
Short Communication

Role of Intestinal Cytochrome P450 (P450) in Modulating the
Bioavailability of Oral Lovastatin: Insights from Studies on the

Intestinal Epithelium-Specific P450 Reductase Knockout Mouse
Received December 17, 2010; accepted February 24, 2011

ABSTRACT:

The extents to which small intestinal (SI) cytochrome P450 (P450)
enzymes control the bioavailability of oral drugs are not well de-
fined, particularly for drugs that are substrates for both P450 and
the P-glycoprotein (P-gp). In this study, we have determined the
role of SI P450 in the clearance of orally administered lovastatin
(LVS), an anti-hypercholesterolemia drug, using an intestinal epi-
thelium (IE)-specific P450 reductase knockout (IE-Cpr-null) mouse
model. In the IE-Cpr-null mouse, which has little P450 activities in
the IE, the oral bioavailability of LVS was substantially higher than
that in wild-type (WT) mice (15 and 5%, respectively). In control
experiments, the clearance rates were not different between the
two strains, either for intraperitoneally dosed LVS, which bypasses

SI metabolism, or for orally administered pravastatin, which is
known to be poorly metabolized by P450. Thus, our results dem-
onstrate a predominant role of SI P450 enzymes in the first-pass
clearance of oral LVS. The absence of IE P450 activities in the
IE-Cpr-null mice also facilitated the identification of the molecular
targets for orally administered grapefruit juice (GFJ), which is
known to inhibit LVS clearance in humans. We found that pretreat-
ment of mice with oral GFJ enhanced the systemic exposure of
LVS in WT, but not in IE-Cpr-null mice, a result suggesting that the
main target of GFJ action in the small intestine is P450, but not
P-gp.

Introduction

Cytochrome P450 (P450)-mediated drug metabolism in the small
intestine could have a major impact on the bioavailability and, con-
sequently, the therapeutic efficacy or toxicity of a given drug (Thum-
mel et al., 1997; Lin et al., 1999; Suzuki and Sugiyama, 2000;
Kaminsky and Zhang, 2003). Orally administered drugs are poten-
tially subject to first-pass metabolism, initially in the small intestine,
and then in the liver, before they reach systemic circulation. Knowl-
edge of the relative organ contributions of liver and small intestine to
the first-pass metabolism of a given drug is important, for improve-
ments in drug bioavailability and for identification of sites of potential
drug-drug interactions. Given the tissue differences between liver and
small intestine in the expression of various P450 enzymes, other drug
metabolism enzymes, and drug transporters (Suzuki and Sugiyama,
2000; Doherty and Charman, 2002; Ding and Kaminsky, 2003; Paine
et al., 2006), the relative contributions of liver and small intestinal (SI)
P450 enzymes to first-pass metabolism will likely vary for each drug.

It has been difficult to directly demonstrate the specific contribu-
tions of SI P450 enzymes to the first-pass clearance of orally admin-
istered drugs in vivo, until the recent generation of mouse models that
have tissue-specific alterations of P450 activities in the intestine.

These models include our intestinal epithelium (IE)-specific cyto-
chrome P450 reductase (CPR) knockout mouse model (IE-Cpr-null),
in which the activities of all microsomal P450s are suppressed in the
intestinal epithelial cells (Zhang et al., 2009), and the Cyp3a(�/�)V
model, in which human CYP3A4 is expressed specifically in IE cells
of the Cyp3a-null mouse (van Herwaarden et al., 2007). Previously,
we have used the IE-Cpr-null mouse to demonstrate the role of SI
P450s in modulating the bioavailability of nifedipine (Zhang et al.,
2009), a drug with high solubility and high permeability [Biopharma-
ceutics Classification System (BCS) class 1], and thus expected to be
eliminated mainly through metabolism, rather than by the efflux
transporter P-glycoprotein (P-gp) (Wu and Benet, 2005). In this study,
we have further evaluated the role of SI P450 enzymes in the first-pass
metabolism of lovastatin (LVS), as a representative of BCS class-2
drugs (with low solubility and high permeability), which are expected
to be eliminated by both P450-mediated metabolism and efflux trans-
port (Wu and Benet, 2005).

