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Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is
now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related
toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular
pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive
anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung
cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper
tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in
combination with chemotherapy in patients with lung cancer.

1. Introduction

One of the common strategies for cancer therapy is the tar-
geting of cell homeostasis leading to deregulation of cell
processes necessary for survival. In recent years, one of the
novel approaches has been the deregulation of protein hom-
eostasis through the obstruction of intracellular protein
degradation. This has been done by targeting the ubiquitin-
proteasome system (UPS). The UPS plays a central role in the
targeted destruction of cellular proteins, including cell cycle
regulatory proteins. Because these pathways are critical for
the proliferation and survival of all cells, and in particular
cancerous cells, proteasome inhibition is a very attractive
anticancer therapy [1].

The first element of this pathway being investigated as a
target is the proteosome. Because the proteasome degrades
about 80% of all intracellular proteins [2], the use of a
proteasome inhibitor triggers a mixed repertoire of tumor-
suppressing and prosurvival pathways in cancer cells [3]. Its
inhibition disturbs the critical intracellular balance between
proapoptotic and antiapoptotic signals shifting it towards

tumor growth inhibition, apoptosis, and decreased metasta-
sis.

The proteasome inhibitor PS-341 (bortezomib), an al-
ready approved agent for the treatment of multiple myeloma,
is under evaluation in clinical trials against various ma-
lignancies. Here we will review preclinical and clinical
data involving this novel anticancer mechanism focusing
primarily in the work that has been done in lung cancer.
Bortezomib has been tested as single agent and most recently
in combination with chemotherapeutic and targeted agents.
Multiple targets that directly interact with the proteasome
have been described and may represent future focuses of
more research and possibly therapeutic development.

2. Action of the Ubiquitin-Proteasome System

The UPS regulates many normal cellular processes includ-
ing signal transduction, cell cycle control, transcriptional
regulation, inflammation, and apoptosis through protein
degradation [4]. It requires a series of highly regulated and
complex intracellular activities that have not been completely



TaBLE 1: Antitumor and autoprotective mechanisms triggered by
proteasome inhibition. Possible antitumor mechanisms of protea-
some inhibitors.

(i) Accumulation of p53, p21, and p27

(i1) Differential effects on pro- and antiapoptotic members of
Bcl-2 family

(iii) Downregulation of XIAP and survivins
(iv) Inhibition of inducible NF-«B activity

(v) Accumulation of misfolded proteins and endoplasmic
reticulum stress

(vi) Induction of oxidative stress

(vii) Activation of bone morphogenetic protein signaling

(viii) Inhibition of protein translation

(ix) Inhibition of telomerase activity

(x) Downregulation of PI3 K/Akt signaling

(xi) Upregulation of death receptor

(xii) Histone acetylation

(xiii) Repression of E2F

(xiv) Inhibition of IL-6-mediated signaling

(xv) Suppression of FoxO and FoxMI proteins

(xvi) Tubulin stabilization

(xvii) Induction of mitotic catastrophe

(xviii) Inhibition of epithelial-mesenchymal transition

(xix) Inhibition of angiogenesis

(xx) Immunosensitization of cancer cells to the cytotoxicity
of lymphocytes

(xxi) Increased genomic instability after exposure to ionizing
radiation

(xxii) Overcoming multidrug resistance by inhibition of
pglycoprotein

Autoregulatory mechanisms against proteasome inhibition
(i) Induction of macroautophagy
(ii) Activation of constitutive NF-xB activity
(iii) Activation of EGFR signaling
(iv) Stat3 phosphorylation
(v) Akt phosphorylation
(vi) Induction of hsp72 and AKR1B10
(vii) Upregulation of glutathione synthesis
Adapted from Wu et al. [3].

