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Proliferation and activation of microglial cells is a neuropathological characteristic of brain injury and neurodegeneration, includ-
ing Alzheimer’s disease. Microglia act as the first and main form of immune defense in the nervous system. While the primary
function of microglia is to survey and maintain the cellular environment optimal for neurons in the brain parenchyma by actively
scavenging the brain for damaged brain cells and foreign proteins or particles, sustained activation of microglia may result in high
production of proinflammatory mediators that disturb normal brain functions and even cause neuronal injury. Glycogen synthase
kinase-3p has been recently identified as a major regulator of immune system and mediates inflammatory responses in microglia.
Glycogen synthase kinase-33 has been extensively investigated in connection to tau and amyloid j3 toxicity, whereas reports on the
role of this enzyme in neuroinflammation in Alzheimer’s disease are negligible. Here we review and discuss the role of glycogen

synthase-3 in immune cells in the context of Alzheimer’s disease pathology.

1. Inflammation in Alzheimer’s Disease

In addition to progressive loss of neurons and accumulation
of intra- and extracellular protein deposits, chronic inflam-
mation is a major pathological hallmark of Alzheimer’s dis-
ease (AD) [1, 2]. Neuroinflammation in AD is characterized
by the existence of inflammatory mediator cells surrounding
the -amyloid (Af) plaques and sites of neuronal injury [3—
5]. Even though microglia, the main immune cells of the
brain, have been extensively studied in AD, the exact role
of inflammation in the disease pathogenesis remains elusive
[3-10]. There is substantial evidence that microglia and the
monocytic cells derived from the blood or bone marrow at
least initially protect neurons from neurotoxic accumulation
of A3 and even release neurotrophic factors and extracellular
proteases which may support neuronal survival and regen-
eration [5-11]. On the other hand, extensive and long-term
release of proinflammatory mediators and reactive oxygen
or nitrogen species (ROS and RNS) by the inflammatory

cells is thought to accelerate neurodegeneration and disturb
cognitive functions [3-10].

The primary inflammatory cells in the central nervous
system are microglia, constituting around 10% of all cells
in the brain. They represent the innate immune system and
form the first line of defense against invading pathogens in
the brain [12-14]. Microglia serve as sensors for disturbed
brain tissue homeostasis as they accumulate and proliferate
locally in response to neuronal injury or penetration of
foreign material in the brain [13, 14]. In AD, such activation
can result from extracellular deposition of Af, neuronal
injury caused by Af or tau toxicity [5-15], to some extent
from ischemic or traumatic brain injury, and may be
contributed even by local or systemic infection [16, 17]. In
addition to microglia, astrocytes, pericytes, endothelial cells
and neurons are thought to play a role in inflammatory
responses relevant to AD [18]. However, most of the data
on the impact of inflammation in AD originate from studies
with microglia.



2. Glycogen Synthase Kinase 3-f in the
Nervous System

Glycogen synthase kinase 3 (GSK-3) is a multifunctional ser-
ine/threonine kinase present in all eukaryotes. There are two
highly homologous isoforms of GSK-3, GSK-3«a and GSK-
33, that are usually equivalent in actions. In addition, there
is an alternatively spliced GSK-3f variant that encodes GSK-
332, which has a 13-residue insert in the kinase domain [19—
25] and is expressed exclusively in the nervous system [19—
25]. GSK-3 shows partial constitutive activity and is known
to phosphorylate more than 50 different substrates. The most
important mechanism for regulation of GSK-3f activity
is inhibitory phosphorylation of Ser9 by protein kinase A
(PKA) protein kinase B (PKB)/Akt and protein kinase C
(KPC). Other kinases may phosphorylate the regulatory Ser9
as well. Activation of GSK-3f is enhanced when also the
regulatory Tyr216 is phosphorylated [19-25].

