
SAGE-Hindawi Access to Research
Journal of Aging Research
Volume 2011, Article ID 205378, 11 pages
doi:10.4061/2011/205378

Review Article

MicroRNAs Regulate Key Effector Pathways of Senescence

Andrea Feliciano,1 Beatriz Sánchez-Sendra,1 Hiroshi Kondoh,2 and Matilde E. LLeonart1

1 Oncology and Molecular Pathology Group, Pathology Department, Fundacil Institut de Recerca Hospital Vall d’Hebron,
Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain

2 Department of Geriatric Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin,
Sakyo-ku, Kyoto 606-8507, Japan

Correspondence should be addressed to Matilde E. LLeonart, melleona@ir.vhebron.net

Received 7 February 2011; Accepted 9 March 2011

Academic Editor: Amancio Carnero

Copyright © 2011 Andrea Feliciano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

MicroRNAs (miRNAs) are small (approximately 22 nt) noncoding endogenous RNA molecules that regulate gene expression and
protein coding by base pairing with the 3′ untranslated region (UTR) of target mRNAs. miRNA expression is associated with cancer
pathogenesis because miRNAs are intimately linked to cancer development. Senescence blocks cell proliferation, representing an
important barrier that cells must bypass to reach malignancy. Importantly, certain miRNAs have been shown to have an important
role during cellular senescence, which is also involved in human tumorigenesis. Therefore, therapeutic induction of senescence by
drugs or miRNA-based therapies is a potential method to treat cancer by inducing a persistent growth arrest in tumors.

1. Introduction

miRNAs are small noncoding RNAs (approximately 22 nt)
that regulate gene expression by interfering with protein
translational machinery and/or inducing degradation of
target mRNAs [1]. Hundreds of microRNA (miRNA) genes
have been found in animals, plants, and viruses [2–4] making
them one of the largest gene families.

Recent studies revealed the key roles of miRNAs in
diverse regulatory pathways including development timing
control, hematopoietic cell differentiation, apoptosis, cell
proliferation, and organ development [2]. miRNAs and their
targets constitute remarkably complex regulatory networks
because a single miRNA can bind to and regulate many
different mRNA targets, and conversely, several different
miRNAs can bind to and cooperatively control a single
mRNA target [5]. In general, miRNAs repress protein
expression at the posttranscriptional level through base
pairing with the 3′-UTR leading to reduced translation, or
in some cases, degradation. However, some miRNAs have
been shown to bind to the open reading frame or to the
5′-UTR of the target mRNAs. In some cases, miRNAs have
been shown to activate rather than inhibit gene expression
[6–8].

miRNAs are involved in many aspects of cell biology
including physiological modulation and pathological dis-
ruption of basic pathways. In this regard, miRNAs are key
mediators in cancer where they regulate many aspects of
tumorigenesis and tumor progression from the initiating
steps to metastasis formation and chemosensitivity [9, 10].
Therefore, miRNA expression may be deregulated in cancer
because abnormal miRNA activity may lead to tumorigene-
sis. It has been shown that human tumors exhibit distinctive
miRNA expression signatures [11]. miRNA expression is
tissue specific, and certain cancer histotypes can be classified
based on miRNA expression profiles [12]. Some miRNAs
have been found to be upregulated or downregulated in
cancer. An overexpressed miRNA that downregulates a
tumor suppressor gene is defined as an oncomir, and a
downregulated miRNA that normally downregulates the
expression of an oncogene is defined as a tumor suppressor
miR (TS-miR). However, some miRNAs may function as
oncogenes in some cell types and as tumor suppressors in
other cell types [13]. Aberrant miRNA expression in cancer
due to chromosomal abnormalities, polymorphism, and/or
epigenetic changes has a direct impact on miRNA biogenesis.
In this study, we reviewed the potential impact of miRNAs
in senescence and cancer. We suggest that the biological
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function of miRNAs is extensively studied in the near future
to identify their potential clinical applications.

