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Introduction

Normally, the progression of eukaryotic cells through the DNA 
replication-division cycle is extremely robust to alterations in 
growth conditions, exposure to damaging radiation, stochastic 
fluctuations of protein levels within the cell and other vicissi-
tudes of life. Mutant cells, on the other hand, in which criti-
cal parts of the cell cycle control system are compromised, may 
be much more sensitive to their environment than normal cells. 
Cancer cells, for instance, are notoriously non-robust: they grow 
and divide in a deregulated fashion, they exhibit aberrant mitotic 
cycles, and they rapidly accumulate genetic mutations.1 An inter-
esting example of this sort of fragility of the cell cycle has been 
observed in mutant strains of budding yeast (Saccharomyces cere-
visiae). Wild-type cells grow and divide on a variety of car-
bon sources: growing rapidly on glucose (mass doubling time, 
MDT ≈ 90 min), less rapidly on other sugars (e.g., MDT ≈ 
150 min on raffinose) and poorly on ethanol.2 In all cases, the 
number doubling time (NDT) of the culture is nearly identical 
to the MDT, and very few cells exit the cell cycle. (Yeast cells 
age and eventually stop dividing after 15–25 generations.3) Most 
cell cycle mutants of budding yeast are either inviable (i.e., fail 
to proliferate) or viable but somehow abnormal (e.g., smaller or 
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larger than wild-type cells). Some rare mutants, however, exhibit 
an unusual phenotype: they are inviable on glucose but partially 
viable on sugars, like raffinose, that support a slower growth 
rate. For example, the double mutant strain, CLB2-dbΔ clb5Δ, 
which has the destruction box region of the CLB2 gene and the 
entire CLB5 gene deleted, is inviable on glucose but forms small 
colonies on galactose.4,5 The goal of this paper is to characterize 
in detail the effects of these genetic mutations on the cell cycle 
control system in budding yeast by quantitative measurements of 
growth of this mutant strain in raffinose and by comparison to 
computer simulations of a stochastic model of the molecular con-
trol system. Conceptually, our work is related to a recent study 
wherein a stochastic, mechanistic model was used to explain the 
temporal variability of cell cycle entry in wild-type mammalian 
cells.6

In our case, the CLB2-dbΔ clb5Δ mutant strain is compro-
mised at the stage of exit from mitosis. The B-type cyclins, 
Clb5 and Clb2 (encoded by the genes CLB5 and CLB2), when 
complexed with Cdc28 (the cyclin-dependent kinase), play 
crucial roles in driving DNA synthesis and mitosis during the 
budding yeast cell cycle.7 Towards the end of the mitotic cycle 
(metaphase), a yeast cell has copious amounts of Clb2 and Clb5. 
For the cell to exit mitosis and return to the G

1
 phase of the 

next cycle, the activities of the Cdc28:Clb2 and Cdc28:Clb5 
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downregulate Clb2:Cdc28 activity to a sufficiently low level.4 
This strain, however, can be partially rescued by deleting the 
gene that encodes Clb5 (CLB2-dbΔ clb5Δ).4,5 Although the 
double mutant cell has an excess of Clb2 in telophase, it has 
no Clb5 and this combination of abnormalities suffices to allow 
some cells to exit mitosis, return to G

1
 and commence a new cell 

cycle, provided the cells are growing slowly on a non-preferred 
sugar like raffinose.

In order to maintain the double mutant strain in the labo-
ratory, a third mutation is introduced: CLB2-dbΔ clb5Δ GAL-
SIC1, which adds a copy of the SIC1 gene under the control of 
the galactose promoter. When grown on galactose, Sic1 (a stoi-
chiometric inhibitor of Cdc28:Clb2) is produced constitutively, 
which grants the mutant strain full viability. When the strain is 
transferred to glucose medium, it dies; and when transferred to 
raffinose medium, it survives although just barely.

As interesting as this mutant is to our understanding of cell 
cycle control, it has not been much studied either experimen-
tally or theoretically. Chen et al. proposed a computer model 
of the cyclin-dependent kinase regulatory network in budding 
yeast and showed that their deterministic model (based on non-
linear ordinary differential equations) can account in quantita-
tive detail for the phenotypes of 120 different mutant strains.14 
Nonetheless, their model could not give a satisfactory explana-
tion of CLB2-dbΔ clb5Δ GAL-SIC1. Simulations of this strain 
showed viability in galactose and inviability in glucose, as they 
should, but for raffinose the simulation indicated full viability 
rather than partial viability. The reason for this discrepancy, of 

complexes must be abolished, which is accomplished by degrada-
tion of Clb2 and Clb5 proteins and by production of an inhibitor, 
Sic1, of Cdc28:Clb complexes. An E3-ubiquitin ligase, called the 
Anaphase Promoting Complex (APC), is responsible for poly-
ubiquitination of Clb2, Clb5 and other proteins, thus labeling 
them for degradation by 20S proteasomes.8 Figure 1 diagrams 
the relevant interactions for this aspect of the cell cycle. In the 
figure and in our model we combine redundant cyclins, so that 
Clb2 stands for Clb1 as well as Clb2, and Clb5 stands for Clb5 
as well as Clb6. In addition, since Cdc28 is present in excess 
and combines rapidly with cyclins once they are synthesized, we 
assume all cyclin molecules have a Cdc28 partner.

