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Understanding which species are most vulnerable to human im-
pacts is a prerequisite for designing effective conservation strat-
egies. Surveys of terrestrial species have suggested that large-
bodied species and top predators are the most at risk, and it is
commonly assumed that such patterns also apply in the ocean.
However, there has been no global test of this hypothesis in the
sea. We analyzed two fisheries datasets (stock assessments and
landings) to determine the life-history traits of species that have
suffered dramatic population collapses. Contrary to expectations,
our data suggest that up to twice as many fisheries for small, low
trophic-level species have collapsed compared with those for large
predators. These patterns contrast with those on land, suggesting
fundamental differences in the ways that industrial fisheries and
land conversion affect natural communities. Even temporary col-
lapses of small, low trophic-level fishes can have ecosystem-wide
impacts by reducing food supply to larger fish, seabirds, and ma-
rine mammals.
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Overfishing is one of the most serious conservation concerns
in marine ecosystems (1), but understanding which species

are most at risk remains a challenge. On land, life-history traits
are strong predictors of extinction risk (2), and vulnerable spe-
cies often have large body size and high trophic level (2, 3). In
marine ecosystems, the well-publicized declines of large preda-
tory fishes (4, 5) suggest that similar trends may also be common
in the sea. However, research to date has found or proposed a
wide range of life-history characteristics that cause high vul-
nerability, including large body size (6–9), late maturity (6, 9),
long lifespan (6, 8–11), low fecundity and high parental in-
vestment in offspring (11, 12), or high trophic level (2, 13).
Understanding which traits, or combinations of traits, are most
useful for predicting vulnerability has been difficult because
analyses have been limited to regional comparisons or narrow
species groups, and because reliable global data have not been
available to more broadly test which types of fishes are most
likely to suffer fisheries collapse.
In addition, there are reasons to believe that regional or ter-

restrial life-history trends might not apply globally in the ocean.
For example, fishery biologists often recommend higher harvest
rates for fast-growing, highly productive species, and lower har-
vest rates for species with lower productivity (14). Where im-
plemented, these adjustments might reduce the resilience of fast-
growing species and put all harvested species at similar risks of
decline. In addition, economic forces or management regime
may be more important than life history in determining whether
fishing effort is successfully controlled (15, 16). Small pelagic
species, although often possessing a rapid growth rate, are also
highly catchable, and therefore susceptible to overfishing (17).
Finally, the conflict with human development that is particularly
acute for large, terrestrial mammals (3) may be smaller in open-
ocean ecosystems far from coastlines.

In this article, we used two independent fisheries databases to
determine which stocks have collapsed to low population abun-
dance. Our first database contained 223 scientific stock assess-
ments for 120 species. For these assessments, a stock was defined
as collapsed if its minimum annual biomass (BMIN) fell to < 20%
of the biomass necessary to support maximum sustainable yield
(BMSY) (1). In addition, we examined global landings reported by
the Food and Agriculture Organization (FAO) for 1950 to 2006.
We treated each FAO statistical area as a stock, for a total of 891
stocks across 458 species. For landings data, a stock was defined
as collapsed if landings remained below 10% of the average of
the five highest landings recorded for more than 2 y. We found
this definition to have the lowest misclassification rate (18%)
when we evaluated it against stocks for which we had both bio-
mass and catch timeseries (Materials and Methods). In most
misclassifications (14 of 24), we failed to detect collapses that
had occurred, suggesting that our landings definition is relatively
conservative. Finally, we assessed the prevalence of collapse
across a broad range of life-history traits, including lifespan, age
of maturity, body size, trophic level, growth rate, fecundity, and
parental investment in offspring (egg size) (18).