LVS belongs to the statin family of drugs that are widely used for
the treatment of hypercholesterolemia (Hsu et al., 1995; Schachter,
2005). In a clinical environment, LVS is administered orally in its
lactone form (as a prodrug), which is readily converted to the active,
�-hydroxy acid form (LVA) in vivo. LVS has a very low oral
bioavailability (�5%) (Schachter, 2005). In the liver, LVS is mainly
metabolized by CYP3A (Wang et al., 1991), and both LVS and LVA
are CYP3A substrates (Ishigami et al., 2001). LVS and LVA are also
substrates for P-gp; the latter has been suggested to influence the
pharmacokinetic properties of various statins (Chen et al., 2005).
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However, the precise roles of SI P450 enzymes (including CYP3A),
as well as P-gp, in the first-pass clearance of LVS had not been
determined.

In the present study, we first confirmed the IE-specific suppression
of LVS metabolism in the IE-Cpr-null mice. Then we compared,
between IE-Cpr-null and wild-type (WT) mice, pharmacokinetic pro-
files and parameters for plasma LVA, after oral, intraperitoneal, or
intravenous administration of LVS, to show the impact of the IE-
specific loss of P450 activity toward LVS on the first-pass clearance
and oral bioavailability of LVS. To further confirm the direct involve-
ment of SI P450-mediated metabolism (rather than any unexpected
changes resulting from the Cpr gene deletion and any associated
genomic responses) in controlling LVS bioavailability, we further
studied the clearance of pravastatin (PVS; as a negative control),
which is known to be scarcely metabolized by P450 (e.g., Jacobsen et
al., 1999a,b). PVS, a BCS class-3 drug (with high solubility, low
permeability), is expected to be eliminated mainly through excretion
into bile and urine without undergoing metabolism (Wu and Benet,
2005). In addition, by taking advantage of the absence of P450
activities in the small intestine of the IE-Cpr-null mice, we determined
whether oral administration of grapefruit juice (GFJ), which is known
to inhibit CYP3A-mediated metabolism of many drugs (Bailey et al.,
1998), and to reduce LVS clearance in patients (Kantola et al., 1998),
can further enhance LVS bioavailability in the IE-Cpr-null mice,
through inhibition of P-gp. Our findings demonstrate the value of the
IE-Cpr-null mouse model for identification of the specific roles of SI
P450 enzymes in the first-pass clearance of BCS class-2 drugs.

Materials and Methods

Animals and Treatments. Adult (2–4-month-old) female IE-Cpr-null
(Zhang et al., 2009) mice and age-matched WT littermates were used. Animals
were given food and water ad libitum. For LVS ((1S,3R,7S,8S,8aR)-8-{2-
[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl}-3,7-dimethyl-1,2,3,7,8,8a-
hexahydronaphthalen-1-yl (2S)-2-methylbutanoate; Cayman Chemical, Ann
Arbor, MI) administration, mice were given a bolus dose (at 25 or 50 mg/kg)
of LVS [dissolved in dimethyl sulfoxide/Tween 80/phosphate-buffered saline
(1:2:7, v/v/v) at 2.5 or 5 mg/ml, respectively], either via oral gavage or through
intraperitoneal injection, or they received intravenous injections of LVS (at 2.5
mg/kg; dissolved in the aforementioned vehicle at 0.25 mg/ml). For GFJ
(Florida brand frozen juice concentrate; Wal-Mart) administration, GFJ (4�-
strength juice, 20 ml/kg) was given via oral gavage 2 h before LVS (12.5
mg/kg) administration. For PVS ((3R,5R)-3,5-dihydroxy-7-((1R,2S,6S,8R,
8aR)-6-hydroxy-2-methyl-8-{[(2S)-2-methylbutanoyl]oxy}-1,2,6,7,8,8a-
hexahydronaphthalen-1-yl)-heptanoic acid; Cayman Chemical) administration,
mice were given PVS (dissolved in phosphate-buffered saline at 2.5 or 5
mg/ml) via intraperitoneal injection (25 mg/kg) or oral gavage (50 mg/kg). All
animal studies were approved by the Institutional Animal Care and Use
Committee of the Wadsworth Center.