In the brain, GSK-3f is known to be involved in neuro-
genesis, neuronal migration, neuronal polarization, and axon
growth and guidance. GSK3/52 shows the highest expression
in the nervous system during development and seems to
have a special role in neuronal morphogenesis [25-32]. GSK-
33 affects axon growth by controlling microtubule dynamics
through phosphorylation of microtubule-associated proteins
(MAPs) such as Tau, MAP-1B and adenomatous polyposis
coli [25-32]. Importantly, GSK-3f plays a key role in neu-
ropathology of AD, schizophrenia, autism and Parkinson’s
disease (PD). Also, the polymorphisms in GSK3f inter-
act with the microtubule-associated protein Tau (MAPT)
haplotypes to increase the risk for idiopathic PD and AD
[32-35].

There is substantial evidence that activation of GSK-3p
contributes to tau pathology, Af synthesis, and apoptotic
neuronal death and it is thus not surprising that GSK-3p has
been recognized as a potential therapeutic target in AD [35—
37]. However, GSK-3f is a well-known regulator of innate
and adaptive immune responses and plays a key role also in
pathways of microglial activation relevant to AD [19, 20, 38—
41]. Considering that neuroinflammation is a characteristic
of AD brain pathology, the role of GSK-3f in glial cells is
of great interest. The therapeutically interesting role of GSK-
3f in regulating inflammation in AD is emphasized by the
fact that various forms of A promote microglial activation
and release of proinflammatory mediators and ROS/RNS. In
addition, in vitro studies suggest that microglial activation
may in turn induce accumulation of tau in neurites though
microglial ROS production [15].

3. GSK-3p and Migration of Microglia

Migration of blood and bone marrow-derived monocytic
cells as well as endogenous microglia to the sites of brain
injury and abnormal proteins, such as Af, is a necessary
step before production of proinflammatory mediators or
neurotoxins and attempts of phagocytosis [10, 11, 13, 42—
48]. GSK-3p has been reported to be a key kinase regulating
migration of various cell types, such as different stem cells
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and other cells related to development, cancer cells, endothe-
lial cells, and blood-derived inflammatory cells [39, 49-52].
Similarly, GSK-3$ has been shown to promote microglial
migration both in vitro and in situ [39]. When random and
directed migration of BV2 cells were studied using transwell
migration and scratch assays, respectively, GSK inhibitors
were found to inhibit both types of microglial migration
by far more than 50% [39]. The same authors also demon-
strated that GSK-3 mediates migration of endogenous
mouse microglia in response to slice injury of hippocampus
[39]. It is possible that GSK-3/5 promotes migration/mobility
of microglia at least partially by triggering upregulation
of CD11b, the aMp2 integrin and complement receptor,
which are needed for adhesion and migration of leukocytes,
including microglia [23]. Studies on the role of GSK3 in
migration of other cell types support the conclusion that
GSK-3p controls multiple pathways involved in migration
(28, 30, 51, 53].

4. GSK-3p and Microglial Inflammatory
Cytokines, Chemokines and Reactive
Oxygen/Nitrogen Species

The production of proinflammatory molecules is a crucial
feature of cells needed for innate immune response and the
most widely investigated function of microglia in neuroin-
flammation coupled to AD. Microglia are able to secrete
a variety of cytokines and chemokines upon activation by
Ap. These include interleukin 1 (IL-1), interleukin-6 (IL-
6), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-
), as well as chemokines such as macrophage inflammatory
protein-1 (MIP-1) and monocyte chemotactic protein-1
(MCP-1) [54]. These secretory products have been postu-
lated to contribute to neuronal death seen in AD brain.
In general, cytokines function by regulating the intensity
and duration of the immune response [55, 56]. Thus, IL-
1 can induce IL-6 production and stimulate synthesis and
release of nitric oxide by triggering inducible nitric oxide
synthase (iNOS) [57]. This neuroinflammatory stimulation
of microglia is further characterized by activation of the com-
plement cascade and induction of the prostanoid generating
enzyme cyclooxygenase-2 (COX-2) [57-60]. In addition to
this general proinflammatory role, Af-induced release of
cytokines may promote further Af production in microglia.
Certain cytokines, such as IL-1, can interact with the amyloid
precursor protein (APP) processing pathway resulting in
increased cleavage of A [61]. In turn, fibrillar AS has been
reported to increase neurotoxic secretory products, proin-
flammatory cytokines and RNS/ROS [5-7]. Eventually, these
interactions between cytokines and APP processing establish
a self-propagating cycle of neuronal injury [62, 63]. Indeed,
several lines of evidence suggest that continuous cytokine
production and inflammation-driven cascades cause further
activation and recruitment of microglia and can exacerbate
disease progression or even sensitize to AD pathology [8, 9].
This continuous reactive microgliosis has been described as
the cycle of neuronal death: as in AD brain the cause (Af3)
of microglial activation is not effectively cleared, microglia
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may enhance their secretion of inflammatory mediators and
thus promote toxicity to nearby neurons. However, the
causal relationship between microglial activation, cytokine
production, Af accumulation and neuronal death has not
been completely resolved [14].

