metabolic markers were
evaluated with a one-way ANOVA (vehicle vs. drug doses), and pairwise comparisons made
with unpaired t-tests (2-tail, α=0.05). Homogeneity of variance was confirmed using
Bartlett’s test. Parametric correlation analyses were used to determine the relationship
between plasma fatty acid composition and other plasma analytes (2-tail, α=0.05). Analyses
were performed with GB-STAT (V.10, Dynamic Microsystems, Inc., Silver Springs MD).
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3. Results
3.1. Food/fluid intake and body weight

Food/fluid intake and body weight are illustrated in Supplemental Fig. 1. Briefly, for food
intake (g/kg/d), the main effect was not significant for risperidone, F(3,16)=1.8, p=0.19,
paliperidone, F(3,16)=2.3, p=0.13, olanzapine, F(3,16)=1.5, p=0.25, quetiapine,
F(3,16)=1.1, p=0.37, or haloperidol, F(2,14)=1.8, p=0.21. For fluid intake (ml/kg/d), the
main effect was significant for olanzapine, F(3,16)=47.6, p≤0.0001, quetiapine, F(3,16)=3.9,
p=0.04, and haloperidol, F(2,14)=30, p≤0.0001, but not risperidone, F(3,16)=1.2, p=0.33, or
paliperidone, F(3,16)=0.5, p=0.69. For endpoint body weight (kg), the main effect was
significant for paliperidone, F(3,33)=3.0, p=0.04, and olanzapine, F(3,33)=3.5, p=0.03, but
not for risperidone, F(3,33)=0.7, p=0.57, quetiapine, F(3,33)=1.2, p=0.31, or haloperidol,
F(2,25)=1.4, p=0.26.

3.2. Plasma 18:1/18:0 ratio, TG, glucose and insulin levels
For the plasma 18:1/18:0 ratio (Fig. 1A), the main effect was significant for risperidone,
F(3,33)=2.8, p=0.04, paliperidone, F(3,33)=4.8, p=0.007, and quetiapine, F(3,33)=3.5,
p=0.02, but not for olanzapine, F(3,33)=2.1, p=0.1, or haloperidol, F(2,25)=0.03, p=0.97.
For plasma TG concentrations (Fig. 1B), the main effect was significant for risperidone,
F(3,33)=4.2, p=0.01, paliperidone, F(3,33)=23.9, p≤0.0001, olanzapine, F(3,33)=3.5,
p=0.03, quetiapine, F(3,33)=2.8, p=0.04, but not for haloperidol, F(2,25)=0.5, p=0.59. For
plasma glucose concentrations (Fig. 1C), the main effect was significant for paliperidone,
F(3,33)=5.7, p=0.003, olanzapine, F(3,33)=7.6, p=0.0006, quetiapine, F(3,33)=9.3,
p=0.0002, and haloperidol, F(2,25)=11.8, p=0.0004, but not for risperidone, F(3,33)=1.2,
p=0.33. For plasma insulin concentrations (Fig. 1D), the main effect was not significant for
risperidone, F(3,33)=0.9, p=0.45, paliperidone, F(3,33)=1.1, p=0.38, olanzapine,
F(3,33)=0.95, p=0.43, quetiapine, F(3,33)=1.5, p=0.24, or haloperidol, F(2,25)=1.2, p=0.31.

Among all rats (n=122), the plasma 18:1/18:0 ratio was positively correlated with
postprandial plasma TG (r = +0.76, p≤0.0001)(Fig. 2A) and glucose (r = +0.44, p≤0.0001)
(Fig. 2B) levels, but not with plasma insulin levels (r = −0.02, p=0.78)(Fig. 2C). The plasma
18:1/18:0 ratio accounted for 56% of the variance in TG concentrations and 20% of the
variance in glucose concentrations. Plasma TG concentrations were positively correlated
with plasma 18:1 composition (r = +0.75, p 0.0001), and inversely correlated with plasma
18:0 composition (r = −0.34, p=0.0002). Similarly, plasma glucose concentrations were
positively correlated with plasma 18:1 composition (r = +0.40, p≤0.0001), and inversely
correlated with plasma 18:0 composition (r = −0.45, p≤0.0001). TG concentrations were
positively correlated with glucose concentrations (r = +0.56, p≤0.0001), but not insulin
concentrations (r = +0.18, p=0.06). Endpoint body weight was not significantly correlated
with the plasma 18:1/18:0 ratio (r = +0.03, p=0.71), TG (r = +0.02, p=0.85), glucose (r =
−0.02, p=0.80), or insulin (r = +0.10, p=0.28). Baseline to endpoint weight gain was not
significantly correlated with the plasma 18:1/18:0 ratio (r = +0.00, p=0.95), TG (r = +0.04,
p=0.69), glucose (r = −0.00, p=0.94), or insulin (r = +0.05, p=0.57).