Pharmacokinetic Analysis. For mice (five to six in each group) treated
with LVS or PVS via oral gavage or intraperitoneal injection, blood samples
were collected from the tail vein at 0.25, 0.5, 1, 1.5, 2, and 4 h after drug
administration; whereas, for mice treated with LVS intravenously, blood
samples were obtained from the saphenous vein at 10 min, 0.5, 1, 1.5, and 2 h
after dosing. LVA and PVS were extracted from plasma by solid-phase
extraction. In brief, 10 �l of plasma was spiked with an internal standard,
simvastatin [(Cayman Chemical) 40 ng/ml, in methanol], before dilution with
2 ml of deionized water; the mixture was vortex-mixed and then loaded onto
a Waters Oasis HLB solid-phase extraction column (Waters, Milford, MA).
The column was washed with 1 ml of H2O before the analytes were eluted with
250 �l of acetonitrile/H2O (8/2, v/v); 5 �l of the eluate was injected for liquid
chromatography tandem mass spectrometry (LC-MS/MS) analysis. Pharma-
cokinetic parameters were calculated from the plasma concentration-time data
by a noncompartmental approach using WinNonlin software (version 5.1;
Pharsight, Mountain View, CA). Statistical significance of differences between
two groups for various parameters was analyzed using the Student’s t test.

LC-MS/MS Analysis of LVA and PVS. A LC-MS/MS system consisting
of an Agilent 1200 Series high-performance liquid chromatography (Agilent
Technologies, Santa Clara, CA) and an ABI 4000 Q-Trap mass spectrometer
(Applied Biosystems, Foster City, CA), with a Waters X-Terra MS C18
column (100 � 3.0 mm i.d., 3.5 �m) was used. The mass spectrometer was set
to the multiple-reaction monitoring mode and was operated with an electros-
pray ionization source. The method for the analysis of LVS is essentially the
same as previous reported (Lodge et al., 2008). The solvent system comprised
solvent A (0.05% formic acid) and solvent B (100% acetonitrile). A 4-min
linear gradient from 55% B to 95% B was applied at a flow rate of 0.65
ml/min, followed by a 1-min isocratic elution at 95% B and then a 6-min wash
at 55% B, before returning to the starting condition. LVS and simvastatin were
monitored at m/z 423/303 and m/z 437/303, respectively, in positive ion mode.

For the analysis of PVS, the solvent system comprised solvent A (50 mM
ammonium acetate) and solvent B (100% acetonitrile). A 4-min linear gradient
from 25% B to 75% B was applied at a flow rate of 0.65 ml/min, followed by
a 2-min isocratic elution at 75% B and then a 6-min wash at 25% B, before
returning to the starting condition. PVS and simvastatin were monitored at m/z
423/321 and m/z 435/319, respectively, in negative ion mode (Jain et al., 2007).
The MS instrumental parameters were the same as described previously
(Lodge et al., 2008). Notably, PVS can rapidly isomerize to an isoform under
acidic condition (Mulvana et al., 2000); consequently, two PVS peaks are
detected when the drug was administered by oral dosing. The 3��-hydroxy
isomer of PVS was confirmed using a standard provided by Bristol-Myers
Squibb (Wallingford, CT). The two peaks were combined for quantification.

LVA and PVS standard (4–5000 ng/ml), as well as the internal standard,
were added to blank mouse plasma to construct the calibration curve. The
recoveries of added standards in blank plasma were �85% at all concentra-
tions tested.

Assays for In Vitro Metabolism of LVS. Tissues from three to five mice
were combined for each microsomal preparation. Epithelial cells from the
small intestine were isolated, and microsomes were prepared as described
previously (Zhang et al., 2003). Liver microsomes were prepared essentially as
described previously (Fasco et al., 1993), but with use of protease inhibitors,
as described for the preparation of SI microsomes (Zhang et al., 2003).
Microsomes (0.1 mg) were incubated with LVS (100 �M) in a 200-�l reaction
mixture containing 0.1 M potassium phosphate buffer, pH 7.4, 1.0 mM
NADPH, and 3 mM MgCl2 for 30 min at 37°C. The reaction was initiated by
the addition of NADPH, and it was terminated by the addition of 400 �l of
acetonitrile to the reaction mixture. Control experiments were performed, in
which NADPH was omitted. Simvastatin was added as the internal standard for
monitoring extraction efficiency. After centrifugation at 1500g for 10 min, the
organic layer was transferred to a new tube and spun at 1500g again. A 5-�l
aliquot of the supernatant fraction was taken for LC-MS/MS analysis. For the
detection of LVS metabolites, the same high-performance liquid chromatog-
raphy column and solvent system as described above for LVS analysis were
used; but a 6-min linear gradient from 30 to 90% B was applied at a flow rate
of 0.65 ml/min, followed by a 1-min isocratic elution at 90% B and then a
6-min wash at 30% B, before returning to the starting condition. The two major
metabolites of LVS, 6��-hydroxy LVS and 6�-exomethylene LVS (Jacobsen et
al., 1999a,b), were monitored at m/z 421 and m/z 403, respectively, in positive
ion mode. Although metabolite standards were not available, the identities of
the two metabolites were confirmed by detection of their unique UV spectra,
as described in a previous report (Vyas et al., 1990). For quantitation, LVS was
used as a surrogate for construction of a calibration curve (with simvastatin as
the internal standard), and relative activities in different microsomal prepara-
tions were determined.