It is important to note that microglia have also a potential
beneficial role in neuroinflammation when another general
category of cytokines are released. These antiinflammatory
cytokines include IL-1 receptor antagonist (IL-1Ra), IL-4, IL-
10, and tumor growth factor beta (TGF-f3) [64-68]. IL-4 and
TGEF-p have a potential to reduce the expression and activity
of CD40 and class Il MHC [69]. TGE has also been reported
to reduce AfS burden in the brain parenchyma in a transgenic
mouse model of AD [64]. On the other hand, IL-4 can coun-
teract AD pathology by selectively inducing the clearance
of oligomeric Af by primary microglia [64, 65]. Similarly,
IL-10 can reduce proinflammatory state of microglia by
inhibiting the synthesis of cytokines TNFa, IL-1, IL-6, IL-
12, granulocyte-macrophage colony stimulating factor (GM-
CSF) and chemokines MIP-2, MCP-1 and RANTES [66, 67,
70].

5. Signaling of GSK-3p in Inflammation

GSK-3p is a major regulator of the balance between the
above-mentioned proinflammatory and antiinflammatory
mediators in immune cells, including microglia [38, 39]. This
regulation is manifested by multiple pathways and include
interactions with nuclear factor kB (NF-xB) and mixed
lineage kinase 3 (MLK3)/c-Jun N-terminal kinase (JNK)
signaling pathways [38, 39, 49] (Figure 1).

NF-«B is a dimer protein complex that controls the
DNA transcription. In resting microglia, the NF-xB dimers
are sequestered in the cytoplasm by inhibitors of B (IxBs)
[71]. Activation of the NF-«B is triggered by the signals
that result in degradation of IxB, thereby freeing the NF-
kB complex to enter the nucleus and interact with the
DNA binding sites of NF-«xB [72, 73]. Activation of NF-xB
mediates expression of several proinflammatory cytokines
and iINOS [74]. Once activated, NF-xB transcriptional
activity is further regulated by inducible posttranslational
modifications, including phosphorylation and acetylation
[49, 75-80]. In certain conditions, GSK-3/5 may regulate NF-
«B activation by phosphorylation of p65 subunit of NF-«B
upon TNFa« treatment, whereas in cultured microglia LPS
treatment induces NF-xB activation by increasing acetylation
of p65 at lysine 310 through GSK-3f [49, 75-80]. In fact,
several studies support the idea that such acetylation of
p65 is required for the full transcriptional activity of NEF-
xB and that GSK-3p increases the p65 binding of the coac-
tivator CREB-binding protein (CBP), which has acetylase
activity. CBP is present in limited amounts and also binds
and acetylates transcription factor CREB. Thus, these two
transcription factors, the p65 subunit of NF-«B and CREB,
compete for CBP and activation of GSK-3 pathway shifts
the balance in favor of NF-«B [20, 49, 75-80]. The GSK-3§-
mediated increase in NF-xB activity results in expression of
proinflammatory cytokines and chemokines, such as TNFaq,

IL-6 and MCP-1. Simultaneously, the expression of IL-10
is reduced, partially because of the reduced DNA binding
activity of CREB and also AP1, which are the main transcrip-
tion factors contributing to IL-10 expression. The eventual
proinflammatory effect of GSK-3 signaling is mediated by
reduced IL-10 expression, which leads to further increased
synthesis of various cytokines and chemokines [20, 49, 75—
80].

p-catenin is a transcriptional coactivator of WNT signal-
ing and a direct target of GSK-3 phosphorylation. f-catenin
regulates cell proliferation and inhibits NF-«B [81, 82]. Upon
GSK-3p phosphorylation, -catenin enters the proteasomal
degradation pathway resulting in reduced inhibition of NF-
xkB and thereby increased NF-xB-mediated inflammatory
responses [81, 82]. B-catenin expression is increased in
microglia of transgenic AD mice and Wnt signaling has been
reported to play a role in impaired cognitive functions in
transgenic AD mouse models [83, 84].

