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ABSTRACT:

Cytochrome P450 (P450) 2S1 is one of the orphan P450s without a
clear physiological function. Controversy has arisen as to whether
it can interact with NADPH-P450 reductase and accept electrons.
The reduction of 1,4-bis{[2-(dimethylamino-N-oxide)ethyl]lamino}-
5,8-dihydroxyanthracene-9,10-dione (AQ4N) by P450 2S1 was con-
firmed, and the NADPH consumption rates were measured aero-

bically and anaerobically in the absence and presence of the drug.
The reduction kinetics of P450 2S1 were rapid, as measured by
stopped-flow kinetics. These results confirm that P450 2S1 can be
reduced by NADPH-P450 reductase and suggest normal mixed-
function oxidase roles of P450 2S1 to be revealed.

Introduction

Cytochrome P450 2S1 is one of the orphan P450s with unknown
physiological function (Guengerich et al., 2010, 2011). P450 2S1
mRNA can be detected in human skin and liver, and there are also
reports of expression in trachea, lung, stomach, small intestine, and
spleen (Guengerich et al., 2011). The gene is regulated by the Ah
receptor (Rivera et al., 2002, 2007). Although P450 2S1 has been
expressed in Escherichia coli, purified, and studied, its substrate
specificity is still controversial (Wu et al., 2006; Guengerich et al.,
2011). To explain the limited catalytic activity of P450 2S1, Bui and
Hankinson (2009) attempted to measure the formation of the Fe>"-CO
complex under aerobic conditions and concluded that P450 2S1 is not
capable of interacting with NADPH-P450 reductase nor of accepting
electrons from the reductase (Bui et al., 2009, 2011). In contrast,
Nishida et al. (2010) recently observed that a Fe*"-CO complex
formed anaerobically. In that study, P450 2S1 was reported to
reduce the prodrug 1,4-bis{[2-(dimethylamino-N-oxide)ethyl]-
amino }-5,8-dihydroxyanthracene-9,10-dione (AQ4N) to its mono
N-oxide intermediate 1-{[2-(dimethylamino-N-oxide)ethyl]-
amino }-4-{[2-(dimethylamino)ethyl]amino }-5,8-dihydroxyanthra-
cene-9,10-dione (AQ4M) and finally to 1,4-bis{[2-(dimethylami-
no)ethyl]lamino }-5,8-dihydroxyanthracene-9,10-dione (AQ4). A
net 2-electron transfer mechanism was proposed (for AQ4M for-
mation) (Nishida et al., 2010). In this study, we reproduced the
anaerobic reduction of AQ4N, measured NADPH oxidation rates,
and measured the reduction kinetics using a stopped-flow appara-
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tus. Our results confirm that P450 2S1 can efficiently accept
electrons from NADPH-P450 reductase.

Materials and Methods

Chemical and Reagents. Desferoxamine, mitoxantrone, protocatechuate,
and protocatechuate dioxygenase were purchased from Sigma-Aldrich (St.
Louis, MO). AQ4N, AQ4M, and AQN were gifts from Dr. Klaus Pors
(University of Bradford, West Yorkshire, United Kingdom). Human P450 251
(Wu et al., 2006) and rat NADPH-P450 reductase (Hanna et al., 1998) were
expressed in E. coli and purified as reported previously.

Anaerobic Reduction. Anerobic reduction experiments were performed
using an OLIS RSM-1000 stopped-flow instrument (On-Line Instrument Sys-
tems, Bogart, GA). Samples (in glass tonometers) were deaerated using an
argon/vacuum manifold as described previously (Guengerich et al., 2004),
using a protocatechuate/protocatechuate dioxygenase oxygen-scrubbing sys-
tem (Patil and Ballou, 2000). P450 2S1 (2 uM) was preincubated with
NADPH-P450 reductase (4 uM), 120 uM L-a-1,2-dilavoryl-sn-glycero-3-
phosphocholine, 100 mM potassium phosphate buffer (pH 7.4), and AQ4N
(200 wM) and reduced upon the addition of NADPH (150 uM) from a second
syringe. Rates were analyzed using the OLIS software and in GraphPad Prism
(GraphPad Software Inc., San Diego, CA).

Enzyme Activity of P450 2S1 toward AQ4N. Reactions were carried out
in duplicate in 1.5-ml Eppendorf tubes at 37°C. Anerobic incubations were
carried out under a nitrogen atmosphere inside of a glovebox (Labconco
Protector Controlled Atmosphere). Enzyme reaction mixtures typically con-
tained 0.1 uM P450 2S1, 0.2 uM NADPH-P450 reductase, 160 uM L-a-1,2-
dilauoryl-sn-glycero-3-phosphocholine, 1 mM desferoxamine, 100 mM potas-
sium phosphate buffer (pH 7.4), and 200 uM AQ4N (Nishida et al., 2010).
After preincubation for 5 min, the reactions were started by the addition of an
NADPH-generating system (Guengerich and Bartleson, 2007), and aliquots
were terminated by the addition of three volumes of CH;OH (with 5 uM
mitoxantrone as an internal standard) at 0, 1, 2, 3, 4, 5, and 6 min. Samples
were prepared and analyzed by high-performance liquid chromatography, as
described previously (Swaine et al., 2000), with a Thermo Hypersil GOLD
octadecylsilane column (150 X 2.1 mm i.d.; Thermo Fisher Scientific,
Waltham, MA) using isocratic elution with a 50 mM NH,HCO, buffer (pH
3.6)/CH;CN mixture (89:11, v/v). Formation of AQ4M was used to measure
enzyme activity.