2. MicroRNA Biogenesis

miRNA biogenesis has been studied by many scientists. A
schematic overview of miRNA biogenesis is shown in
Figure 1. Most of the miRNA genes exist in clusters in
the genome and are polycistronically expressed from their
own promoter. Other miRNA genes are found in intronic
regions and are transcribed as a part of annotated genes.
The transcription of most miRNA genes is mediated by RNA
polymerase II (Pol II), producing long primary miRNAs (pri-
miRNAs) that are capped at the 5′ end and polyadenylated
at the 3′ end. These pri-miRNAs contain a stem of appro-
ximately 33 base pairs, a terminal loop, and flanking ssRNA
segments [14]. However, a small group of miRNAs associated
with Alu repeats can be transcribed by Pol III [15]. Two
steps of ribonuclease pro-cessing reactions are required
to generate mature miRNAs. The first step occurs in the
nucleus and involves the release of a 70 nt intermediate
hairpin structure (pre-miRNA) from the RNA duplex in
the pri-miRNA by the RNase III-type protein, Drosha [16].
Moreover, Drosha-mediated pri-miRNA processing requires
the cofactor, DiGeorge syndrome critical region gene 8
(DGCR8). Together with DGCR8, Drosha forms a large
complex known as the microprocessor complex, which is
approximately 650 kDa in humans [17, 18]. Specifically,
DGCR8 interacts with pri-miRNAs through the ssRNA
segments and the stem (approximately 33 bp), and DGCR8
assists Drosha to cleave the substrate (approximately 11 bp)
from the ssRNA/dsRNA junction [19, 20]. The resulting
pre-miRNA is transported out of the nucleus and into the
cytoplasm by Exportin-5 and its cofactor, Ran-GTP [21].

Apart from the canonical miRNA pathway, an alternative
nuclear pathway for miRNA biogenesis has been recently
described in invertebrates [22, 23] and mammals [24]. This
noncanonical pathway involves short introns with hairpin
potential, which are termed mirtrons. Mirtrons bypass are
processed by the microprocessor. Therefore, they are pro-
cessed by splicing and debranching. Debranched mirtrons
access the canonical miRNA pathway during nuclear export.
The debranched mirtrons are cleaved by Dicer and incorpo-
rated into silencing complexes [22, 23].

The miRNA maturation process in the cytoplasm is
carried out by Dicer, which is a highly conserved RNase
III-type endoribonuclease present in almost all eukaryotic
organisms. PremiRNAs are cleaved near the terminal loop
by Dicer-releasing miRNA duplexes (approximately 22 nt)
[25]. Human Dicer interacts with proteins, such as TAR RNA
binding protein (TRBP; also known as TARBP2) [26, 27].
However, current studies have, suggested that they are not
required for miRNA processing but that they contribute
to the formation of the RNA-induced silencing complex
(RISC) [28]. Following Dicer cleavage, the 22-nt RNA duplex
binds to Argonaute (Ago) proteins to generate the effector
complex, RISC. One strand of the 22-nt RNA duplex remains
in the Ago complex as a mature miRNA (the guide strand
or miRNA), and the other strand (the passenger strand

or miRNA∗) is degraded [25]. Next, the miRNA guides
RISC to specifically recognize and repress target mRNAs. In
most cases, miRNAs repress protein expression through base
pairing with the 3′-UTRs of the target mRNA [28]. Perfect
complementarity, which is rare in animal miRNA/mRNA
base pairing, allows Ago-catalyzed cleavage of the mRNA
strand. In contrast, central mismatches exclude cleavage and
promote repression of mRNA translation.

The specificity of miRNA targeting is defined by Watson-
Crick complementarities between positions 2 to 8 from the
5′-miRNA (also known as the seed) with the 3′-UTR of
the target mRNAs. When miRNAs and their target mRNA
sequence have perfect complementarities, RISC induces
mRNA degradation. When an imperfect miRNA/mRNA tar-
get pairing occurs, protein translation is blocked. Regardless
which of these two events occurs, the net result is a decrease
in the amount of proteins encoded by the mRNA targets.

3. miRNAs Involved in Senescence

Cellular senescence was originally described in primary cells
as a process that limits the replicative potential of human
diploid fibroblasts in culture. This type of senescence is called
replicative senescence. Senescence is an important block to
cell cycle progression during the aging of cells in culture
and is a fundamental barrier that cells must bypass during
carcinogenesis. Senescent cells are characterized by the
expression of β-galactosidase, overexpression of plasminogen
activator protein 1 (PAI-1), and altered cell morphology
characterized by a giant cell size, increased cytoplasmic
granularity, and a single large nucleus [29].