The APC requires an auxiliary protein (either Cdc20 or 
Cdh1) to recognize particular proteins for poly-ubiquitination, 
and this recognition depends on a specific short sequence in the 
targeted protein.8,9 All known APC:Cdc20 substrates contain 
a destruction box (D-box) composed of the sequence R-X-X-
L-X-X-X-X-N, whereas APC:Cdh1 recognizes both the D-box 
and another short sequence composed of K-E-N (the KEN 
box). Clb2 is degraded by both APC:Cdc20 and APC:Cdh1, 
while Clb5 is degraded mainly by APC:Cdc20.10-13 When the 
destruction box sequence is deleted from the CLB2 gene (CLB2-
dbΔ), the mutant protein retains its wild-type function as a 
B-type cyclin but it cannot be degraded by APC:Cdc20, and 
the ability of APC:Cdh1 to degrade it is also compromised to 
a large extent.4,10 Moreover, APC:Cdh1 is strongly inhibited by 
Clb5-dependent phosphorylation. The single mutant CLB2-
dbΔ is stuck in telophase, unable to divide, because it cannot 

Figure 1. Wiring diagram of the interactions involving Clb2 and Clb5 at the exit from mitosis. Solid lines indicate reactions, solid lines with filled 
balls at the ends indicate reversible association reactions and dashed lines indicate the influences of transcription factors or enzymes. A : indicates a 
complex. We assume that Clb2 and Clb5 are always complexed with Cdc28 and do not denote this explicitly. D denotes degradation by targeting the 
destruction box and KeN denotes degradation by targeting the KeN box.
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character of cell regulation in normal cells, and how it is altered 
in diseased states and in therapeutic interventions.

Results

We recorded the rates of cell growth and proliferation of wild-
type and mutant cells growing on raffinose agar and observed 
by time-lapse, phase-contrast microscopy. Because it is easier to 
determine the time of bud initiation than the time of cell divi-
sion (when mother and daughter cells separate), we used interbud 
intervals to measure cell cycle times. By T

bMb
 we denote the time 

between successive budding events of a mother cell (a cell that 
has already budded at least once), and by T

bDb
 we denote the time 

from a daughter cell’s first appearance as a bud from a mother cell 
to the time when the daughter cell produces her first bud. More 
traditionally, the cycle time of a mother cell would be defined as 
T

M
, the time from one cell division to the next. With reference to 

Figure 2, we see that T
M

 = T
dMb

 + T'
bMd

, where T
dMb

 is the time 
from cell division to the next budding event in a mother cell and 
T'

bMd
 is the time from budding to the next division in a mother 

cell. Also, T
bMb

 = T
bMd

 + T
dMb

. Since the means of T
bMd

 and T'
bMd

 
are the same, the means of T

M
 and T

bMb
 are equal. The variances 

of T
M

 and T
bMb

 may not be the same since the covariance of T
dMb

 
and T'

bMd
, and the covariance of T

dMb
 and T

bMd
, could be dif-

ferent. We expect these covariances to be small, since the time 
intervals are relatively independent of one another, and so the 
variances of T

M
 and T

bMb
 will be almost equal. Similar arguments 

show that the cycle time of a daughter cell, T
D
 = T

dDb
 + T

bDd
 and 

T
bDb

 = T
bMd

 + T
dDb

 will have the same means and similar variances.
We employed several indicators of cell growth and division 

to compare wild-type and mutant cells growing on raffinose. 
We used growth curves (i.e., logarithm of the total number of 
budding events versus time) to compute NDT (number dou-
bling time) and quantify how fast the cells are proliferating. To 
determine whether differences in NDT are due to slower cellular 
growth rates or to cells exiting the cell cycle, we have plotted the 

course, is that a deterministic model cannot possibly predict par-
tial viability, which is a reflection of the fact that in telophase 
some of the mutant cells successfully exit mitosis and enter a new 
cell cycle, whereas other cells get stuck in telophase and never 
divide again. To account for such behavior, we need to transform 
Chen’s 2004 model into a realistic stochastic model accounting 
for molecular noise in the cyclin-dependent kinase regulatory 
network. Furthermore, to judge the accuracy of the model, we 
need to collect quantitative data on the proliferation of CLB2-
dbΔ clb5Δ GAL-SIC1 cells on raffinose, especially statistics on 
how often cells leave the cycle never to divide again.

In this paper we examine the proliferation on raffinose medium 
of wild-type and triple-mutant (CLB2-dbΔ clb5Δ GAL-SIC1) 
cells by time-lapse photomicroscopy and compute relevant sta-
tistics from these observations. In addition, we convert Chen’s 
model into a form suitable for stochastic simulation by Gillespie’s 
method,15,16 and compute the same statistical properties of simu-
lated cell populations. We show that the model and the experi-
ments are in reasonably good accord.

The development of stochastic models to capture the behav-
ior of molecular regulatory networks in single cells is becoming 
increasingly important as data on protein and mRNA distribu-
tions are now routinely collected from single cells by techniques 
based on fluorescence microscopy.17-25 Because cellular processes 
are inherently stochastic, this single-cell data cannot be fit by 
deterministic models. In many cases, to be sure, the data is only 
slightly noisy and deterministic models may provide an adequate 
interpretation of the mean of the distributions. But in other cases, 
as in this paper, molecular noise has significant, qualitatively dif-
ferent effects on cell fate that can only be captured adequately 
with a stochastic model. Many important questions in medicine 
may hinge on the fraction of cells that undergo a certain fate; for 
example, the fraction of cancer cells that undergo apoptosis in 
response to drug therapy. Hence, the combination of experimen-
tal and stochastic-modeling studies presented here is important 
as an initial step along the road to understanding the stochastic 

Figure 2. Depiction of time intervals defining inter-division and inter-bud times. the cell cycle time from division to division of the daughter, tD and 
mother, tM, are related to the division to bud times of the daughter and mother, tdDb and tdMb respectively and to the bud to division times, tbDd and 
tbMd respectively. this allows us to conclude that the bud to bud times for the daughter and mother, tbDb and tbMb respectively, should have approxi-
mately the same statistics as the corresponding division to division times.
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Wild-type cells. Wild-type yeast cells grow well in both 
glucose and raffinose, but we confine our results to raffinose to 
allow comparison with the mutant cells growing in raffinose. In 
three separate experiments we recorded the budding times dur-
ing proliferation of a small number of initial cells. Figure 3A 
presents the growth data along with the least squares fits that 
were used to compute NDT. As reported in Table 1, NDTs for 
wild-type cells growing on raffinose ranged from 120 minutes to 
155 minutes. Table 1 also records the statistics for T

bMb
 and T

bDb
. 