Results
We first examined life-history traits of species targeted by global
fisheries. Although fisheries caught the entire range of trophic
levels and growth rates seen among marine fish, fisheries tended
to catch larger, higher trophic level, and slower-growing species
(P < 10−7) (Fig. 1). In addition, the very smallest species (< 8
cm) did not appear in global, industrial fisheries. There were no
substantial size or trophic-level differences between the species
that appear in the global landings database and those that appear
in the scientific stock assessments, although the latter are on
average somewhat slower growing (P = 10−10).
Overall, we found that 17.0 or 25.1% of the stocks in each

species had collapsed, on average, in the assessment (n = 52) or
landings data (n = 223), respectively. In addition, 23.3 or 34.9%
of species had experienced at least one stock collapse (assess-
ments n = 28, or landings n = 160, respectively) (Table S1).
One hypothesis was that large, high trophic-level species would

show a higher incidence of collapse than small, low trophic-
level species. Instead, the assessment data revealed fisheries
collapses across the range of life-history traits (Fig. 2 A–E).
Among top predators [trophic level (TL) > 4.2], 12% of stocks
had collapsed, but twice the percentage (25%) had collapsed
among low trophic-level fishes (TL < 3.3). Among large species
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(> 16 kg), 16% of stocks had collapsed, but 29% had collapsed in
small species (< 2.5 kg).
Although the above comparisons suggested more collapses in

small, low trophic-level fishes, generalized linear models fit to
the assessment data showed that the proportion of stock col-
lapses was not significantly related to trophic level (P = 0.15),
weight (P = 0.26), longevity (P = 0.10), age of maturity (P =
0.92), fecundity (P = 0.77), or investment in offspring (P = 0.99)
(Table S2). The incidence of collapse, however, was somewhat
higher for fast growing species (P = 0.019).
The landings data generally supported the conclusion that

large, top predators are not more vulnerable than small, low
trophic-level fishes (Fig. 3A–E). Among top predators (TL> 4.2),

26% of stocks had collapsed, but a similar percentage (21%) had
collapsed in low trophic-level species (TL < 3.4). Similarly, 36%
of stocks had collapsed in large species (> 30 kg), but 31% had
collapsed in small species (< 2.4 kg). Models suggested that the
proportion of stocks collapsed did not change with trophic level
(P = 0.22), fecundity (P = 0.23), or investment in offspring (P =
0.52). Trends were weakly toward more collapses among long-
lived species (P = 0.012), those with later maturity (P = 0.036),
heavier species (P = 0.014), and those with slower growth (P =
0.048), opposite to the trends in the assessment data. Trends were
not significant after correction for multiple comparisons.
In addition, we examined whether combinations of life-history

traits might predict vulnerability, because multiple traits are of-
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Fig. 1. Life history patterns of fished species. Histograms for all marine fish (black), species in the landings database (gray), and species in the as-
sessment database (white) for (A) length (n = 16,548/457/120 for all/landings/assessments), (B) trophic level (n = 16,548/457/120), and (C ) growth rate
(n = 14,118/447/120).
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Fig. 2. Collapses in the assessment database in relation to life history traits. Traits include (A) lifespan (n = 97), (B) age of maturity (n = 96), (C) weight (n = 93),
(D) trophic level (n = 120), (E) growth rate (n = 120), (F) fecundity (n = 93), (G) investment in offspring (egg diameter, n = 97), (H) year of fishery initiation (n =
46), and (I) relative fishing mortality (n = 99). Each dot represents the proportion of stocks collapsed within a species. All x axes are log-transformed except
those for trophic level and fishery initiation. Dashed line is the best fit from a generalized linear model.
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ten necessary for defining a life-history strategy (11). However,
combining life-history traits in multiple regression models could
only predict 14 or 8% of the deviance in the data (P = 0.046 or
P = 0.15, assessments and landings, respectively) (Table S2),
suggesting that collapse incidence was not strongly related to life
history in any combination. For the models based on assessment
data, higher growth rate was the most frequently included trait,
and these models suggested that species with higher growth rates
experienced a higher incidence of fisheries collapse. Previous
authors have proposed that fishes with low fecundity and high
investment in offspring (large egg diameter) may be particularly
vulnerable to fishing (11), but we did not find evidence that this
combination could explain the incidence of fishery collapses
(0.8% or 1.1% of deviance explained, P = 0.79 or 0.59 within the
assessment and landings data, respectively).
We also explored the relationship between life history and