ABBREVIATIONS: P450, cytochrome P450; AQ4N, 1,4-bis{[2-(dimethylamino-N-oxide)ethyllamino}-5,8-dihydroxyanthracene-9,10-dione;
AQ4M, 1-{[2-(dimethylamino-N-oxide)ethyl]amino}-4-{[2-(dimethylamino)ethyllamino}-5,8-dihydroxyanthracene-9,10-dione; AQ4,
1,4-bis{[2-(dimethylamino)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione.
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TABLE 1
NADPH oxidation rates

v (min~ ") ¢

Plus air Minus AQ4N 233 +2.6
Plus AQ4N 457 £ 4.7

Minus air Minus AQ4N 12729
Plus AQ4N 282 +0.8

“ Results are means of duplicate experiments * range.

Determination of NADPH Consumption Rates. NADPH oxidation rates
for P450 2S1 were determined using 0.05 uM P450 2S1, 0.10 uM NADPH-
P450 reductase, 160 uM L-a-1,2-dilauoryl-sn-glycero-3-phosphocholine, 1
mM desferoxamine, and 100 mM potassium phosphate buffer, pH 7.4. For the
determination of NADPH consumption rates under anaerobic conditions, re-
constituted enzyme mixtures were deaerated in all-glass anaerobic cuvettes
using an argon/vacuum manifold as described previously (Guengerich et al.,
2004). Reconstituted enzymes were preincubated for 5 min at 37°C in the
presence or absence of AQ4N (200 uM). Reactions were initiated with the
addition of NADPH to a final concentration of 150 uM, and As,, was
monitored (Cary 14/OLIS instrument; On-Line Instrument Systems). Rates
were calculated using the value Ag,,, = 6.22 mM ™' cm™'. Experiments were
conducted in duplicate.

Results and Discussion

The reduction of AQ4N to AQ4M is proposed to be a net 2-electron
transfer mechanism (Nishida et al., 2010). We reproduced the hypoxic
activation of AQ4N by P450 2S1, measured to be 18.2 min~ ! under
anaerobic conditions and <0.5 min~' under aerobic conditions.

The steady-state rates of oxidation of NADPH by P450 2S1 in the
presence of NADPH-P450 reductase were also measured (Table 1).
The higher oxidation rate under aerobic conditions confirms the
acceptance of electrons by P450 2S1 from NADPH-P450 reductase.
Because the rate of AQ4N catalysis under aerobic conditions is very
low, the increased NADPH consumption in the presence of AQ4N
presumably comes from electron transfer to form partially reduced
oxygen products instead of being transferred to AQ4N.

The rate of product formation was measured to be 18.2 min~'. The
NADPH consumption rate without air in the presence of AQ4N was
28.2 min~ ' and 12.6 min ' in the absence of AQ4N, suggesting
roughly quantitative coupling efficiency, i.e., all additional electrons
are transferred to substrate AQ4N.'

The reduction step can be studied by monitoring the formation of
the Fe?"-CO complex near 450 nm in the absence of O,, which will
compete with CO and lead to P450 reoxidation (Gigon et al., 1969;
Guengerich and Johnson, 1997). Our kinetic reduction data, mea-
sured in a stopped-flow apparatus (Fig. 1), clearly shows a rapid
increase in A,s,, indicating the acceptance of electrons by P450
2S1 from NADPH-P450 reductase.

Bui and Hankinson (2009) reported that P450 2S1 could not be
reduced by NADPH-P450 reductase and that several catalytic activ-
ities of P450 2S1 could be observed if reactions were supported by
oxygen surrogates, e.g., alkyl hydroperoxides (Bui et al., 2009, 2011).
In contrast, Nishida et al. (2010) reported the observation of a
Fe?*-CO complex produced by P450 2S1 and AQ4N (rate not mea-
sured). A serious caveat in the work of Bui and Hankinson (2009) is
that the reduction work was done aerobically, conditions under which
ferrous P450s are rapidly reoxidized (Guengerich et al., 1976).
Nishida et al. (2010) also pointed out that the conclusion of Bui and
collegues (Bui and Hankinson, 2009; Bui et al., 2009, 2011) that P450

1 The NADPH oxidation rate measured in the absence of air is attributed to
trace oxygen in the system, corresponding to ~6 nmol consumed in 3 min (~5
ppm in gas phase).
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Fi6. 1. Reduction kinetics of P450 2S1 (with AQ4N). Stopped-flow absorbance
trace of the reduction of P450 2S1 (2 uM) by NADPH-P450 reductase (4 uM) in
the presence of L-a-1,2-dilauroyl-sn-glycero-3-phosphocholine (120 uM) and
AQ4N (200 uM) upon the addition of NADPH (150 wM). The rate was 39.9 s~!
(measured by averaging results from 16 independent shots).

2S1 normally uses lipid peroxides for its catalytic function is invalid,
in that many P450s can react with lipid hydroperoxides through a
shunt pathway that generates lipid alkoxy and peroxy radicals. These
radicals can enter co-oxidation reactions outside of P450 active sites
(Mansuy et al., 1982; Ortiz de Montellano, 1995). In another recent
publication, Bui et al. (2011) reported isomerization activity of P450 2S1
in a NADPH-independent manner. However, such isomerization activity
has been seen with several other P450 enzymes, and its physiological role
is not validated (Weiss et al., 1987; Chang et al., 1996).

In conclusion, our results are in agreement with previous findings
(Nishida et al., 2010) that P450 2S1 can accept electrons from NADPH-
P450 reductase. A physiological role of P450 251, if it exists, remains to
be revealed.
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