As expected, the mean of T
bDb

 (cycle time of daughter) is greater 
than the mean of T

bMb
 (cycle time of mother), since T

dDb
 > T

dMb
. 

(After cell division, the daughter cell is smaller than the mother 
cell, and therefore the daughter takes longer, on average, than the 
mother cell to reach the size threshold to initiate the next bud-
ding event). This difference is much more pronounced in experi-
ments 1 and 3 than in experiment 2. The distributions of T

bMb
 

and T
bDb

 (Fig. 4A–C) overlapped significantly in all cases.
To determine whether the wild-type NDT is significantly 

affected by cells exiting the cell cycle, we estimated the prob-
ability, P(T ), that the cycle time is greater than a specified time, 
T, as shown in Figure 3B. If a fraction of cells had exited the 
cell cycle, then P would level off at an asymptotic value, P

∞
, as 

T gets large, but there is no evidence, for wild-type cells, from 
Figure 3B that P is reaching an asymptotic value for large T. 
With an experimental time window of only 10 hours, it is dif-
ficult to get a good estimate of the tail of the P(T ) distribution; 
but, if wild-type cells are exiting the cell cycle, then the fraction 
is much less than 10%.

Our conclusion that wild-type cells divide slowly but con-
sistently on raffinose medium is born out by dendrographs of 
cell genealogies derived from time-lapse micrography. Figure 5A 
shows three representative wild-type lineages. Each dendrograph 
shows one cell and its progeny over a viewing window of 600 
min. Examining dendrographs of all regions observed in experi-
ment 1, we could find only a few wild-type cells that possibly 
exited the cell cycle.

CLB2-dbΔ clb5Δ mutant. As expected, the mutant cell popu-
lations exhibited a longer NDT than that observed for wild-type 
cells; slightly longer in the first experiment and almost double 
in the second and third experiments (see Table 1 and Fig. 3A). 
There are two possible causes for this increase, which are not 
mutually exclusive: (1) the mutant cells may have grown more 
slowly than wild-type cells on raffinose and therefore had a 
longer cell cycle time in general or (2) a greater number of the 
mutant cells may have exited the cell cycle and eventually died. 
Our data suggest that the dominant cause of the increased NDT 
is the greater number of mutant cells exiting the cell cycle. For 
instance, while in experiments 2 and 3 the NDT of mutant cells 
is much longer than the NDT of wild-type cells (longer by 176 
and 85 minutes, respectively), the mean interbud times of the 
mutant cells are only about 30 minutes longer than the mean 
interbud times of the wild-type cells. Hence, mutant cells that are 
able to divide and rebud are growing only marginally slower than 
wild-type cells, so the large increase in NDT must be attributed 
to cells that are permanently arrested in the cell cycle and are no 
longer contributing to an increase in cell number.

cumulative distribution function of cell cycle time, e.g., P
M

(T ) = 
Probability{T

bMb
 > T }. Dendrographs were used to provide a time-

domain view of the regularity or irregularity of budding events, 
while histograms were used to quantify the distributions of inter-
bud times in populations of mother cells and daughter cells.

Figure 3. Comparison of wild-type and mutant cell growth in raffinose 
in experiments and simulations. (A) For each of three separate experi-
ments (1 = blue, 2 = green, 3 = red) and simulation (black) the initial 
number of cells is plotted at t =-and at each bud event (division event 
for simulations) thereafter the number of cells is increased by one for 
wild-type (+) and mutant strains (•). The lines are least-squares fits to 
the points for t > 300 min (solid: wild-type, dashed: mutant). (B) prob-
ability that the time between buds is greater than a specified time for 
the three experiments and a simulation depicted in (A). Line colors and 
styles correspond to the same datasets shown in (A).
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parameters in the model are rate constants and binding constants 
for the biochemical reactions describing the complex network of 
molecular interactions that govern the temporal activity patterns 
of cyclin-dependent kinases (the enzymes that control the tim-
ing of DNA synthesis, mitosis and cell division in yeast—and 
all other eukaryotes). Chen et al. defined a ‘basal’ set of values 
for these parameters,14 corresponding to the situation in wild-
type cells, which we have slightly modified (see Methods). If the 
ODEs are simulated deterministically for that basal parameter 
set with μ = 0.0077 min-1 (or 0.0043 min-1), then the simulated 
population of mother and daughter cells will undergo exponential 
expansion with NDT = 90 min (or 160 min), matching experi-
mental observations that wild-type cells proliferate exponentially 
in both glucose and raffinose media, with little evidence of cell 
senescence or death. Furthermore, for wild-type cells growing 
in nutrient media with any value of μ smaller than about 0.01 
min-1, cell number expands exponentially with NDT = MDT 
(“balanced growth and division”). For μ > 0.01 min-1 (MDT < 
69 min), daughter cells grow faster than they can replicate their 
DNA and divide, so cells get larger and larger each generation 
and eventually die. This property of the model is in accord with 
the maximum specific growth rate (~70 min) observed for bud-
ding yeast.26