Cellular senescence is a process that is triggered by several
types of stresses as follows: telomeric erosion resulting from
repeated cell division (replicative senescence); DNA damage;
oxidative stress resulting from mitochondrial deterioration;
overexpression of oncogenes; loss of tumor suppressors such
as PTEN and VHL (oncogene-induced senescence; OIS)
[29, 30]. OIS was first observed when an oncogenic form
of Ras (e.g., RasG12V), which is a cytoplasmic transducer of
mitogenic signals, was expressed in normal human fibrob-
lasts [31]. Other members of the Ras signaling pathway,
such as v-raf-1 murine leukemia viral oncogene homolog
1 (RAF), mitogen-activated protein kinase kinase 1 (MEK),
v-mos Moloney murine sarcoma viral oncogene homolog
(MOS), and v-raf murine sarcoma viral oncogene homolog
B1 (BRAF), in addition to pro-proliferative nuclear proteins,
such as the E2F transcription factor, can also induce a
senescence response upon overexpression [32]. Moreover,
OIS can be caused by the loss of the tumor suppressors
that function upstream of oncogenes, such as phosphatase
and tensin homolog (PTEN), von Hippel-Lindau tumor sup-
pressor (VHL), and neurofibromin 1 (NF1), resulting in an
increase of oncogenic signaling that leads to senescence [30].
In general terms, OIS has similar characteristics to replicative
senescence including the presence of β-galactosidase-positive
cells, induction of cell cycle inhibitory proteins, and pheno-
typic morphology of giant cells.

The major pathways that regulate cellular senescence
are the p53/p21Cip1 and p16INK4A-pRB tumor suppressor
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Figure 1: miRNA biogenesis. In the nucleus, canonical miRNAs are processed by the endoribonuclease, Drosha, in partnership with DGCR8.
In contrast, mirtrons are processed by the spliceosome. The pre-miRNA is then exported from the nucleus into the cytoplasm by Exportin-5,
and it is processed into a mature miRNA by Dicer. After RISC incorporation, mature miRNAs inhibit translation or promote degradation of
their target mRNA transcripts depending on the degree of complementarity between the 3′-UTR of the target mRNA and the seed region of
the miRNA.

pathways. p53 provokes growth arrest, in part by inducing
the expression of p21Cip1, which is a cyclin-dependent
kinase (CDK) inhibitor that suppresses the phosphorylation
and, hence, the inactivation of pRB [32, 33]. In addition,
senescence signals that engage the p16INK4A-pRB pathway
generally do so by inducing the expression of p16INK4A, which
is another CDK inhibitor that prevents pRB phosphorylation
and inactivation [32]. In this regard, the loss of tumor
suppressors that function downstream of oncogenes, such as
p53, impair senescence and allow progression to malignant
stages providing a link between tumor suppression and the
induction of senescence by p16INK4A, p19ARF, and p53 [30].
In general, oncogenes that elicit a senescence response often
converge on the activation of p53 and/or pRB. However,
RAF-induced senescence independent of both p53 and pRB
has been reported in human cells [34].

Importantly, several groups have shown that benign
tumors contain senescent cells and that these cells fully
disappear in the corresponding malignant areas of the
patients. Senescent cells are found in premalignant lesions in
mice and humans, and they are absent in their corresponding
malignant stages, which suggests a role for senescence as a

barrier to tumor progression [35, 36]. In addition, senescent
cells are relatively rare in young organisms, but their number
increases with age. Consistent with a role in aging, senescent
cells accumulate with age in many rodent, primate, and
human tissues [37, 38]. Moreover, they are found at sites
of age-related pathology including degenerative disorders,
such as osteoarthritis and atherosclerosis [37], in addition to
hyperproliferative lesions, such as benign prostatic hyperpla-
sia [39].