3.3. Plasma and membrane phospholipid 18:1n-9 composition
For plasma oleic acid (18:1n-9) composition (Fig. 3A), the main effect was significant for
risperidone, F(3,33)=4.4, p=0.01, paliperidone, F(3,33)=6.4, p=0.002, olanzapine,
F(3,33)=3.2, p=0.04, quetiapine, F(3,33)=2.9, p=0.04, but not for haloperidol, F(2,25)=0.01,
p=0.98. Among all rats (n=122), plasma 18:1 composition was inversely correlated with
plasma 18:0 composition (r = −0.34, p=0.0002). For erythrocyte 18:1n-9 composition (Fig.
3B), the main effect was significant for risperidone, F(3,33)=3.9, p=0.02, paliperidone,
F(3,33)=11.7, p≤0.0001, olanzapine, F(3,33)=10.8, p≤0.0001, quetiapine, F(3,33)=7.4,
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p=0.0008, and haloperidol, F(2,25)=7.2, p=0.004. For heart 18:1n-9 composition (Fig. 3C),
the main effect was significant for risperidone, F(3,33)=6.3, p=0.002, paliperidone,
F(3,33)=4.7, p=0.009, olanzapine, F(3,33)=3.7, p=0.02, and haloperidol, F(2,25)=9.5,
p=0.001, but not quetiapine, F(3,33)=1.0, p=0.38. Plasma 18:1n-9 composition was
positively correlated with erythrocyte (r = +0.24, p=0.009) and heart (r = +0.30, p=0.0008)
18:1n-9 composition. Similarly, the plasma 18:1/18:0 ratio was positively correlated with
erythrocyte (r = +0.19, p=0.04) and heart (r = +0.23, p=0.01) 18:1n-9 composition.

3.4. Liver Scd1 mRNA expression
Liver Scd1 mRNA expression was determined in controls and individual dose groups
exhibiting the greatest elevation in the plasma 18:1/18:0 ratio (risperidone: 1.5 mg/kg;
paliperidone: 3 mg/kg; olanzapine: 2.5 mg/kg; quetiapine: 10 mg/kg; haloperidol: 1 mg/kg).
The main effect of treatment was not significant, F(5,47)=1.6, p=0.18, and rats treated with
risperidone (p=0.63), paliperidone (p=0.52), olanzapine (p=0.81), quetiapine (p=0.69) and
haloperidol (p=0.07) did not exhibit significant alterations in liver Scd1 mRNA expression
relative to controls. Liver Scd1 mRNA expression was not correlated with the plasma
18:1/18:0 ratio (r = −0.11, p=0.44).

3.5. Relationship with plasma PUFAs
Among all rats (n=122), plasma DHA (22:6n-3) composition was inversely correlated with
the plasma 18:1/18:0 ratio (r = −0.43, p≤0.0001)(Fig. 4A), TG (r = −0.39, p≤0.0001)(Fig.
4B), and glucose (r = −0.28, p=0.002)(Fig. 4C), but not insulin (r = −0.06, p=0.54). Plasma
EPA composition was inversely correlated with TG (r = −0.37, p≤0.0001) and glucose (r =
−0.23, p=0.01), but not with the plasma 18:1/18:0 ratio (r = −0.04, p=0.69) or insulin (r =
−0.03, p=0.78) (see Supplemental Fig. 2). Plasma AA (20:4n-6) composition was inversely
correlated with the plasma 18:1/18:0 ratio (r = −0.75, p≤0.0001)(Fig. 4D), TG (r = −0.65,
p≤0.0001)(Fig. 4E) and glucose (r = −0.42, p≤0.0001)(Fig. 4F), but not insulin (r = −0.01,
p=0.92). Plasma linoleic acid (18:2n-6) composition was inversely correlated with the
plasma 18:1/18:0 ratio (r = −0.24, p=0.008), TG (r = −0.48, p≤0.0001), glucose (r = −0.19,
p=0.04), and insulin (r = −0.33, p=0.0001). Plasma DHA (r = −0.82, p=0.01) and AA (r =
−0.79, p=0.02) compositions were inversely correlated with liver Scd1 mRNA expression in
controls, but not in individual treatment groups.