To simulate the CLB2-dbΔ clb5Δ mutant strain we made three 
changes to the basal parameter set of the Chen-2004 model: the 
rate constant kdb2p, associated with the degradation of Clb2 by 
APC:Cdc20, was set to 0 and the rate constant kdb2pp, associ-
ated with the degradation of Clb2 by APC:Cdh1, was set to 0.075 
times the wild-type value to account for the destruction box dele-
tion; and the rate constants ksb5 and ksb5pp, associated with the 
synthesis of Clb5 were set to 10% of the corresponding wild-type 
values to reflect that Clb6 is still intact in this mutant. (Recall that 
‘Clb5’ in our model combines the contributions of both Clb5 and 
Clb6 proteins in a cell). Deterministic simulations of Chen et al. 
for newborn cells demonstrated that the mutant strain is inviable 
(arrested in telophase) for any MDT < 139 min,14 in agreement 

Figure 3B, where we plot the cumulative probability, P(T ), 
that mutant cell cycle time > T, shows clearly that a significant 
fraction of the mutant cell population had exited the cell cycle 
(P

∞
 may be as large as 25—40% in the three experiments). The 

three dendrographs in Figure 5B provide further evidence for 
this conclusion. In the lowest dendrograph, the cells bud regu-
larly with roughly equal mother and daughter interbud intervals. 
In the middle dendrograph, the cell never buds over the course 
of 10 h, while in the upper dendrograph each cell buds once and 
never again. This very erratic behavior caused the standard devia-
tion of mutant cell cycle times to be much greater than that of 
wild-type cells (see Table 1).

The histograms of cycle times for mother and daughter cells 
(Fig. 4E–G) show considerable overlap, i.e., the means and vari-
ances of T

bMb
 and T

bDb
 were roughly equivalent (see Table 1). 

Furthermore, the cycle time histograms for mutant cells 
(Fig. 4E–G) exhibited much longer tails than the histograms for 
wild-type cells (Fig. 4A–C), probably due to the difficulties of 
some cells in exiting mitosis.

The preponderance of evidence indicates that, although 
CLB2-dbΔ clb5Δ mutant cells can produce colonies on raffinose, 
the NDT of mutant colonies is much longer than the NDT of 
wild-type colonies on the same growth medium largely because 
a significant fraction of mutant cells leave the cell cycle, never 
again to rebud.

Simulation results. The mathematical model that we used to 
simulate these experiments was based on a deterministic model 
(ordinary differential equations, ODEs) of the budding yeast cell 
cycle developed by Chen et al. Before describing the changes we 
made to incorporate stochastic events in the Chen-2004 model, 
we first summarize relevant features of the deterministic model. 
An important input parameter to the deterministic model is μ, 
the specific growth rate of the cells (μ = ln2/MDT, where MDT 
is the mass doubling time of the culture). For growth on glu-
cose medium, μ = 0.0077 min-1 (MDT = 90 min), and for raf-
finose medium, μ = 0.00433 min-1 (MDT = 160 min). All other 

Table 1. Statistical properties for cells growing on raffinose

Experiment Simulation (f = 0.48)

Exp. No./Simulation 
parameters

1 2 3
MDT = 160 

V = 30 fL
MDT = 160 

V = 15 fL
MDT = 150 

V = 30 fL

Wild type

TbMb/TdMd
a 132 (30) 129 (38) 98 (28) 149 (12) 147 (16) 139 (13)

TbDb/TdDd
a 160 (26) 132 (27) 122 (26) 166 (14) 164 (17) 155 (14)

N(tend) 210 210 270 26715 19292 22469

NDt 155 138 120 159 161 149

CLB2-dbΔ clb5Δ

TbMb/TdMd
a 151 (65) 165 (63) 144 (80) 148 (24) 148 (30) 142 (23)

TbDb/TdDd
a 151 (63) 164 (53) 143 (82) 162 (29) 163 (34) 152 (27)

N(tend) 217 113 296 2811 3431 2605

NDt 173 314 205 322 284 347

Mean (standard deviation). aFor experiments, the value is the time in minutes from one budding event to the next for mothers (TbMb) and daughters 
(TbDb), while for simulations the value is the time in minutes from one division to the next for mothers (TdMd), and daughters (TdDd). Note: TbDb represents 
the cycle time of the daughter from when it first appears as a bud in the mother to when the daughter produces its first bud.



1004 Cell Cycle Volume 10 Issue 6

cell to exit mitosis depends critically on the level of Clb2 pres-
ent when the spindle assembly checkpoint is lifted and Cdc20 
becomes active. The synthesis of Clb2 in our model depends upon 
the cell mass, so, for a given initial cell mass, a faster growth rate 
creates a higher level of Clb2 when Cdc20 becomes active. If the 
growth rate is sufficiently large, the resulting level of Clb2 will be 
so high that the cell cannot exit mitosis.

with the observation that the mutant strain is inviable on glucose 
medium. For any MDT >139 min, deterministic simulations of 
the Chen-2004 model showed the newborn mutants to be per-
fectly viable. (It should be noted that the MDT threshold depends 
somewhat on the initial conditions assumed for the cells being 
simulated and has a fairly strong dependence on the initial mass). 
The reason for this difference in viability is that the ability of a 

Figure 4. Histograms of cell cycle duration in mother and daughter cells. Budding events were tabulated manually and the time between the emer-
gence of consecutive buds was calculated for wild-type cells (A–C) and for mutant cells (e–G) in experiments 1–3, respectively. For simulated data 
(D and H), the time between division events, rather than budding events, was used for wild-type cells (D) and for mutant cells (H).
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(which is necessary in order to simulate the CLB2-dbΔ clb5Δ 
mutant), and our estimates of the relative numbers of the different 
molecular species are more realistic than theirs.

The Chen-2004 model contains a parameter ( f) that deter-
mines the fraction of a dividing cell’s volume that is partitioned 
to the daughter cell. This parameter determines, in large mea-
sure, the difference between cycle times of mother and daughter 
cells. From our observations that this difference is small in raffi-
nose (see Table 1), we estimate that f = 0.48, and this is the value 
we have used in our stochastic simulations.