Several miRNAs have been reported to be differentially
expressed in senescent cells when compared to primary
cells, providing a role for miRNAs in senescence (Figure 2,
Table 1). Recently, it has been reported that miR-34a overex-
pression during senescence can be p53 dependent and p53
independent [40–44]. p53 activates transcription of a set of
genes, which induces cell cycle arrest, senescence, or apopto-
sis. Moreover, p53 also regulates the expression of miR-34a
because genes in the family of miR-34 genes contain p53-
binding sites in their promoters, which are conserved among
humans and rodents. In turn, miR-34a increases the activity
of p53 by means of reducing expression of sirtuin 1 (SIRT1),
which interacts with p53 and deacetylates the Lys382 residue
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Figure 2: Role of miRNAs in senescence. Cellular senescence is triggered by several factors including telomeric erosion, oncogenic stress,
oxidative stress, and miRNA modulation. The following miRNAs are key regulatory miRNAs modulating senescence: miR-128a, miR-449a,
miR-29, miR-30, miR-519, miR-217, and miR-34a.

of p53 in a NAD+-dependent manner, thereby decreasing
p53-mediated transcriptional activation and reducing the
expression levels of downstream proteins, such as p21Cip1.
Therefore, overexpression of miR-34a decreases SIRT1
expression, allowing an increase in p53 acetylation and p53
activity and thus mediating the senescence response [43, 45].
On the other hand, several studies have shown that miR-
34a causes senescence in a p53-independent manner. miR-
34a induces senescence and suppression of cell proliferation
through downregulation of the E2F pathway in human colon
cancer cells p53 (+/+) leading to the upregulation of the
p53/p21Cip1 pathway, but also in human colon cancer cells
p53 (−/−) [42]. In addition, another study has reported
a strong upregulation of miR-34a during B-RAF-induced
senescence independent of p53. In this case, miR-34a is
transcriptionally upregulated by ELK1, which is a member of
the ETS oncogene family and has previously been implicated
in cellular senescence. Moreover, miR-34a is upregulated
after activation of the B-RAF oncogene. Finally, miR-34a
provokes senescence through repression of v-myc myelocy-
tomatosis viral oncogene homolog (Myc) [44]. Importantly,
miR-34a, which is a tumor suppressor in the miR-34 family,
is downregulated in pancreatic cancer cells, neuroblastomas,
colon cancer cells, and lung cancer cells [40–42, 46].

The expression levels of miR-29 and miR-30 increase
during cellular senescence in a Rb-dependent manner. More-
over, these microRNAs directly repress v-myb myeloblastosis
viral oncogene homolog (avian)-like 2 (B-Myb) by binding

Table 1: Novel miRNAs involved in senescence.

miRNA miRNA function Reference

hsa-miR-29/30 Oncomir/Tumour suppressor [47–51]

hsa-miR-34a Tumour suppressor [40–44]

hsa-miR-519 Tumour suppressor [52]

hsa-miR-449a Tumour suppressor [53, 54]

hsa-miR-128a Tumour suppressor [55–57]

hsa-miR-217 Tumour suppressor [58, 59]

hsa-miR-372/373 Oncomir [60–63]

hsa-miR-17-5p Oncomir [60, 64–69]

hsa-miR-130b Oncomir [60, 70]

hsa-miR-15b/25/141 Oncomir [71–74]

mmu-miR-20a Tumour suppressor [75]

mmu-miR-290 Tumour suppressor [76]

to its 3′-UTR acting in conjunction with Rb-E2F complexes
at the B-Myb promoter to mediate repression of B-Myb
expression during Rb activation resulting in senescence [47].
miR-29 is downregulated in mantle cell lymphomas [48],
and the overexpression of miR-29 is suppressed during
tumorigenicity in lung cancer cells [49]. Moreover, miR-29 is
upregulated in indolent human B-cell chronic lymphocytic
leukemia (B-CLL) when compared to aggressive B-CLL
and normal CD19+ B-cells, suggesting that miR-29 can
function as an oncogene and contribute to the pathogenesis
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of indolent CLL. In contrast, miR-29 is downregulated in
aggressive CLL when compared to indolent CLL, and miR-29
may function as a tumor suppressor in CLL by targeting T-
cell leukemia/lymphoma 1 (TCL-1) [50]. In addition, miR-
30 directly represses LIN28 (a lin-28 homolog of C. elegans)
in embryonic stem cells and cancer cells. Importantly, LIN28
functions as an oncogene promoting malignant transforma-
tion and tumor progression [51]. Another miRNA involved
in senescence is miR-449a. miR-449a induces senescence
by suppressing Rb phosphorylation by directly repressing
the upstream regulatory factors of Rb, such as cyclin D1
(CCND1) [53], histone deacetylase 1 (HDAC1) [53], cyclin-
dependent kinase 6 (CDK6), and cell division cycle 25
homolog A (CDC25A) [54]. A recent study has shown that
miR-449a is downregulated in prostate cancer, indicating
that this miRNA regulates cell growth and viability, in part
by repressing the expression of HDAC-1 [53].