elucidated. In general, proteins are targeted for recognition
and for subsequent degradation by the proteasome via the
attachment of multiple ubiquitin molecules. In order to do
this, there are several preparatory steps before proteins are
presented to the proteasome. The first step involves the acti-
vation of ubiquitin by the formation of a thioester bond with
the ubiquitin-activating enzyme (E1) in an ATP-dependent
reaction. Then, E1 delivers the activated ubiquitin to the
E2 ubiquitin-conjugating enzyme. Finally, E3 ligases transfer
ubiquitin from E2 to a lysine residue in the substrate protein
[5]. An ubiquitin chain subsequently forms and presents
the protein to the 26S proteasome. It is important to
note, however, that these preparatory steps are not used
for the degradation of all proteins. Some proteins such as
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calmodulin and troponin C undergo degradation by the pro-
teasome via ubiquitin-independent pathway [6]. Ultimately,
the protein enters the proteasome, ubiquitin is released (if
the protein required preubiquination), and the protein is
degraded.

The degradation of proteins inside the proteasome is
similar to the degradation of proteins by intestinal diges-
tive enzymes. In fact, the proteasome is considered to
have chymotrypsin-like, trypsin-like, and peptidyl-glutamyl
peptide-hydrolyzing- (PHGH-) like activity. The 26 S pro-
teasome is a large multicatalytic complex that is comprised
of a 20S core catalytic component (the 20S proteasome)
capped at one or both ends by a 19 S regulatory component
[1]. The 195 lid serves as an entry portal for the proteins,
which are then subjected to adenosine triphosphate (ATP)
hydrolysis within the base. ATPases unfold and linearize large
proteins before they undergo catalysis within the core.
Allosteric interactions guide the intricate sequencing of pro-
teolytic reactions within the core, which ultimately produces
oligopeptides that can be recycled within the cell [6].

3. Bortezomib’s Inhibition of the Proteasome

Because peptide boronic acids inhibit serine proteases such
as chymotrypsin by mimicking substrate binding at the
active site, it was postulated that they might inhibit the
proteasome by binding to the chymotrypsin-like site in the
20 S core [1]. Adams synthesized 13 boronic acid proteasome
inhibitors and tested them for their ability to inhibit cell
growth against the panel of 60 cell lines from the National
Cancer Institute. One compound, bortezomib, the boronic
acid derivative which was later called bortezomib, was potent
and was active against a broad range of cancer cell lines,
including nonsmall cell lung, colon, central nervous system,
melanoma, ovarian, renal, prostate, and breast cancers,
and had a unique cytotoxicity profile, compared with the
NCP’s historical file of 60,000 compounds [1]. Since the
publication of this study in 1999, bortezomib has been tested
in numerous in vitro and in vivo models of several cancers
including NSCLC [6].

4. Results of the Inhibition of the
Ubiquitin-Proteasome System by Bortezomib

Numerous proteins are degraded by the proteasome, so mul-
tiple cellular processes are affected by proteasome inhibition.
Therefore, the activity of bortezomib in different cancers may
involve a variety of molecular mechanisms (see Table 1) [3].
Nevertheless, one protein that has been clearly implicated in
the efficacy of bortezomib is NF-«B.

The proteasome has a direct role in allowing the cell to
progress through the cell cycle by degrading cell cycle regu-
latory proteins and an indirect role by regulating the avail-
ability of transcriptional activators [1]. One transcriptional
activator believed to have a central role in mediating many
of the effects of proteasome inhibition is the transcriptional
activator NF-«B [1]. This transcriptional activator is involved
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TABLE 2: In vitro studies with bortezomib.

Carcinoma

Cell lines

Effects

References

Multiple myeloma

MM.1S, MM.1R, Dox40,

MR20, LR5, RPMI18226, IM-9,

U266, ARH-77, Hs Sultan

IkBa degradation, inhibited IL-6-triggered
activation of p42/44 MAPK as well as TNF-a
induced activation of NF-xB,

Hideshima et al., 2001 [7]

Mantle cell
lymphoma

Mino, DB (sp53), Molt-4,
L-428

NF-«B activation, bcl-xL and bfl/A1
inhibition, and bcl-2 cleavage

Pham et al., 2003 [8]