4. Discussion
The main finding of this study is that chronic exposure to atypical antipsychotic
medications, but not the typical antipsychotic haloperidol, significantly increased both
postprandial TG levels and an index of Scd1 activity (plasma 18:1/18:0 ratio) at specific
doses independent of changes in liver Scd1 mRNA expression. Among all rats, the plasma
18:1/18:0 ratio was positively correlated with postprandial TG levels and erythrocyte and
heart membrane phospholipid 18:1n-9 composition. Chronic exposure to all antipsychotic
medications except risperidone increased postprandial glucose levels at specific doses, and
glucose levels and the plasma 18:1/18:0 ratio were positively correlated among all rats.
Elevated glucose levels were not associated with compensatory elevations in insulin
concentrations, a finding consistent with antipsychotic-induced impairment of glucose-
stimulated pancreatic β-cell insulin secretion (Best et al., 2005; Sasaki et al., 2006).
Elevations in postprandial TG and glucose levels and the 18:1/18:0 ratio could not be
attributed to differences in dietary intake of 18:1n-9 or 18:0, and were not associated with
body weight gain. Among all rats, plasma PUFA compositions were inversely correlated
with the plasma 18:1/18:0 ratio, TG, and glucose levels. These preclinical findings
demonstrate that elevations in postprandial TG and glucose levels following chronic
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treatment with atypical antipsychotics are positively correlated with Scd1 activity in vivo,
and that these effects are modulated by concomitant changes in PUFA biosynthesis.

This study has three notable limitations. First, rats treated with higher doses of olanzapine
and quetiapine, and both doses of haloperidol, exhibited significant reductions in fluid intake
which may have compromised drug intake. However, because drug concentrations were
adjusted every 3 days to daily fluid intake and body weight (ml/kg/day), reductions in fluid
intake should not have substantially altered daily drug intake. Nevertheless, in the absence
of plasma drug concentration data it remains possible that greater changes in primary
outcome measures may have been observed using a different mode of administration.
Moreover, while severe dehydration was not observed in rats exhibiting decreased fluid
intake, milder dehydration may have influenced the results. Second, only male rats were
employed, precluding evaluation of potential gender differences. However, male rats were
selected to obviate potential interactions with ovarian hormones previously found to
influence the biosynthesis of PUFAs (Childs et al., 2010; McNamara et al., 2009b), which
regulate Scd1 expression/activity (Landschulz et al., 1994; Ntambi, 1999; Sessler et al.,
1996), and TG synthesis (Hassanali et al., 2010; Lu et al., 2011; Mustad et al., 2006). Third,
we did not directly evaluate Scd1 enzyme activity, and used the plasma 18:1/18:0 ratio as a
surrogate measure. However, the plasma 18:1/18:0 ratio is a validated measure of Scd1
activity (Attie et al., 2002), and the pattern of changes in plasma fatty acids observed in the
present study, i.e., reductions in the short-chain precursor (18:0) and reciprocal elevations in
the long-chain product (18:1), are consistent with elevated liver Scd1 activity (Attie et al.,
2002; Issandou et al., 2009; Miyazaki et al., 2001).

In the present study, elevations in the plasma 18:1/18:0 ratio following atypical
antipsychotic exposure were not associated with corresponding elevations in hepatic Scd1
mRNA expression. This in vivo finding is not consistent with prior in vitro studies finding
that SCD1 mRNA expression is up-regulated in cultured human and rat cell lines following
exposure to different typical and atypical antipsychotic medications (Ferno et al., 2005;
Lauressergues et al., 2010; Polymeropoulos et al., 2009; Raeder et al., 2006). However,
multiple dietary and hormonal factors that regulate Scd1 mRNA expression, including
glucose, PUFAs, insulin, and leptin, may have mitigated antipsychotic-induced elevations in
Scd1 mRNA expression in vivo (see below). Moreover, it remains possible that Scd1 mRNA
expression was up-regulated in adipose tissue (Mangravite et al., 2007), peripheral blood
cells (Vik-Mo et al., 2008), and/or skeletal muscle (Hulver et al., 2005). Alternatively,
atypical antipsychotic medications may up-regulate Scd1 protein expression and/or
enzymatic activity independent of effects on Scd1 transcription, and elevations in SCD1
protein expression in the absence of corresponding elevations in SCD1 mRNA expression
have been observed previously (Garcia-Serrano et al., 2010).

We previously found that different atypical antipsychotic medications up-regulate long-
chain PUFA biosynthesis in rats (McNamara et al., 2009a, 2011), and PUFAs reduce Scd1
mRNA expression at the level of transcription and mRNA stability (Landschulz et al., 1994;
Ntambi, 1999; Sessler et al., 1996). In the present study, plasma DHA and AA compositions
were inversely correlated with liver Scd1 mRNA expression in control rats, but not in any of
the antipsychotic-treated groups. This finding suggests that elevations in PUFA biosynthesis
may mitigate antipsychotic-induced elevations in liver Scd1 mRNA expression. This is
supported in part by the previous finding that higher levels of dietary omega-3 fatty acid
intake were associated with lower Scd1 mRNA expression in adipose fat (Muhlhausler et al.,
2010). Nevertheless, among all rats plasma DHA and AA levels were inversely correlated
with the plasma 18:1/18:0 ratio as well as TG and glucose levels, suggesting that PUFAs
have antagonistic effects on Scd1 activity. It will be of interest to determine whether
reductions in Scd1 activity mediate decreases in TG and/or glucose levels in response to
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omega-3 fatty acid supplementation in rodent disease models (Hassanali et al., 2010; Lu et
al., 2011; Mustad et al., 2006) and in schizophrenic patients treated with atypical
antipsychotic medications (Caniato et al., 2006; Peet et al., 2002). Nevertheless, these data
highlight an important contribution of PUFAs to antipsychotic effects on Scd1 expression/
activity, and emphasize the need to account for PUFAs in future antipsychotic studies.