The functional role of miR-128a in senescence is also
evident. miR-128a directly targets the Bmi-1 oncogene
(polycomb ring finger oncogene; BMI1), increasing p16INK4A

expression and reactive oxygen species (ROS), which pro-
mote cellular senescence in medulloblastoma cell lines [55].
Recently, it has been reported that this tumor suppressive
miRNA (miR-128a) is downregulated in medulloblastomas
[55], glioblastomas [56], and acute myeloid leukemia [57],
suggesting that this miRNA has an important role in these
types of cancer.

miR-217, which is expressed in endothelial cells dur-
ing aging, promotes premature senescence by inhibiting
SIRT1 expression, thus increasing forkhead box O1 (FoxO1)
expression and endothelial nitric oxide synthase (eNOS)
acetylation [58]. In addition, miR-217 has been reported to
be a novel tumor suppressive miRNA in pancreatic ductal
adenocarcinoma due to decreases in tumor cell growth both
in vitro and in vivo by targeting K-Ras [59].

miR-290 also acts as a physiological effector of senescence
in murine cells including mouse embryonic fibroblasts
(MEFs) [76], and miR-20a induces senescence in MEFs
through the direct downregulation of the transcriptional
regulator leukemia/lymphoma-related factor (LRF), leading
to an induction of p19ARF [75]. In addition, miR-519 is
another miRNA that induces senescence in cancer cell lines.
miR-519 elicits these actions by repressing HuR expression
[52]. On the other hand, there are miRNAs that are
downregulated during senescence, such as miR-15b, miR-
24, miR-25, and miR-141, which directly target mitogen-
activated protein kinase kinase (MKK4) [71].

Importantly, the escape from OIS is a requirement for
transformation into tumor cells. Therefore, high-throughput
genomic and miRNA screens have been preformed to iden-
tify novel mediators of OIS in human mammary epithelial
cells (HMECs), which contain OHT-inducible RasG12V [60].
Borgdorff and colleagues showed that 28 miRNAs prevented
senescence upon RasG12V induction. These miRNAs are as
follows: miR-17-5p, miR-20a-b, miR-93, miR-106a-b, miR-
130b, miR-302a-d, miR-372, miR-373, miR-512-3p, miR-
515-3p, miR-519c-e, miR-520a-g, miR-526b∗, and miR-
146a-b. These miRNAs bypass RasG12V-induced senescence
by directly targeting the 3′-UTR of p21Cip1. Moreover,

miR-372, miR-373, miR-302, and miR-520 can also bypass
RasG12V-induced senescence through the downregulation of
LATS2 in addition to p21Cip1 [60–63]. miR-372 and miR-373
also prevent Ras-induced senescence in human fibroblasts
[61], suggesting that the immortalization mechanism of
these miRNAs is universal. Importantly, these identified pro-
liferative miRNAs have been demonstrated to be associated
with cancer development. For example, miR-17-5p is overex-
pressed in pancreatic cancer [64], squamous cell carcinoma
[65], breast cancer [66], hepatocellular cancer [67], renal
cell carcinoma [68], and thyroid cancer [69], suggesting a
potential oncogenic role of miR-17-5p. Furthermore, miR-
130b promotes gastric cancer by downregulating the tumor
suppressor, runt-related transcription factor 3 (RUNX3)
[70]. In addition, miR-372 and miR-373 have been found to
be upregulated in testicular germ cell tumors [61]. Finally,
miR-302 is expressed specifically in embryonic stem cells and
embryonic carcinoma cells [77, 78], suggesting a possible role
of this miRNA in cancer stem cell biology.