NSCLC

H460, H322, H358, H157,
A549

Cell cycle arrest at G2-M; Bcl-2
phosphorylation and cleavage; p53
stabilization; induction of p21Cip; increase
in cyclins A and B; activation of CDKs;
mitochondrial cytochrome c release;

Ling et al., 2002 [9],
2003 [10], and 2003 [11];
Denlinger et al., 2004 [12]

activation of caspase pathway; apoptosis;
NF-«B Downregulation

Cell cycle arrest at G2-M; increase in

Prostate PC-3 (p53 null)

LNCaP-Pro5

p21Cip; inhibition of CDK4 activity; PARP
cleavage; apoptosis

Activation of caspase-3; apoptosis

Adams et al., 1999 [13]

Williams et al., 2003 [14]

Enhanced cytotoxic effects of gemcitabine;

. MIA-PaCa-2
Pancreatic

reduced NF-«B activation; reduced Bcl-2
expression without affecting Bax or Bak;

Bold et al., 2001 [15]

PARP cleavage; apoptosis

BxPC3

Cell cycle arrest in GO—G1; increase in
p21Cip; caspase-3 activation; apoptosis

Shah et al., 2001 [16]

Cell cycle arrest in G2-M and S phases;

SCCHN UM-SCC-9, UM-SCC-11B

increase in p21Cip; apoptosis; (PARP
cleavage shown in murine SCCHN lines);

Sunwoo et al., 2001 [17]

NF-«B Downregulation

Induction of p21Cip; inactivation of Bcl-xL;

Ovarian SKOV 3

Downregulation of XIAP; PARP cleavage;

Frankel et al., 2000 [18]

activation of caspase pathway; apoptosis

Breast MCEF-7

Cytotoxicity (molecular markers not
determined)

Teicher et al., 1999 [19]

Inhibits chemotherapy-induced NF-«xB

Colorectal LOVO, KM12L4, WiDR

activation; enhances chemotherapy-induced

Cusack Jr. et al., 2001 [20]

apoptosis; stabilizes p53, p21Cip; p27Kip

Adapted from Ludwig et al. [21].

in inflammatory and immune responses, and its signaling
pathways are implicated in tumor development [1].

This proto-oncogenic NF-«B pathway requires protea-
somal activity. Under normal conditions, NF-«B factors are
retained in an inactive state in the cytoplasm by the inhibitors
of NF-kBs (IxBs). In order to be freed from this inhibition,
IxBs need to be phosphorylated, polyubiquitylated, and deg-
raded by the proteasome. Bortezomib downregulates NF-xB
signaling by blocking IxB degradation [5], and this seems to
be its prevalent mechanism of action, especially in multiple
myeloma and certain solid tumors [21]. Inhibition of NF-
kB reduces the expression of proinflammatory response
genes and upregulates the cyclin-dependent kinase inhibitors
p21Cipl and p27Kipl, resulting in increased apoptosis in
tumor cells [5].

Other important ways in which apoptosis is induced by
bortezomib in various models was the induction of phos-
phorylation and subsequent cleavage of the antiapoptotic
factor Bcl-2, the Upregulation of CDK inhibitors, such as
p21Cip, stabilization of p53 [21], and interference with the

unfolded protein response (UPR) leading to endoplasmatic
reticulum stress and thus increased apoptosis [22]. Addition-
ally, bortezomib sensitizes resistant solid tumor cells to TNF-
like apoptosis, inducing ligand- (TRAIL-) induced apoptosis,
probably by increasing the levels of death receptors DR4 and
DR5 [23].

5. In Vitro Studies Showing the Effect of
Bortezomib in Cancer

Extensive preclinical research has been conducted with
bortezomib to elucidate its mechanism of action and to
examine its activity. In cell culture, bortezomib induces
apoptosis in both hematologic and solid tumor malignancies
(see Table 2).