Activation of IL-6 receptors executes proinflammatory
response through activation of STAT3 transcription fac-
tor, leading to increased expression of proinflammatory
molecules, including IL-6 itself. GSK3f selectively promotes
STAT3 and STAT5 activation and thereby IL6-induced
proinflammatory responses [38, 49, 85].

Finally, certain proinflammatory responses, such as the
LPS-induced activation of microglia involve JNK pathway
that is regulated by MLK3. GSK-3$ phosphorylation may
be needed for proper function and dimerization of MLK3,
which eventually leads to increased activity of JNK pathway
and TNF-« synthesis [49, 86].

Even though there is substantial evidence for proin-
flammatory role of GSK-3f in several cell types, including
microglial cell lines and primary rodent microglia, there are
also studies demonstrating an opposite role for GSK-3. The
contradictory results most likely reflect the dependence on
the type of cell, stimulus and experimental conditions as
the targets of GSK-3f8 phosphorylation are numerous and of
interacting signaling pathways [87-89].

6. GSK-3p and Phagocytosis

Phagocytosis is a main function of microglia. In vitro
microglia have the capacity to phagocytose Af3, but several
studies have failed to show actual Af-laden vesicles in
microglial cells in animal models of AD or in AD [4, 11, 64].
At least the capacity of successful phagocytosis by microglia
is very limited in AD brain and not sufficient to prevent the
formation of Af plaques [4, 11, 64]. However, modulation
of microglial activity may enable microglia to effectively
phagocytose Af3 as evidenced by activation of microglia for
example by A opsonisation [90, 91]. In models of AD, the
pathway resulting in A8 phagocytosis is initiated when Af
binds a complex of microglial surface receptors consisting
of the a5 integrin, CD36, CD47, and the class A scavenger
receptor (SRA) [10]. In addition, Toll-like receptors (TLRs)
which function as dimers and are often coupled to CD14
coreceptors, functionally interact with other partners of
the microglial AS binding receptor complex [92-96] and
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FIGURE 1: GSK-3f regulates the production of microglial inflammatory molecules. GSK-3f activation has been shown to increase the
production of proinflammatory mediators via multiple mechanisms. GSK-3p is able to activate JNK-, STAT3/5- and NF-xB pathways leading
to increased cytokine and chemokine production. GSK-3p is able to increase the binding of coactivator CREB-binding protein (CBP) to p65
thus enhancing NF-xB mediated transcription. Since CREB competes for CBP binding, activation of GSK-3p shifts the balance in favor
of NF-xB pathway and CREB-mediated induction of IL-10 is reduced. Moreover, GSK-3f activation leads to proteosomal degradation of
beta-catenin, thus resulting in reduced inhibition of NF-xB-activation. All these events lead to enhanced production of proinflammatory

molecules.

execute phagocytosis associated with increased ROS. In
turn, engagement of this receptor complex activates tyrosine
kinase-based signaling cascades [10, 97, 98] resulting in
beneficial phagocytosis but also in production of reactive
oxygen species (ROS) and secretion of cytokines [99, 100].
The role of TLR2 and TLR4 in Af3 phagocytosis and AD
is emphasized by numerous studies. The expression of TLR2
and TLR4 receptors are upregulated in both AD brains and in
related transgenic mouse models of AD. Also, the microglia
associated with Af plaques show increased levels of mRNA
coding for TLR2, -4, -5, -7, and -9 [101]. In addition, AD
mice deficient in TLR4 show increased brain Af burden.
Stimulation of microglial cells with TLR2 and TLR4 ligands
boosts indirect clearance of Af in vitro [102]. Moreover,
induction of monocyte recruitment in response to foreign
particles, including Af3, may require activation of TLR-based
signaling pathway. Gene delivery of TLR2-lentivirus into the
bone marrow cells can rescue the cognitive decline of TLR2
deficient AD mice [103]. Upon Af stimulation, monocytes
from normal subjects upregulate TLRs, whereas monocytes
from AD patients may fail to do so [104]. Also, the level
of TLR4 in monocytic cells of AD patients may be lower
compared to levels of TLR4 in the same cell population of