4. Senescence Induction Based upon miRNA
Modulation as a Therapeutic Approach

It is well known that the overexpression of several oncogenes
(e.g., RasG12V) or tumor suppressor genes (e.g., ribosomal
protein S6 kinase, 90 kDa, polypeptide 6; RSK4) [79] induces
senescence. However, cancer cells can be induced to a
senescent state with conventional anticancer treatments such
as Doxorubicin [80, 81]. The use of senescence as a novel
modality of cancer therapy has been considered in clinical
trials with promising results [81].

Senescence may promote carcinogenesis in surrounding
tissues [82] by secreting interleukins, chemokines, growth
factors, and proteases, which stimulate malignant pheno-
types in neighboring cells. In this regard, miR-146a and
miR-146b have been demonstrated to negatively regulate the
senescence-associated secretion of IL-6 and IL-8 by directly
targeting IRAK1 and reducing NF-κB activity [83]. There-
fore, these miRNAs may be promising tools to restore the
protective potential against development of the senescence-
associated secretory phenotype (SASP).

The rationale for using miRNAs as novel anticancer
molecules is based on the following two major findings: (1)
miRNA expression is deregulated in cancer when compared
with normal tissues; (2) the cancer phenotype can be
changed by targeting miRNA expression [13].

The therapeutic application of miRNAs involves two
major strategies. For oncogenic miRNAs (oncomirs), which
promote proliferation when overexpressed, the major thera-
peutic strategy is directed toward reducing oncomir expres-
sion. These therapies include anti-miRNA oligonucleotides,
microRNA sponges, miRNA masking, and small molecule
inhibitors. For TS-miRs, the therapeutic strategy is directed
toward restoring the levels of TS-miRs by exogenous expres-
sion (Figure 3).

4.1. Anti-miRNA Oligonucleotides. The base pair interaction
between miRNAs and mRNAs is essential for the function of
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Figure 3: miRNA-based molecular cancer therapy for oncogenic miRNAs. The cancer therapies include anti-miRNA oligonucleotides (anti-
miRs), miRNA sponges, and miRNA masking.

miRNAs. Therefore, a logical approach of silencing miRNAs
is to use a nucleic acid that is antisense to the miRNA
[84, 85]. These anti-miRNA oligonucleotides (AMOs) block
the interactions between miRNAs and their target mRNAs
by competition. Thus, the anti-miRNA oligonucleotides
knockdown the oncogenic properties of the miRNA resulting
in cancer suppression and decreased cancer progression.
Studies targeting miR-21 represent one of the first examples
of inhibiting cancer development by downregulating an
oncogenic miRNA. miR-21 is overexpressed in most tumor
types and acts by targeting many tumor suppressor genes
related to proliferation, apoptosis, and invasion including
the following genes: programmed cell death 4 (PDCD4)
[86–88]; tropomyosin 1 (Tpm1) [89]; PTEN [90, 91]; ras
homolog gene family, member B (RHOB) [92]; polymerase
(DNA-directed), delta 4 (POLD4) [93]. Si and colleagues
have knocked down miR-21 expression using an anti-miR-21
oligonucleotide transfected into MCF-7 breast cancer cells,
and they demonstrated that the anti-miR-21 oligonucleotide
suppressed both cell growth and tumor growth in a xenograft
mouse model by increasing apoptosis and decreasing cell
proliferation [94].

A modified AMO approach has recently been described
in which multiple antisense units are engineered into a single
unit that is able to simultaneously silence multiple miRNAs.
For example, the multiple-target AMO targeting miR-21,
miR-155, and miR- 17-5p has a greater inhibitory effect
on cell growth in MCF-7 cells when compared to single-
target AMOs or a combination of these single-target AMOs
[95]. The multiple-target AMO approach may have a broad
application in human tumors.

4.2. miRNA Sponges. miRNA sponges are transcripts that
contain multiple tandem-binding sites to a miRNA of
interest, therefore preventing the interaction between the
miRNA and its endogenous targets. Ebert et al. (2007) [96]
engineered such molecules by inserting a bulge between the

miRNA-binding sites at the position normally cleaved by
Argonaute 2, thereby enabling stable association of miRNA
sponges with microribonucleoprotein complexes loaded
with the corresponding miRNA. In addition, they specifically
designed sponges with a complementary heptameric seed
so that a single sponge can be used to effectively repress
an entire miRNA seed family. These miRNA sponges can
derepress miRNA targets as strongly as chemically modified
AMOs in vitro. miRNA sponges have been applied to inhibit
miRNA activity in Drosophila [97]. However, the efficacy of
these stably expressed sponges in applications needs to be
further evaluated.