alternative measures of vulnerability, including incidence of over-
fished stocks (BMIN < 50% BMSY), maximum depletion (BMIN/
BMSY), and a less strict definition of landings collapse (landings
below 10% of the single highest landings recorded for a single
year). All trends were similar to those reported above (Figs. S1,
S2, and S3). Removing small pelagic species (families Engrau-
lidae and Clupeidae) known to fluctuate strongly with climate
(19) also did not change our results.
As we would expect, incidence of collapse was higher for species

that experienced greater relative fishing mortality (P = 1 × 10−5,
22% of deviance explained among assessment data) and a longer
history of developed fisheries (P = 5 × 10−5, 5.8% of deviance
explained among landings data) (Figs. 2 F and G, and 3F).

However, correcting for fisheries characteristics did not change
the relationships between collapse and life history (Fig. S4).
We also corrected for evolutionary relationships because phy-

logenetic history can reduce the independenceof species-level data
(20). However, using phylogenetically independent contrasts only
revealedweaker relationships between life history and incidenceof
collapse. These relationships reduced the discrepancy in model
results between assessment and landings data (Figs. S5 and S6).
Finally, we examined whether collapses last longer for certain

life histories. In the assessment data, collapses are longer (18.5 y)
for long-lived species (lifespan > 44 y) than for short-lived spe-
cies (5.1 y, lifespan < 14 y, P = 0.028). Other life history com-
parisons were not significant (P > 0.21).

Discussion
Small, short-lived species have what is sometimes called a “fast”
life-history strategy that is presumed to make them less vulner-
able to fisheries (6, 9). In contrast, our review of global fisheries
revealed that these fast species collapse just as often as species
with slower life histories. We found collapsed stocks in short-
lived species, such as summer flounder (Paralichthys dentatus)
and Spanish mackerel (Scomberomorus maculatus) and among
small, fast-growing species like capelin (Mallotus villosus) and
herring (Clupea harengus and Clupea pallasii). Species low in the
food chain had also collapsed, including winter flounder (Pseu-
dopleuronectes americanus) and chub mackerel (Scomber japo-
nicus). Although these collapses are well known to local fisher-
men and managers, the general prevalence of collapse among
these types of species has not been recognized.
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Fig. 3. Collapses in the landings database in relation to life history traits. Traits include (A) lifespan (n = 206), (B) age of maturity (n = 216), (C) weight (n =
267), (D) trophic level (n = 457), (E) growth rate (n = 447), (F) fecundity (n = 172), (G) investment in offspring (egg diameter, n = 155), and (H) year of fishery
initiation (n = 208). Also see notes for Fig. 2.
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Our data suggest that species with fast life histories have at
least as high a probability (per stock) of declining to low abun-
dance as larger, slower species, which is dramatically different
from the pattern among terrestrial species (2, 3). Why might fast
species be more vulnerable in the ocean than we would expect?
One explanation may be that fisheries management often rec-
ommends higher exploitation rates for species with faster life
histories and greater productivity. For example, our assessment
database revealed that the fishing mortality predicted to supply
maximum sustainable yield (FMSY) for long-lived rockfishes
(Sebastes spp.) is 0.07 (average of 20 stocks), but FMSY for short-
lived skipjack tuna is 0.42 (average of three stocks). Managing
with these or similar reference points can thus equalize the im-
pact of fishing across species, a process with no widespread
equivalent on land. When fishing rate is correctly determined
relative to species’ biology, life history should not be an impor-
tant determinant of fish collapse.
This rationale may also explain differences between the as-

sessment and landings data. Many of the species in the landings
database are not managed with scientific stock assessments and,
presumably, fishing mortality is less closely matched to stock
productivity. Under such conditions, we might expect life history
to be more important for determining fisheries collapse and slow
species to collapse more often. In fact, collapses were slightly
more common among long-lived species in the landings database
(Fig. 3A). Among the more closely managed stocks in the as-
sessment database, this trend was absent.
In addition, a fast life history may actually increase vulnera-