healthy controls. Finally, bisdemethoxycurcumin, an anti-
inflammatory compound, improves the defective clearance
of Af and the transcription and translation of TLR2-4 in
monocytic cells of AD patients [104]. These studies point to
the importance of TLR signaling in the phagocytic activity of
blood-derived monocytic cells in AD.

Signaling of several TLRs, including TLR2, TLR4, TLRS5,
and TLR9 is regulated by GSK-3f in human monocytes and
is coupled to production of cytokines [39, 41, 105] (Figure 2).
Stimulation of TLR receptors activates phosphatidylinositol
3-OH kinase (PI(3)K) pathway activated Akt leading to
phosphorylation and inhibition of GSK-38. As a result, the
cells produce less proinflammatory molecules but upregu-
lates production of antiinflammatory cytokines, such as IL-
10 [105].

Another pathway relevant for Af clearance is triggered by
activation of CD40R, a transmembrane receptor of the TNF
gene superfamily that is expressed on a variety of cells, such
as monocytes, B-cells, antigen presenting cells, endothelial,
smooth muscle cells, fibroblasts, and microglia [50]. CD40L
is an immunoregulatory molecule that is expressed by acti-
vated T-cells, for example. By preventing the CD40-CD40L
interaction in AD transgenic mice [106, 107] the A3 burden
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F1Gure 2: GSK-3 in the regulation of microglial phagocytosis. Microglial phagocytosis has been shown to be enhanced through activation of
TLR2/4 pathway. Binding of Af3 to TLR2/4 may result in activation of PI3K signalling eventually leading to inhibition of GSK-3f activation.
This in turn shifts the cellular balance towards increase in the production of antiinflammatory cytokines favouring phagocytic microglial
phenotype. On the other hand, CD40R-CD40L interaction results in both NF-xB and GSK-3f activation thus increasing proinflammatory
cytokine production. This may shift the phenotype of microglial cells being less capable of clearing Af.

is reduced. Af stimulation in the presence of CD40-CD40L
interaction has been demonstrated to cause diminished
microglial phagocytosis and a shift in balance towards an
adaptive, antigen-presenting state [108]. It is conceivable that
CDA40R is activated in microglial cells in AD. The interaction
between CD40 and CD40L enhances the expression of
cytokines, chemokines, matrix metalloproteinases, growth
factors, and adhesion molecules, mainly through the stim-
ulation of NF-xB and also by GSK-3f3, which has a role in
CD40-mediated response and polarization of naive CD4+ T
cells to Th2 cells [50, 51].

7. Concluding Remarks

Inflammation and especially microglial activation is a con-
tributory factor in neurodegeneration, including AD. With-
out question, GSK-3f is a central mediator molecule of
harmful inflammatory mechanisms relevant to AD. Several
studies convincingly link the role of tau and Af to increased
activity of GSK-3f in the brain [109-114]. Indeed, both
human and rodent model studies on AD indicate that inhibi-
tion of GSK-3 can be expected to be beneficial in AD [115-
120]. Even though some small molecules inhibiting GSK-3
reduce memory/learning deficits and also inflammation in
transgenic mouse models of AD [115-120], the link between
GSK-3f and harmful inflammation in AD has not been
much explored. There are hardly any investigations on the
A or tau-related harmful inflammation through mecha-
nisms involving GSK-3f. Based on the overall literature on

inflammation, microglia, and AD, we hypothesize that GSK-
3 is a potential therapeutic target uniting Af3 deposition, tau
aggregation, and inflammation, which represent all the key
components of AD pathology.
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