4.3. miRNA Masking. A miRNA-mask is a gene-specific
strategy developed by Xiao et al. (2007). miR-masks consist
of single-stranded 2′-O-methyl-modified antisense oligonu-
cleotides that are fully complementary to predicted miRNA
binding sites in the 3′-UTR of the target mRNA. These
modified oligonucleotides can form complementary duplex
fragments with the target mRNA with higher affinity. In this
study, Xiao and colleagues designed miR-masks complemen-
tary to HCN2 and HCN4 mRNA to prevent the repressive
actions of miR-1 and miR-133 on protein expression of these
genes [98]. The disadvantage of this gene-specific strategy is
the limited scope (one target) for therapeutic purposes.

4.4. Restoring Tumor Suppressor miRNA Expression. For
TS-miRs, which promote cancer when downregulated, small
synthetic oligonucleotides that mimic endogenous mature
miRNA molecules (designated miRNA mimics) restore
expression of TS-miRs, thereby inducing cell death and
blocking proliferation [99, 100]. The concept of miRNA
replacement therapy is perhaps best exemplified by the let-7
miRNA family. Let-7 is underexpressed in nonsmall cell
lung cancer relative to normal lung tissue, which inversely
correlates with the expression of the Ras oncoprotein,
suggesting that let-7 negatively regulates the Ras oncoprotein
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[101]. In addition, let-7 expression is downregulated
in other cancer types such as hepatocellular carcinoma,
melanoma, and nasopharyngeal carcinoma. Let-7 acts by
suppressing protein expression of several genes such as
high mobility group AT-hook 2 (HMGA2), Myc, CCND1,
and BCL2-like 1 (BCL-XL) [102–106]. Functional studies
using cultured lung cancer cells and mouse models of lung
cancer have shown that administration of let-7 mimics
blocks the proliferation of cancer cells and reduces the
growth of lung tumors, respectively [107–109]. Moreover,
in hepatocellular carcinoma cells, the transfection of a let-7
family member, let-7g mimics, inhibits cell proliferation
by downregulating the oncogene, c-Myc, and upregulating
the tumor suppressor gene, p16INK4A [110]. miRNA
replacement is also demonstrated by miR-34a [111], which
is underexpressed in multiple cancer types. miR-34a, a key
effector of the p53 signaling pathway, induces apoptosis, G2
arrest, and senescence in cancer cell lines by repressing the
expression of direct targets, such as cyclin-dependent kinase
4 (CDK4), cyclin-dependent kinase 6 (CDK6), CCND1,
SIRT1, cyclin E2 (CCNE2), E2F transcription factor 3
(E2F3), neuroblastoma-derived Myc (MYCN), and B-cell
CLL/lymphoma 2 (BCL2) [42, 46, 112–114].

One of the major problems for the use of miRNAs as
therapeutic molecules relates to the tissue-specific delivery
and cellular uptake of sufficient amounts of synthetic
oligonucleotides to achieve sustained target inhibition [115].
Consequently, strategies have been developed to deliver
miRNA-based therapeutics, including viral and nonviral
vector systems. Viral vector-systems have high gene transfer
efficiency but have limitations due to their lack of tumor-
targeting capability and to residual viral elements that can
be immunogenic, cytopathic, or recombinogenic. However,
adenovirus-associated vectors (AAVs) do not integrate into
the genome and are efficiently eliminated with minimal
toxicity as shown in Phase I and Phase II clinical trials
[13]. Furthermore, systemic administration of mir-26a using
an AAV in an animal model of hepatocellular carcinoma
results in apoptosis induction and significant protection
from disease progression without toxicity [116]. On the other
hand, nonviral vector systems include cationic liposome-
mediated, nanoparticle-mediated, and polymer-mediated
gene transfer systems for in vivo human therapy [117–119].

5. Conclusions

miRNAs have an important role in tumor development,
progression, chemosensitivity, and cellular senescence. A
better understanding of the function of miRNAs is required
for the development of novel therapies, such as restor-
ing TS-miRs and targeting oncomirs with anti-miRNA
technology.
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