6. Proteasome Inhibitor Targets in Lung Cancer

As in part mentioned above, multiple targets of proteasome
inhibition with different cellular effects have been identified,



among those the very important transcription factor directly
involved in apoptosis resistance and expression of adhesion
molecules is NF-xB. Usually inactive intracellularly due to
binding to IkBa, it becomes activated after exposure to
cytokines, stress, and receptor signaling, leading to apoptosis
resistance, increase in growth factors, angiogenesis, and
possible tumor metastasis. NF-xB activation is blocked via
proteasome inhibition decreasing downstream signaling thus
decreasing cell survival and growth [17]. Overexpression of
the antiapoptotic protein Bcl-2 leads to chemoresistance;
bortezomib causes downregulation of Bcl-2 via phosphory-
lation in NSCLC [9, 24], as well as decreased transcription
of the Bcl-2 promoter, decreased Bcl-2 level, and induced
apoptosis in SCLC [25]. An upregulation of Bax a proapop-
totic mediator has proven beneficial leading to an increase
benefit from proteasome inhibitor by decreasing Bcl-2/Bax
ratio [15].

Cell cycle arrest in G2M phase can be induced by borte-
zomib in NSCLC which is in part due to accumulation of
P53, which is crucial for transcription of genes involved in
cell cycle and DNA synthesis [36]. The absence of cyclin-
dependent kinase inhibitor p27 acts as poor prognostic factor
in NSCLC, bortezomib causes upregulation of p21 and p27
kinase inhibitor leading to arrest of cell cycle inhibiting cyclin
A and cyclin E [10, 24, 36].

Bortezomib has been also shown to enhance tumor
necrosis factor related apoptosis inducing ligand (TRAIL) in-
duced apoptosis in human cancer cells, bortezomib induced
caspase 8 dependent apoptosis, cooperated with trail to
induce apoptosis and up-regulated death receptor 5 (DR5)
expression in NSCLC cells, which correlated with increased
apoptosis by PS-341 and enhancement of TRAIL-induced
apoptosis in NSCLC. On the other hand, c-FLIP and surviv-
ing levels were elevated after exposure to bortezomib, which
in turn protects cells from bortezomib-induced apoptosis
[37].

6.1. Phase I Single Agent Proteasome Inhibitors in Lung Cancer.
Aghajanian et al. evaluated the safety and pharmacodynamic
behavior of bortezomib in patients with histologically con-
firmed solid tumors who had been heavily pretreated and
for which no other therapeutic options were available [38].
Forty-three patients were enrolled after eligibility criteria
were met, and informed consent was signed; patients with 14
histologically different tumor types entered the study; among
those, 8 patients had documented NSCLC. Prior treatment
included a median number of 4 prior chemotherapy reg-
imens, and 12 subjects had received radiation therapy as
primary treatment for their malignancy. Forty-three patients
received a total of 89 cycles of therapy given twice weekly for
2 consecutive weeks and followed by 1-week recovery period,
doses ranged from 0.13 to 1.56 mg/m?/dose (9 dose levels),
with a median number of 2 courses given per patient.
Toxicities were minimal in the first five dose level groups;
no hematological dose limiting toxicity was reported, with
an increase in the incidence of thrombocytopenia and neu-
tropenia at higher doses. Dose limiting nonhematological
toxicities were reported and consisted mainly of diarrhea
and painful sensory neuropathy; 2 out of 12 patients treated

Journal of Biomedicine and Biotechnology

at the 1.56/m? dose developed grade 3 diarrhea and also
another 2 out of 12 patients in the same dose group and
one in a lower dose group (1.30 mg/m?) developed grade 3
painful sensory neuropathy which had worsened from prior
preexisting symptoms. All these patients had been exposed to
taxanes and either carboplatin or cisplatin as prior therapies.

Pharmacodynamic studies revealed a dose-related inhi-
bition of 20S proteasome activity at higher doses, no
significant difference in the mean percentage of inhibition
at the 4 different dosing days after 1 hour of drug adminis-
tration; complete recovery of proteasome activity to baseline
was evident prior to drug administration on days 4, 8,
and 11 indicating no apparent change to drug sensitivity
towards bortezomib-induced proteasome inhibition. Protea-
some activity also evaluated at 24h after day 1 and day
8 dosing which showed recovery but not back to baseline
values.