Since the Chen-2004 model does not contain a detailed molec-
ular mechanism for the budding event, we use the time between 
divisions to compute the relevant statistics for the simulations. As 
argued in the introduction to the results, the interdivision times 
and interbud times should have the same means and similar vari-
ances, so the quantities we are computing from experiments and 
simulations are comparable.

Simulation results (for the case: MDT = 160 min, V = 30 fL) 
are summarized in Table 1 and in Figures 2–4. The NDT for 
simulated wild-type cells is ~160 min, as expected given our 
choice of growth rate. For simulated mutant cells, the NDT is 
322 min, which is slightly higher than the longest experimen-
tal value. That the mutant NDT is significantly greater than the 
interdivision times of the mothers and daughters is due to cells 
exiting the cell cycle and ceasing to replicate. The cumulative 
distribution functions in Figure 3B show that the wild-type cells 
never exit the cell cycle, whereas over 40% of the mutant cells 

The abrupt change in viability of the mutant strain at MDT = 
139 min is not consistent with our experimental observations of 
how the mutant strain proliferates in raffinose medium. In actual-
ity, the cells successfully complete the cell cycle most of the time, 
but in each pass through the cell cycle there is apparently a finite 
probability that a cell will arrest in telophase and never bud again. 
We supposed, following a suggestion in Chen et al. that this behav-
ior is attributable to random fluctuations in the cell cycle control 
network, and we set out to create a reasonable stochastic version of 
the Chen-2004 model that might shed light on the behavior of the 
CLB2-dbΔ clb5Δ mutant strain growing on raffinose.

There are several alternatives for converting a determinis-
tic (ODE) model into a stochastic model.15,16,27-34 We chose to 
use Gillespie’s algorithm,15,16 which treats every reaction rate 
in the deterministic model as a ‘propensity’ for that particular 
reaction to occur. From the numerical values of these propen-
sities, Gillespie’s algorithm determines when the next reaction 
will occur and which (of the ~100 reactions in Chen’s model) it 
will be. Strictly speaking, Gillespie’s algorithm applies only to 
elementary reaction mechanisms, but it is a common approxi-
mation among systems biologists to apply the algorithm to non-
elementary reaction mechanisms, like the Michaelis-Menten 
kinetics in the Chen-2004 model.35-37 Recent research has justi-
fied the extension of Gillespie’s algorithm to Michaelis-Menten 
kinetics under some circumstances.38-41 On the contrary, other 
recent research42,43 suggests that the deterministic cell cycle mod-
els developed by Tyson & Novak44 and by Chen et al. are not 
really suitable for stochastic simulation by this simple extension 
of Gillespie’s algorithm. Nonetheless, Mura & Csikasz-Nagy 
have created a stochastic version of the Tyson-Novak-2002 model 
by reinterpreting reaction rate laws as reaction propensities in the 
sense of Gillespie’s algorithm,45 and we have done the same for 
the Chen-2004 model. We consider this stochastic interpretation 
of the Chen-2004 model as a “first approximation” to effects of 
molecular noise in the cell cycle control system of budding yeast.

To determine the molecular abundances of each species used in 
the stochastic model, we must estimate the “characteristic concen-
tration” of each dimensionless variable in the Chen-2004 model 
and specify the average volume of a yeast cell. (The normalized 
concentration used in the model is defined as the actual con-
centration divided by the characteristic concentration). Mura & 
Csikasz-Nagy chose a constant, average “compartment” volume of 
0.84 fL (a yeast cell nucleus) and used the same characteristic con-
centration of 1 μM for every variable in the Tyson-Novak-2002 
model.45 They recognized the limitations of this assumption and 
left to “future modeling work the goal of a more accurate represen-
tation of the abundances of species.” To this end, we assumed dif-
ferent characteristic concentrations for each species (see Table 3) 
in order to align our species abundances with experimental mea-
surements.19 Like Mura & Csikasz-Nagy, we chose a constant, 
average “compartment” volume; in our case, V = 30 fL, which is 
roughly the size of a yeast cell.46 Our characteristic concentrations 
are about 30-fold smaller than Mura and Csikasz-Nagy’s and our 
compartment volume is about 30-fold larger, so the total number 
of molecules per reactor volume is comparable in the two mod-
els. Our model is more detailed than Mura and Csikasz-Nagy’s 

Figure 5. Dendrographs for typical cells. example lineages of three 
wild-type cells (A) and three mutant cells (B), demonstrating the vari-
ous proliferation patterns observed. Dendrographs from simulated 
wild-type and mutant cells are shown in (C and D), respectively, for 
comparison. In the figure, branch points occur at new budding events, 
for the experimental data, and at division events for simulations. Cell ID 
is an arbitrary identifier used for cell tracking.
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perspective of a mathematical modeler, mutant phenotypes 
provide constraints on both the structure of the model and the 
numerical values attributed to its parameters (rate constants). 
Even a very complex regulatory system, such as the cyclin-depen-
dent kinase network in budding yeast, can be effectively modeled 
if data are collected from a wide range of mutants that impact all 
aspects of the control system.14 Especially useful in this regard 
are mutations that induce unusual phenotypes, such as the sto-
chastic-survival phenotype of the CLB2-dbΔ clb5Δ mutant con-
sidered in this paper. From observations of single cells, we have 
measured the statistical properties of cell cycle progression in 
populations of wild-type and mutant cells growing on raffinose 
medium. These statistical measurements are used to test the best 
current model of the budding yeast cell cycle,14 as well as to pro-
vide constraints on future modeling efforts.