Results and Discussion

The Tissue-Specific Loss of CPR Led to a Substantial Reduc-
tion in the Rates of Microsomal LVS Metabolism in Enterocytes,
but Not in Liver. The impact of the abrogated intestinal epithelial
CPR expression on intestinal and hepatic (as a control) microsomal
P450 activities toward LVS was examined by comparing rates of in
vitro metabolism between WT and IE-Cpr-null mice. The intestinal
microsomal rates of formation of the two previously identified major
LVS metabolites, 6��-hydroxyLVS and 6�-exomethyleneLVS, were
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reduced by more than 90% in the IE-Cpr-null mice, compared with
WT mice; whereas the hepatic microsomal rates of metabolites for-
mation were similar between the two mouse strains (Fig. 1A). The
extent of decrease in intestinal microsomal metabolic activity toward
LVS was similar to the extent of reductions found previously for the
metabolism of nifedipine and benzo(a)pyrene in the IE-Cpr-null mice
(Zhang et al., 2009; Fang and Zhang, 2010). The residual activity
detected in SI microsomes from the IE-Cpr-null mice can be ex-
plained by the presence of low levels of CPR (derived from nonen-
terocyte IE cells and contaminating submucosal cells) in the micro-
somal preparations (Zhang et al., 2009). The tissue-specific impact of
the CPR loss on intestinal LVS metabolism confirms the validity
of using the IE-Cpr-null mouse for studying the specific contributions

of intestinal (versus liver) P450 enzymes to the first-pass clearance
of LVS.

Intestinal P450s Play an Important Role in the First-Pass
Clearance of Orally Administered LVS. The role of intestinal P450
enzymes in the clearance of orally administered LVS was assessed by
comparing the pharmacokinetics of LVS between WT and IE-Cpr-
null mice. The pharmacokinetic profiles and parameters are shown in
Fig. 1, B to D, and in Table 1, respectively. Preliminary experiments
(data not shown) indicated that there was no significant difference
between male and female mice in LVS clearance; therefore, only
female mice were used for the pharmacokinetic studies. Most notably,
the mouse is known to differ substantially from humans for being able
to rapidly hydrolyze LVS to produce LVA (Duggan et al., 1989); the
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FIG. 1. In vitro metabolism and in vivo clearance of LVS in IE-Cpr-null and WT mice. A, in vitro metabolism of LVS by SI and hepatic microsomes. Relative activities
in the formation of LVS metabolites from LVS were determined for various microsomal preparations. Reaction mixtures contained phosphate buffer, pH 7.4, 100 �M LVS,
and 0.5 mg/ml microsomal protein, in a final volume of 0.2 ml. Reactions were carried out at 37°C for 30 min, in the presence or absence of 1 mM NADPH. Each
microsomal preparation was obtained from pooled tissues from two to three adult female mice; three microsomal preparations were analyzed for each group. The values
reported are percentages of the rates determined in respective WT microsomes (means � S.D., n � 3). ��, P � 0.01, compared with WT mice (Student’s t test).
B–D, plasma levels of LVA in IE-Cpr-null and WT mice after a single oral, intraperitoneal, or intravenous dose of LVS. Adult female IE-Cpr-null and age-matched WT
mice (5–6 mice per group) were given a single dose of LVS, via oral gavage at 25 mg/kg (B), through intraperitoneal injection at 25 mg/kg (C), or via intravenous injection
at 2.5 mg/kg (D). Plasma samples were obtained at various times after dosing. The results shown are typical of two separate experiments. Values represent means � S.D.
(n � 5–6). ��, P � 0.01, compared with WT mice (Student’s t test). E and F, effects of pretreatment with GFJ on systemic bioavailability of oral LVS in IE-Cpr-null and
WT mice. Adult female mice (5–6 mice per group) were given a single dose of 4� strength GFJ through oral gavage at 20 ml/kg, or they were given water (vehicle control),
followed 2 h later by a single oral dose of LVS at 12.5 mg/kg. Plasma samples were obtained at various times after LVS dosing, for determination of LVA levels. Values
shown represent means � S.D. (n � 5–6). �, P � 0.05 and ��, P � 0.01, compared with the corresponding vehicle-pretreated group (Student’s t test).
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LVS lactone is barely detected in mouse blood after LVS dosing,
whereas LVA is the major circulating form of the drug (Lodge et al.,
2008). Therefore, plasma LVA, rather than LVS, levels were deter-
mined for LVS pharmacokinetics studies in mice.