bility to collapse. Populations of short-lived species can grow or
decline quickly in response to climatic shifts (19), and a rapid
decline in productivity often requires similarly rapid reductions
in fishing effort (21). If fisheries management lags behind these
biophysical changes, a population can be driven to collapse (21,
22). The high harvest rates on many short-lived species also mean
that errors in setting harvest rates can have particularly severe
consequences. In addition, we note that environmental variability
alone can drive variation in fish abundance (19, 23), and when of
sufficiently large magnitude, this variation may be detected as
a collapse by our methods. Short-lived species may be particularly
sensitive to such environmental variability because of their fast
growth rates and short generation times (11). Long-lived species
respond more slowly to changes in climatic conditions because
they store more biomass in older age groups and are less de-
pendent on recent recruitment success (11).
Our findings contrast with previous studies suggesting that

population declines in marine species are correlated with large
size, late age of maturity, slow growth rate, and high trophic level
(7, 9, 24–28). However, previous analyses focused primarily on
the North Atlantic (9, 25, 28) or on bycatch and artisanally fished
species (24–27). The biased decline of large, high trophic-level
species appears to be a unique pattern of the North Atlantic that
does not apply globally (29, 30). Bycatch and artisanally fished
species are less likely to appear in the stock assessments or global
landings that we analyzed. The adjustment of fishing pressure as
a function of species’ productivity, as explained above, is also
unlikely to occur for these weakly or unmanaged species. In
addition, the small proportion of marine fishes that have been
assessed under the World Conservation Union’s (IUCN’s) Red
List of Threatened Species (31) have tended to be larger species,
perhaps helping to explain why listed, threatened species tend to
be larger than unlisted species (7).
Although our article has focused on testing whether lifespan,

age of maturity, size, trophic level, growth rates, fecundity, and
offspring investment are useful predictors of fisheries collapse,
life histories are multifaceted strategies that include traits we
could not examine. However, many life-history traits among
fishes are strongly correlated, including body size, natural mor-
tality, size at maturity, and population growth rate at low

abundance (10, 32–34). In addition, our use of multivariate
models allowed us to test whether combinations of traits might
be useful predictors of collapse. We note that life-history evo-
lution often reflects a complex adaptive response to the scales of
environmental variation (11, 35), and life histories often diverge
from a simple slow vs. fast dichotomy (11).
The high incidence of collapse that we uncover among small,

short-lived, low trophic-level species has important implications
for ecosystem structure and function, especially in “wasp-
waisted” ecosystems where a few species play a large role in
transferring food energy to higher trophic-level fishes, birds,
and marine mammals (36). For example, sandeels (Ammodytes
marinus) are targeted by the largest single-species fishery in the
North Sea, and declining sandeel abundance can cause severely
reduced breeding success in seabirds (37). Other studies suggest
similar sensitivity to a few small fish species across a range of
seabirds and pinnipeds (38–40). Even though short-lived species
may recover more quickly from collapse than other fishes (41),
collapses in small, low trophic-level species can last from years
to decades (17). These durations are long enough to have sub-
stantial impacts on the food web (37, 39, 40).
In summary, analysis of stock assessment and global landings

databases revealed that patterns of vulnerability in the ocean are
dramatically different from those on land, and that both small
and large fishes are vulnerable to collapse. A major driver of
differences between marine and terrestrial vulnerabilities may be
the importance of harvest versus habitat loss in these different
ecosystems. A halt to overfishing is needed across the full spec-
trum of life histories, not just for top predators, to reduce the
incidence of fishery collapses and to avoid the ecological, eco-
nomic, and social disruption that they cause.