In the deterministic model on which our work is based, 
the stochastic phenotype was rationalized by choosing param-
eters such that mutant cells are inviable at fast growth rates 
(μ > μ

crit
) and viable at sufficiently slow growth rates (μ < μ

crit
). 

The boundary between viability and inviability of mutant cells 
depends on the relative amounts of Clb2 and Sic1 in telophase. If 
Clb2-dependent kinase activity is not too large in telophase, then 
Sic1 can rapidly accumulate, bind to and inhibit Cdc28:Clb2 
and drive the cell into G

1
 phase. But if a telophase cell has a 

little too much Clb2-dependent kinase activity, then Sic1 cannot 
make a comeback and the cell arrests in telophase. Because Clb2 
synthesis in the model depends on cell size, mutant cells that are 
growing more rapidly or that are exceptionally large at birth will 
have so much Clb2 protein at the end of the cell cycle that they 
arrest in telophase. Mutant cells that are growing more slowly or 
are smaller at birth, will have less Clb2 protein at the end of the 
cell cycle and a greater chance of dividing and returning to G

1
. 

This intuitive explanation of the mutant phenotype captures the 
basic mechanism, but in the full model there are many interact-
ing feedback loops that govern exit from mitosis and therefore 
many ways in which fluctuations of protein levels can influence 
the transition. A satisfactory explanation of the mutant pheno-
type requires an appropriate stochastic version of the model.

In order to perform stochastic simulations of the deterministic 
model of Chen et al.14 which is formulated in terms of dimension-
less concentration variables, it must be converted into variables 
that reflect the true numbers of molecules of regulatory proteins 
in a yeast cell (see Methods). Treating the phenomenological 
rate laws of the Chen-2004 model as reaction propensities, we 
simulated molecular fluctuations in the regulatory network by 
Gillespie’s stochastic simulation algorithm.16 This approach 
allows for straightforward conversion of a deterministic model 
to a stochastic version,45 but it is subject to some uncertainties.42 
As a first step to explore the stochastic phenotype of CLB2-dbΔ 
clb5Δ mutant cells, we opted for the simplified approach. More 
accurate and reliable models, based on multisite phosphorylation 
mechanisms that are perfectly suitable for stochastic simulation 
by Gillespie’s algorithm, are currently under development.47,48

Analysis of stochasticity in gene expression in yeast has shown 
that the dominant component of noise is extrinsic as opposed 
to intrinsic in character.49 While using Gillespie’s algorithm to 

exit the cell cycle. The simulated distribution of the mutant cells 
in raffinose (black dashed line in Fig. 3B) compares favorably 
with the distributions observed experimentally.

From Table 1 we see that, in accord with the experimental 
results, the standard deviations of the statistics for our simula-
tions increase by a factor of about two between the wild-type 
and mutant cases. On the other hand, the values of the stan-
dard deviations are about half those measured in the experiment. 
This lower noise level of simulation as compared to experiments 
can also be seen from the cumulative distribution functions in 
Figure 3B. For a deterministic simulation, the distribution func-
tions would have no rounded corners and would drop vertically 
from a probability of 1 to a probability of 0. The rounded corners 
and non-vertical slopes are due to the effects of stochastic fluc-
tuations of proteins on progression through the cell cycle. The 
roundness of the corners is greater and the slopes less steep for the 
experimental results, indicating significantly more noise in the 
experiments than in the simulations. The lower noise level in the 
simulation can also be seen by comparing Figure 4H to E–G. 
The simulated histogram of interdivision times shows a very 
quick drop towards zero after 200 minutes, whereas the experi-
mental histograms show much heavier tails.

The dendrograph for simulated mutant cells (Fig. 5D) shows 
that while the original mutant cell divides once and then appears 
to exit the cell cycle, the daughter cell and its progeny divide 
fairly regularly. The overall high probability of not dividing, as 
seen in Figure 3B, appears to be due mainly to the many cells in 
the simulation that never divide at all.

The noise in our simulations can be increased by decreasing 
the average cell volume used in the simulations from 30fL to 
15fL, hence halving the average number of molecules per cell. 
The result, seen in Table 1, is that the mean division times stay 
about the same while the standard deviations increase signifi-
cantly, as expected. In addition, fewer cells exit the cell cycle and 
so the NDT decreases into the range seen in the experiments.

We can also look at the effect of decreasing the MDT of the 
simulation from 160 minutes to 150 minutes. Table 1 shows, 
as expected, that the mean division times decrease to reflect 
the new MDT while the standard deviations remain about 
the same. The number of cells exiting the cell cycle increases 
(i.e., NDT increases significantly) because we are nearer to the 
deterministic MDT survival limit.

Although we did not simulate the case where the mutant cells 
grow more slowly than the wild-type cells, it is straightforward to 
see what would happen. If the wild-type cells are allowed to grow 
somewhat faster by decreasing their MDT, the NDT of the wild 
type would decrease to track the new MDT, and the net result 
would simply be an increase in the difference between the wild-
type and mutant NDTs. This would not change the fact that the 
main reason for the difference in NDTs is the larger number of 
mutants exiting the cell cycle.

Discussion

Mutant strains are routinely used to unravel the operation of 
regulatory networks in normal and diseased cells. From the 
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clb5::HIS3 CLB2-db trp1::TRP1::GAL-SIC1 leu2 ura3 his3 ade2 
can1), which lacks the CLB5 gene, carries a CLB2 gene that lacks 
the normal destruction box and is kept alive by expressing Sic1 
from a galactose-inducible promoter. Yeast strain w303 (MATa 
leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15), which is 
the background of RW54a, was used as a control. Cultures were 
grown overnight in Synthetic Complete (SC) medium (6.7 g/L 
yeast nitrogen base, 1.92 g/L Yeast Synthetic Drop-out without 
tryptophan, 4 mg/L tryptophan) containing 20 g/L galactose. 
For observation on the microscope, cultures were washed twice in 
phosphate-buffered saline (PBS) and resuspended in SC medium 
containing either 20 g/L raffinose or 20 g/L glucose.