When administered orally at 25 mg/kg, LVS was cleared quickly in
WT mice; LVA (or LVS) was no longer detected in the blood at 4 h
after dosing. However, LVS clearance in IE-Cpr-null mice was much
slower than in WT mice. IE-Cpr-null mice had significantly higher
blood LVA levels at each time point after oral dosing (Fig. 1B). The
AUC0-�, Cmax, and t1/2 values were 3.2-, 2.7-, and 1.4-fold, respec-
tively, greater, whereas the clearance rate was 3.3-fold lower, in
IE-Cpr-null than in WT mice (Table 1). These results indicated that
intestinal P450 enzymes played an important role in the clearance of
orally administered LVS. The latter conclusion was further supported
by the finding that, when LVS was administered by an intraperitoneal
injection, there was no significant difference between IE-Cpr-null and
WT mice in either pharmacokinetic profiles (Fig. 1C) or in any of the
calculated pharmacokinetic parameters (data not shown).

To determine the impact of intestinal CPR loss on the bioavailabil-
ity of orally administered LVS, we further performed pharmacokinetic
studies for intravenously administered LVS (at 2.5 mg/kg) in the
IE-Cpr-null and WT mice. As expected, there was no significant
difference between IE-Cpr-null and WT mice either in pharmacoki-
netic profiles (Fig. 1D) or in any of the calculated pharmacokinetic
parameters (Table 1). The bioavailability of oral LVS (Foral) was
calculated to be 5% in WT mice, and it was increased to 15% in the
IE-Cpr-null mice. These findings indicate that intestinal P450 en-
zymes have a significantly role in lowering the bioavailability of oral
LVS in WT mice.

Intestinal P450s Have Little Effect on the Clearance of Orally
Administered PVS. To confirm that the decrease in the first-pass clear-
ance of oral LVS in the IE-Cpr-null mice was due to the loss of
P450-mediated LVS metabolism, rather than to other unidentified events
not related to P450s’ function in drug metabolism, we performed phar-
macokinetic studies for PVS, a drug that is similar (in chemical structure
and drug target) to LVS but is in hydroxyl acid form and is not a good
P450 substrate. As expected, when PVS was administered either orally at
50 mg/kg or through intraperitoneal injection at 25 mg/kg, there was no
significant difference between WT and IE-Cpr-null mice in the pharma-
cokinetic profiles (Fig. 2), indicating that the loss of intestinal CPR did
not alter the clearance of orally or intraperitoneally administered PVS.
These data strongly support the notion that the increase in the oral
bioavailability of LVS in IE-Cpr-null mice is due to the suppression of SI
P450-mediated LVS metabolism.

Utility of the IE-Cpr-Null Mouse Model for Identification of the
Molecular Target of GFJ Inhibition in the Small Intestine. GFJ
can increase the oral bioavailability for a number of drugs known to
be metabolized by CYP3A, including LVS (Mertens-Talcott et al.,
2006). Orally administered GFJ can inhibit intestinal, but apparently

not hepatic, CYP3A-mediated drug metabolism (Bailey et al., 1998).
However, GFJ components can also inhibit efflux transport (Edwards
et al., 1999; Honda et al., 2004), and it is not clear whether the in vivo
effects of oral GFJ on the bioavailability of a given drug were strictly
due to its inhibition of P450 enzymes. In this study, we have used the
IE-Cpr-null mouse to determine whether the ability of GFJ to inhibit
the first-pass clearance of oral LVS is mediated through its inhibition
of SI P450 (including CYP3A) alone or through its inhibition of both
P450 and P-gp in the small intestine.