One partial response was seen in a patient with NSCLC
who had received prior therapy with six cycles of paclitaxel
and carboplatin, two cycles of gemcitabine, three of mit-
omycin and vinblastine, four weekly docetaxel, and eight
weekly methotrexate doses, with disease progression on all of
the above regimens; a 50% reduction in the size of bilateral
pulmonary nodular infiltrate was seen, with a duration of
three months, patient symptoms improved as well, but had
to discontinue treatment after three cycles due to painful
sensory neuropathy. Stable disease was seen in 3 patients with
other tumor types with a mean duration of 4 months.

Dy et al. conducted another phase I and pharmacologic
trial of two schedules of bortezomib in patients with ad-
vanced cancer [39]; the trial enrolled a total of 44 patients
with multiple different tumor types. Of those 2 patients
had lung cancer, most of them consisted of colorectal and
kidney tumors followed by pancreatic and prostate cancer. 73
courses of therapy with 6 different dose levels (ranging from
0.5 to 1.70 mg/m?) were administered; 28 patients received
study treatment twice weekly for 4 out of 6 weeks, but due
to increased toxicity on this schedule, 16 additional patients
received study treatment only twice weekly for 2 out of every
three weeks. The median number of courses given per patient
was 2 in both schedules.

Hematological toxicities related to treatment grade >2
were anemia and thrombocytopenia, most of them occurring
in schedule one. Reversible thrombocytopenia was dose
limiting for both schedules at 1.60 and 1.70 mg/m? dose,
no bleeding complications were associated with such nor
need for platelet transfusion. Mild leukopenia was observed
in one patient in schedule two. Most nonhematological
toxicities were reported as mild to moderate consisting of
fatigue, diarrhea, nausea, anorexia, sensory neurotoxicity,
rash, and vomiting for schedule one; sensory neurotoxicity
was dose limiting in one patient in this schedule. Similar side
effects were reported in schedule two with the exception of
rash and sensory neuropathy; two cases of grade 3 diarrhea
were reported in schedule two which improved with dose
reductions and the use of loperamide.

Forty-one patients out of the 44 enrolled were assessable
for antitumor activity; partial regression (>50%) of a per-
inephric plasmacytoma was observed in one patient before
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cycle 2 of treatment and was sustained for 4 months; five
patients had stable disease in at least one evaluation. There
was as in the previously described study a dose-dependant
increase in the degree of proteasome inhibition after 1
hour of drug administration with a recovery of proteasome
activity of 85% at 24 hours except in those receiving
1.50 mg/m? on schedule one where a 35% inhibition was still
observed at 24 hours. A 549 human NSCLC cells showed a
marked increase in p53 levels for 24 hours after exposure to
bortezomib.

6.2. Phase 11 Single Agent Proteasome Inhibitor in Lung Cancer.
Stevenson et al. conducted a phase II pharmacodynamic
study using single agent bortezomib in patients with adva-
nced stage NSCLC who had received less or equal to one
prior regimen [40]. 23 patients were enrolled and received
bortezomib at 1.3 to 1.5 mg/m? dosing on days 1, 4, 8 and
11 every 21 days; results revealed one patient having partial
response, and 9 patients had stable disease, lasting more
than 4 cycles in 5 of the patients. Most common grade 3
toxicities included nausea and vomiting, sensory neuropathy,
constipation, rash, and thrombocytopenia. Evaluation of p65
and phosphorylated p65 (pp65) by western blot analysis in
12 patients revealed no change in total p65, the ratio of
p65/pp65 was also unaffected across the entire group, but
significantly decreased in patients with grade 3 toxicity at
30 minutes with nadir at 4 hours and recovery at 24 hours.
They were unable to achieved clinical significance with these
results.