Microscopy. To allow the simultaneous observation of both 
wild-type and mutant cultures, a standard #1.5 coverslip was 
divided into two halves with RTV silicone and allowed to cure 
for 24 hours. 3.5 μL of either the wild-type or mutant culture was 
added to each half of the coverslip, and each was covered with a 
thin slab of SC agar containing the appropriate carbon source. 
A microscope slide was then placed on top of the agar slabs, and 
sealed to the coverslip with paraffin to reduce sample evaporation 
and cell motion.

Twenty representative fields-of-view were manually selected for 
each culture on the slide, and phase contrast images were acquired 
at 4 minute intervals over a 10 hour period on a DeltaVision 
Core microscope (Applied Precision, Inc.,) with a 60x PlanApo 
PH3 phase-contrast, oil immersion objective (NA = 1.4). This 
system has a motorized x-y-z stage, automatic focusing, motor-
ized illumination shutters and a CoolSNAP HQ2 CCD camera 
(Photometrics).

Image processing. Budding events were manually recorded 
for each cell by identifying the frame in which a bud protrusion 
was first visible. This information was then used to calculate the 
interval between consecutive budding events for an individual 
cell (inter-bud time of a mother cell) and the interval between the 
emergence of a bud and the first budding event for the resulting 
cell (birth to bud time of a daughter cell).

Conversion of deterministic model to a stochastic model. 
The mathematical cell cycle model used in this work is based 
on reference 14. This deterministic model is written in terms of 
dimensionless concentrations and uses phenomenological rate 
laws, such as Michaelis-Menten. To simulate this model stochas-
tically, we converted the model from dimensionless variables, 
[S

i
]

dimensionless
, to numbers of molecules per cell by defining a set 

of characteristic concentrations C
i
 for each species such that the 

concentration of each species is [S
i
] = C

i
 [S

i
]

dimensionless
 and the 

number of molecules per cell is N
i
 = [S

i
]·V·N

A
, where V is cell 

volume (30 fL) and N
A
 is Avogadro’s number. These characteris-

tic concentrations are listed in Table 3 and the details of the con-
version are contained in reference 52. The phenomenological rate 
laws in the model were treated as reaction propensities and the 
temporal evolution of the model was computed using Gillespie’s 
stochastic simulation algorithm.16

Some parameters of the Chen-2004 model were changed 
slightly to increase the importance of Clb5 in wild-type cells, 
allowing stochastic simulations of the mutant strain to conform 
more closely to the experimental results. These minor changes 

simulate the progress of individual reactions in our model helps 
to account for the intrinsic noise, it does not directly account for 
extrinsic noise. However, two of the major sources of extrinsic noise 
are the growth and division of cells, and the existence of common 
upstream regulators whose intrinsic variation is passed on to regu-
lated genes as an extrinsic variation.50 Since our model explicitly 
accounts for increasing cell mass, non-uniform cell mass at divi-
sion, and the effect of upstream regulators on downstream targets, 
we are including some of the major sources of extrinsic noise.

The standard deviation of inter-division times that we compute 
from our model is only one-half the value we have measured experi-
mentally, suggesting that noise levels in our simulations are too low. 
Probably the biggest reason for underestimating noise levels is that 
our model does not include mRNAs explicitly (as they were not a 
part of the Chen-2004 deterministic model), and therefore we are 
only modeling protein noise. Previous work with a highly simpli-
fied cell cycle model has shown that noise introduced by the small 
numbers of mRNA molecules in yeast cells may be the dominant 
source of intrinsic noise in cells.43 Thus, future models will need to 
incorporate the effects of small abundances of mRNAs on protein 
variation, although how to realistically capture this complicated 
process in a simple manner is the object of ongoing research.51

Comparison of the cumulative distribution functions of cycle 
times (Fig. 3B) shows that our simulations somewhat overestimate 
the number of mutant cells that exit the cell cycle. As mentioned, 
this is because a larger proportion of cells never divide at all in the 
simulation as compared to the experiments. Examination of the 
underlying deterministic model shows that cells with small initial 
mass divide whereas those with large initial mass do not. Because 
the fate of a cell in the deterministic model is so intimately tied to 
its birth mass, we were careful in specifying the initial conditions 
for our simulation of mutant cell populations (see Methods). 
Nonetheless, many of these cells are evidently too large to divide 
within the context of our current model, even with the help of 
molecular noise. Future models will need to look more closely at 
the coupling of cell cycle progression to cell growth.

In summary, we have experimentally explored the stochas-
tic behavior of an interesting mutant that provides a significant 
quantitative test of our current understanding of the cell cycle 
regulatory network as embodied in a detailed mathematical 
model. A stochastic version of this model captures the experi-
mental observations reasonably well. Remaining discrepancies 
between the experimental and simulated data suggest areas where 
the model needs to be improved in the future.

While this paper has concentrated on the cell cycle in budding 
yeast, it is motivated by the overarching goal of understanding 
how to use stochastic phenotypes to improve our understanding 
of biological systems as embodied in mathematical models. It is 
expected that such stochastic phenotypes will prove important 
in medicine for understanding diseased states and therapeutic 
interventions.

Materials and Methods

Strains and media. From F.R. Cross (Rockefeller University), 
we obtained Saccharomyces cerevisiae strain RW54a (MATa 
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if  {[X(previous time step) > EventThreshold] AND [X(present 
time step) < EventThreshold] AND EventFlag = TRUE}

then (event actions are triggered; EventFlag ← FALSE)
In this case, LicenseThreshold = 1.5 * EventThreshold. 