Materials and Methods
Data Sources. We downloaded stock assessments on June 9, 2010 from the
RAM Legacy database (1). The database was compiled in 2009 and 2010 from
countries around the world, and assessments were the most current avail-
able at that time. In particular, we extracted time series of catch, model-
estimated biomass, and fishing mortality rates from 1950 to 2008. The final
year included in the time series was on average 2006 ± 1.5 (SD) (range: 2000–
2008) and duration was on average 39.6 ± 12.4 (SD) y (range: 10–59 y). We
also extracted reference points for BMSY and FMSY (the biomass and in-
stantaneous fishing mortality rate, respectively, which result in maximum
sustainable yield). We only used assessments for fishes (not invertebrates).

Our landings database contained statistics reported to the FAO of the
United Nations (downloaded from http://www.fao.org/fishery/statistics/
software/fishstat/en, December 2009). Only species-level records for fish with
cumulative landings > 1,000 tons were retained; invertebrates and records
for species groups (e.g., “Cods” or “Flatfishes”) were removed. We removed
records with low cumulative catches to avoid minor and experimental fish-
eries, and results were similar when we only retained records with total
landings > 10,000 tons. Data were reported in one of 19 major statistical
areas, and one species in one area was considered a stock.

Fishery Collapses. Assessment data. For the assessments, we analyzed biomass
relative to BMSY. Stocks that fell below 20 or 50% of BMSY were defined as
collapsed or overfished, respectively. We also recorded the maximum de-
pletion as BMIN/ BMSY, where BMIN is the minimum biomass in the time series.
The length of collapse was the maximum number of consecutive years that
a stock was below 20% of BMSY.

In cases where neither BMSY nor a proxy used in place of BMSY was
reported in the stock assessment, we followed (1) and estimated BMSY from
Schaefer surplus-production models fit to the assessment time series of an-
nual total biomass and total catch or landings. Surplus-production models
are commonly used in fisheries science and allow calculation of both carrying
capacity and maximum sustainable yield (1). Models were fit in AD Model
Builder (http://admb-project.org) assuming normally distributed errors. We
only used time series greater than 20 y. We used surplus-production models
to find reference points for 92 of 223 stocks.

To examine sensitivity to our choice of model form, we also fit a Fox
surplus-production model. Compared with the Schaefer model, the Fox
model assumes that BMSY is a smaller fraction of unfished biomass (37%
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instead of 50%). Only five stocks (2.2%) were reclassified using this ap-
proach, and in all cases this was from collapsed to not collapsed. This small
change did not affect our results.
Landings data. The choice of appropriate definitions for fisheries collapse in
landings data has been contentious because some apparent collapses may
result from stochasticity or changes in reporting, management, or fishing
practices rather than population status (42, 43). By focusing only on true
species (rather than species groups), we avoid false collapses that would
otherwise appear when reporting improves and species groups begin to be
reported as individual species. However, if management measures severely
restrict landings to allow rebuilding of an overfished stock, a stock’s landings
could appear collapsed even if biomass was overfished but not fully col-
lapsed. Changes in fleet capacity or fishing efficiency could also reduce
landings independently from changes to population abundance.

To avoid false detection of collapses in landings to the extent possible, we
evaluated a range of potential collapse definitions. For each definition, a
stock was defined as collapsed when annual landings fell below 10% of a
reference level for a specified window of time. The reference level was the
maximum annual landings averaged over 1 or 5 y. Although 1 y has been used
before (44), the 5-y average was used here to avoid false collapses triggered
by a single, spuriously high year of landings (43). As our time window, we
used either 1 (44), 2, or 4 consecutive years (45). We only looked for collapses
in the years following the maximum annual landings.

We tested the landings-based definitions against the stock assessments for
which we had both biomass and catch or landings data (n = 131). Taking the
assessment-based collapse definitions to be accurate, the 5-y reference/2-y
window collapse definition for landings data had a somewhat lower error
rate than the others and misclassified 24 stocks (18%). Of these, 14 collapsed
stockswere not detected by the landings definition, but 10 uncollapsed stocks
were falsely detected. Falsely detected collapses tended to be for species with
longer lifespans than those that we failed to detect (P = 0.006). In comparison,
the lax 1-y maximum/1-y window collapse definition misclassified 28 stocks
(21%). Other combinations of threshold and time window produced in-
termediate numbers of misclassified stocks. Therefore, we used the 5-y
maximum/2-y window definition of collapse for landings data in our article.