As shown in Fig. 1E and in Table 2, when GFJ was administered
orally (at 20 ml/kg) to WT mice at 2 h before LVS dosing, significant
increases in both Cmax and AUC0–4h values were found, compared
with the vehicle-treated group. In contrast, when GFJ was adminis-
tered similarly to IE-Cpr-null mice (Fig. 1F; Table 2), no significant
change was observed in either Cmax or AUC0–4h values, between
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FIG. 2. Plasma levels of PVS in IE-Cpr-null and WT mice after a single oral or
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were given a single dose of PVS through oral gavage at 50 mg/kg (A) or via
intraperitoneal (i.p.) injection at 25 mg/kg (B). Plasma samples were obtained at
various times after dosing. Values represent means � S.D. (n � 5–6).

TABLE 1

Pharmacokinetic parameters for orally or intravenously administered LVS in IE-Cpr-null and WT mice

Data from Fig. 1, B and D, were used for the determination of pharmacokinetic parameters. Adult female IE-Cpr-null and age-matched WT mice (5–6 per group) were given a single dose
of LVS, via oral gavage, at 25 mg/kg, or via intravenous injection, at 2.5 mg/kg. Values represent means � S.D. (n � 5–6).

Route Strain Tmax Cmax t1/2 AUC0-� CL/F

min �g/ml min min � �g/ml ml/min

p.o. WT 27 � 7 0.3 � 0.1 50 � 9 23.5 � 5.1 23.0 � 4.6
IE-Cpr-null 30 � 0 0.8 � 0.1a 68 � 9b 76.4 � 5.1a 7.0 � 0.4a

i.v. WT 10 � 0 1.3 � 0.1 17 � 4 51.5 � 4.4 1.0 � 0.7
IE-Cpr-null 10 � 0 1.4 � 0.1 19 � 4 53.5 � 3.6 1.0 � 0.1

CL/F, apparent clearance.
a P � 0.01 and b P � 0.05, compared to the corresponding WT group (Student’s t test).
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GFJ-treated and vehicle-treated groups. These findings indicate that
SI P450 was the main target, whereas SI P-gp was minimally in-
volved, in the inhibition of oral LVS clearance by GFJ, under the
experimental conditions used.

Summary. We have demonstrated that intestinal P450-mediated me-
tabolism plays an important role in the regulation of LVS oral bioavail-
ability. Our findings further validate the IE-Cpr-null mouse as a powerful
tool for determination of the specific in vivo contributions of intestinal
P450 enzymes to the first-pass clearance of numerous orally ingested
drugs and other xenobiotics, including drugs that are substrates for both
P450 and P-gp. Through the utility of the IE-Cpr-null mouse, we have
also demonstrated that the main target of GFJ action on LVS clearance in
the small intestine is P450, but not P-gp. This latter experiment illustrates
the additional value of the IE-Cpr-null mice for studying the mechanisms
of drug-drug or drug-diet interactions.
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TABLE 2

Pharmacokinetic parameters for orally administered LVS (12.5 mg/kg) in IE-Cpr-null and WT mice pretreated with GFJ

Data from Fig. 1, E–F, were analyzed for the determination of pharmacokinetic parameters. Adult female mice (5–6 per group) were given a single dose of 4� strength GFJ through oral
gavage, at 20 ml/kg, or were given water (vehicle control), followed 2 h later by a single oral dose of LVS, at 12.5 mg/kg. Values represent means � S.D. (n � 5–6).

Strain Pretreatment Tmax Cmax t1/2 AUC0–4 h CL/F

min �g/ml min min � �g/ml ml/min

WT Water 27 � 7 0.2 � 0.0 36 � 5 10.9 � 1.5 22.3 � 2.7
WT GFJ 34 � 11 0.5 � 0.1a 39 � 13 34.4 � 12.7a 8.1 � 2.9a

IE-Cpr-null Water 30 � 0 0.4 � 0.1 36 � 9 30.0 � 5.8 8.7 � 1.7
IE-Cpr-null GFJ 45 � 17 0.4 � 0.2 34 � 12 34.2 � 11.8 8.5 � 4.2

CL/F, apparent clearance.
a P � 0.01, compared to the corresponding water-pretreated group (Student’s t test).
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