For an event triggered by X rising above a threshold, we set 
LicenseThreshold = 0.5 * EventThreshold.

Data processing. The number doubling time, NDT, was 
computed by plotting the logarithm of the cumulative number of 
buds (divisions) as a function of time to produce a growth curve 
for the cells. Data for the time window 300 to 600 minutes was 
fit to a straight line using least squares and the NDT was com-
puted as log(2) divided by the slope of this line.

To estimate the probability that the experimental inter-bud 
time was greater than a specified time T we used the Kaplan-
Meier estimator.53 This estimator is frequently used in survival 
analysis to provide the maximum likelihood estimate of the sur-
vival function, which is equivalent to the probability distribution 
we are trying to estimate. The advantage of this estimator is that it 
allows us to account accurately for right-censored data—data for 
which we don’t know the exact time interval but for which we do 
know that the time interval is greater than some value. Such cen-
sored data arises in our experiments because the inter-bud times 
associated with the first bud time of a cell, with the last bud time 
of a cell, and with cells that do not bud at all during the observa-
tion window, are not known exactly but are only known to be 
greater than certain values. We include all of this censored data in 
our estimation of the probability distribution, which is computed 
using the MATLAB command ‘ecdf ’. The rightmost point plot-
ted in these curves corresponds to the largest inter-bud time for 

(detailed in Table 2) did not change the deterministic results for 
the majority of mutants considered in the 2004 paper.

Stochastic simulations. To provide reasonable initial condi-
tions for the simulations, we attempted to mimic the experimen-
tal protocol. Starting with one wild-type cell in galactose medium 
(MDT = 159 minutes), we ran a pre-simulation for 2,000 min 
and saved to a file the biochemical state for each of the 4,615 cells 
that were present at the end of this simulation. To simulate the 
wild-type cells in raffinose, 1,000 simulations of 600 min dura-
tion were run, each starting with a single cell that was chosen 
randomly from the file of saved cells.

To simulate the CLB2-dbΔ clb5Δ GAL-SIC1 mutant strain, 
we started with one mutant cell in galactose medium with high 
Sic1 (synthesis rate increased to 6.66 times the basal rate) and ran 
the pre-simulation for 2,000 min, by which time the cell popula-
tion was expanding exponentially. The biochemical state of each 
of the 1,290 cells present at this time was saved to a file. This 
pre-simulation mimicked the experimental procedure wherein 
the CLB2-dbΔ clb5Δ GAL-SIC1 strain was grown to log phase 
in galactose before the cells were transferred to either glucose or 
raffinose medium, repressing GAL-SIC1 transcription. To simu-
late the CLB2-dbΔ clb5Δ GAL-SIC1 mutants in glucose and raf-
finose, 1,000 simulations of 600 min duration were run, each 
starting with a single cell that was chosen randomly from the 
saved file.

In the deterministic model, events are used to mark cell cycle 
checkpoints and division. A typical deterministic event has the 
form:

if {[X(previous time step) > Threshold] AND 
[X(present time step) < Threshold]}

then (event actions are triggered),
by which we mean that when the value of variable X passes a 

specified threshold with a negative slope then the actions asso-
ciated with the event occur. For example, cell division may be 
triggered when the decreasing abundance of Clb2 passes a speci-
fied threshold and causes the molecular contents of the cell to be 
divided between mother and daughter.

In a stochastic simulation, random fluctuations can cause a 
variable’s value to cross a threshold many times in a short period 
of time, triggering a number of unwanted events. To prevent 
unwanted triggering due to noise, we introduce a second thresh-
old to license the occurrence of an event. For example, the event 
condition above is replaced by

if {[X(previous time step) < LicenseThreshold] AND 
[X(present time step) > LicenseThreshold]}

then (EventFlag ← TRUE)

Table 2. Changes to the parameters of the Chen-2004 model to 
 increase the importance of Clb5

ksb5’ = 0.001 (0.0008) kdb5” = 0.08 (0.16) ec1b5 = 0.4 (0.1)

ef6b5 = 0.2 (0.1) kppc1 = 3.8 (4) kppf6 = 3.8 (4)

eicdhb5 = 16 (8) eorib5 = 0.3 (0.9) ebudb5 = 0.25 (1)

ka20’ = 0.06 (0.05) ka20” = 0.18 (0.2) kdb2p = 0.12 (0.15)

ec1b2 = 0.4 (0.45) ef6b2 = 0.52 (0.55) eicdhb2 = 1.4 (1.2)

Numbers in parentheses represent the original parameter values.

Table 3. Characteristic concentrations of the species used in the 
 mathematical model

Species
Characteristic 

 concentration (nM)
Species

Characteristic 
 concentration (nM)

Cln2 40 Swi5 57.5

Clb2 40 BUDa 10

Clb5 40 Bub2b 100

Sic1 40 C2, F2 40

Cdc6 40 C5, F5 40

Cdc20 150 CKIt 40

Cdh1b 100 Cln3 40

Cdc14 18 Ieb 100

Net1 18 Mad2 40

esp1 3.3 oRIa 10

pds1 3.3 SpNa 10

Cdc15 8 pe 3.3

Lte1 10 ppXb 100

SBF 110 ReNt 18

Mcm1 100 tem1 20
aBUD, ORI and SPN are timing variables and we used a concentration of 
10 nM to introduce reasonable noise into these timings. bFor Ie, Cdh1, 
Bub2 and ppX, the characteristic concentrations are unknown and so 
we assumed 100 nM as a reasonable guess. All other concentrations 
were approximated from data given in references 19 and 54.
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which we observed consecutive budding events within the experi-
mental window. Similar statements hold for the simulated data 
where we recorded division times as opposed to inter-bud times.
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