Excessive weight gain and obesity are frequently observed in schizophrenic patients
following chronic treatment with atypical antipsychotic medications (Henderson, 2007).
Prior clinical studies have found that indices of SCD1 activity (plasma 18:1/18:0 ratio) are
positively associated with excess adiposity and obesity (Flowers & Ntambi, 2009).
Moreover, Scd1 mutant mice exhibit reduced adiposity independent of body weight gain and
are resistant to dietary-induced obesity (Ntambi et al., 2002). In the present study, the
18:1/18:0 ratio and TG levels were not significantly correlated with body weight gain or
endpoint body weight. Moreover, chronic treatment with specific doses of paliperidone and
olanzapine decreased, rather than increased, body weight, and the other antipsychotics were
weight neutral. Reductions in body weight gain have previously been observed in male rats
following chronic olanzapine or risperidone treatment at specific doses despite greater
visceral adiposity, and may be attributable to reciprocal reductions in lean muscle mass
(Cooper et al., 2007; Ota et al., 2002). Because visceral adiposity and muscle mass were not
determined in the present study, additional studies will be required to evaluate the
relationship between Scd1 activity and greater visceral adiposity observed in male and
female rats following atypical antipsychotic treatment (Cooper et al., 2007; Minet-Ringuet et
al., 2006; Ota et al., 2002).

In conclusion, this in vivo study demonstrates that atypical antipsychotic medications
increase the plasma 18:1/18:0 ratio, an index of Scd1 enzyme activity, at doses found to also
increase postprandial TG and glucose levels. These results are consistent with prior
preclinical (Attie et al., 2002; Rahman et al., 2003; Uto et al., 2010) and clinical (Mar-
Heyming et al., 2008; Paillard et al., 2008; Warensjö et al., 2007) studies finding that Scd1
activity is positively associated with TG synthesis and insulin resistance. Additionally, these
data suggest that PUFA biosynthesis is an important determinant of atypical antipsychotic
effects on Scd1 activity and TG and glucose levels. Future studies are warranted to
investigate whether inhibition of the Scd1 enzyme, either pharmacologically of with long-
chain omega-3 fatty acids, can attenuate or prevent elevated TG and glucose levels in
response to chronic atypical antipsychotic treatment.
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Fig. 1.
Effects of chronic treatment with drug vehicle (V)(n=10), risperidone (RSP)(1.5, 3, 6 mg/kg/
d), paliperidone (PAL)(1.5, 3, 6 mg/kg/d), olanzapine (OLZ)(2.5, 5, 10 mg/kg/d), quetiapine
(QTP)(5, 10, 20 mg/kg/d), or haloperidol (HAL)(1, 3 mg/kg/d)(n=8/drug dose) on the
plasma 18:1/18:0 ratio (A) and plasma TG (B) glucose (C), and insulin (D) concentrations.
Values are group mean ± S.E.M. *p≤0.05, **p≤0.01, ***p≤0.0001 vs. Vehicle.
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Fig. 2.
Relationships between the plasma 18:1/18:0 ratio and postprandial TG (A), glucose (B), and
insulin (C) concentrations among all rats (n=122). Pearson correlation coefficients and
associated p-values (two-tailed) are presented.
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Fig. 3.
Effects of chronic treatment with drug vehicle (V)(n=10), risperidone (RSP)(1.5, 3, 6 mg/kg/
d), paliperidone (PAL)(1.5, 3, 6 mg/kg/d), olanzapine (OLZ)(2.5, 5, 10 mg/kg/d), quetiapine
(QTP)(5, 10, 20 mg/kg/d), or haloperidol (HAL)(1, 3 mg/kg/d)(n=8/drug dose) on the oleic
acid (18:1n-9) composition in plasma (A), erythrocytes (B), and heart (C). Values are group
mean ± S.E.M. *p≤0.05, **p≤0.01, ***p≤0.0001 vs. Vehicle.
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Fig. 4.
Relationships between plasma docosahexaenoic acid (DHA, 22:6n-3)(A–C) and arachidonic
acid (AA, 20:4n-6)(D–F) compositions and the plasma 18:1/18:0 ratio (A,D), plasma TG
concentrations (mg/dL)(B,E), and plasma glucose concentrations (mg/dL)(C,F) among all
rats (n=122). Pearson correlation coefficient and associated p-values (two-tailed) are
presented.
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