The role of bortezomib was evaluated in relapsed or
refractory extensive stage small cell lung cancer (SCLC)
by Lara et al. in the Southwest Oncology Group (SWOG)
phase II trial (S0327) [41]; 56 patients with histologically or
cytologically confirmed diagnosis or SCLC with evidence of
measurable disease, good performance status, and adequate
end organ function who had received prior platinum con-
taining regimens and who had not received prior bortezomib
were enrolled. Treatment was administered on days 1, 4,
8, and 11 every 21 days at a dose of 1.3 mg/m? with dose
reductions to 1.0 mg/m? if toxicities graded at 3 or 4 based
on the National Cancer Institute Common Toxicity Criteria
(CTC) version 2.0. Primary end point was response rate
(RR); secondary end points included time to progression
(TTP) and overall survival (OS). In terms of sensitivity to
platinum-based therapy, the patients were well distributed:
28 with platinum sensitive (relapse >90 days after platinum)
and 28 with platinum refractory (progression during or < or
equal to 90 after platinum). Partial response was observed
in one patient and stable disease in two patients in the
platinum refractory group; most patients (83%) had disease
progression and/or developed symptomatic deterioration;
early death was observed in one patient on each group.
Three patients were not assessable for response due to other
reasons. Median progression-free survival (PFS) and OS for
the platinum refractory group were 1.1 and 3.1 months,
respectively; in the platinum sensitive group, median PFS
was 1.2 months and OS 2.9 months. The 6-month PFS rate
was 10% and 0% for the platinum refractory and platinum
sensitive group, respectively, and overall 6-month survival

was 25% for both strata. Side effects exceeding grade 2 were
fatigue and thrombocytopenia; one death possibly related to
bortezomib was reported consisting of dyspnea which led
to respiratory failure. Pretreatment samples were analyzed
via immunhistochemistry; two out of eight patients had
abnormally low p27 levels, five had low BAX levels, and six
had abnormally high Bcl-2. Bcl-x] was abnormally expressed
in a high percentage in all 8 specimens. Patients had at least
two of these markers abnormally expressed in their tumors
with five patients having 3 proteins abnormally expressed.

These and other studies showed that bortezomib as a
single agent has limited activity with single agent responses
up to 8% only [42].

7. Bortezomib Combinations in NSCLC

More recently in combination with chemotherapy, borte-
zomib has shown its most encouraging activity [42]. Recent
phase I studies have shown that bortezomib combinations
are generally well tolerated and have little addition in tox-
icity as compared to chemotherapy alone (Table 3). More
importantly, there has been a significant increase in survival
observed with the use of bortezomib in combination. Work
from Davies et al. showed that bortezomib plus gemc-
itabine/carboplatin resulted in a notable survival benefit (11
months overall survival) in patients with advanced NSCLC
[32].

Work remains to be done to determine if more combi-
nations of bortezomib with other chemotherapy regimens or
with targeted therapies will yield further survival advantages.
Thus far, results with docetaxel, docetaxel + cetuximab,
pemetrexed, and erlotinib show modest results at best
(Table 3). There are interesting results for example about the
combination of erlotinib and bortezomib. Piperdi et al. [43]
found that in H358 bronchoalveolar cells, the combination
is neither additive nor synergistic in the NSCLC cell lines
studied. The choice of schedule may be very important in
combining erlotinib with bortezomib, and further in vivo
studies are required to further evaluate this combination.

Also there is ongoing research looking for predictive
markers of bortezomib sensitivity. Voortman et al. [44]
showed that the proteasomal as well as apoptotic phenotype
determines bortezomib sensitivity in NSCLC cells. There is a
preclinical rationale to combine proteasome inhibition with
proapoptotic agents as well as agents promoting a more
favorable proteasomal phenotype to overcome this resis-
tance.

8. Conclusion

Ubiquitin-proteasome system is critical for the proliferation
and survival of cancer cells, and its inhibition by proteasome
inhibitors such as bortezomib has become a very attractive
anticancer therapy. Bortezomib has proven to be active
against a broad range of cancer cell lines including NSCLC,
and it has been tested in numerous in vitro and in vivo
NSCLC models. Current phases I and II studies are showing
the possibility to have a new targeted therapy for NSCLC
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combining this bortezomib with available chemotherapeutic
agents. Prospective phase III trials are needed to validate the
use of this agent in NSCLC.
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