Fisheries Characteristics. We defined fishery initiation as the year in which
landings reached 10% of the maximum annual landings within a stock.
Relative fishing mortality for a stock in the assessment database was defined
as themaximum instantaneous fishing mortality rate (maximum F) divided by
the fishing mortality predicted to produce maximum sustainable yield (FMSY).
Where FMSY was not available, we estimated FMSY from a Schaefer surplus-
production model, as above (1). We used a 5-y running mean to average out
noise, producing maximum F5-y/FMSY. Both metrics were averaged across all
stocks within a species.

Life-History Traits.We extracted information on each species’maximum total
length (centimeter), maximum weight (kilogram), lifespan (year), age of
maturity (year), trophic level, growth rate, fecundity (eggs per individual),
and parental investment in offspring from ref. 18. Growth rate was mea-
sured as the exponent (K) in the von Bertalanffy growth function (46).
Offspring investment was measured as egg diameter (millimeter). We sup-
plemented fecundity and egg diameter data with literature searches be-
cause sample size was initially low for these traits (Table S3). We used the
average if multiples values were available. For the one stock assessment
conducted on a species group (“Redfish species” on the Newfoundland-
Labrador Shelf), we averaged the life history characteristics for the two
species targeted by this fishery (Sebastes mentella and Sebastes fasciatus).

For comparison of collapse rates among species with opposing traits, we
compared the upper and lower quartiles for each trait. For example, we
defined top predators as species in the upper quartile of all trophic levels, and
low trophic-level species as those in the lowest quartile. Thresholds were
chosen independently for species in the assessment and landings databases,
and so are slightly different between the two.

We used log-transformed values for lifespan, age of maturity, weight,
length, growth rate, fecundity, and egg diameter. Because length andweight
are highly correlated (Pearson correlation: P < 0.0001, ρ = 0.89 on log-

transformed variables), we only report results for weight. We did not con-
sider reproductive lifespan (lifespan minus age of maturity) because it is
highly correlated to lifespan (Pearson correlation: P < 0.0001, ρ = 0.99 on log-
transformed variables). Other life-history traits remain somewhat correlated
(e.g., lifespan and growth rate or length and trophic level), but our con-
clusions do not depend on multiple regressions that would be affected by
this lack of independence.

Statistical Models. We fit generalized linear models with binomial errors and
a logit link (47) to predict the probability of a stock collapsing within each
species (either assessment or landings data). In other words, the proportion
of stocks collapsed within each species i was assumed to follow a binomial
distribution with mean pi. The linear predictor of pi was

logðpi=ð1� piÞÞ ¼ β1;j þ β2;jxi;j ;

where β1,j and β2,j are the fitted coefficients for trait j, and xi,j is the value of
trait j for species i. The traits (x) were life history or fisheries characteristics. The
binomial error model accounted for the fact that variance changes with the
number of stocks within each species. Fitting the models to species-level
(rather than stock-level) data avoided pseudo-replication of species. We used
the same format to fit models to the proportion of overfished stocks. For
maximum depletion in the assessment data, we used standard linear models.

Next, we evaluated models with all possible combinations of life history
variables:

logðpi=ð1� piÞÞ ¼ βxi ;

where β is a vector of parameters and xi a vector of life history traits for
species i. The models did not include interactions between variables because
of the large number of potential combinations. We only tested these models
on species for which we had complete life history data (n = 55 for assessment
data, n = 67 for landings). We evaluated all models within a model-choice
framework (48) and retained the minimal adequate models with an Akaike’s
Information Criterion within 2 of the lowest Akaike’s Information Criterion.
We also tested the specific hypothesis that species adapted to stable envi-
ronments, as indicated by low fecundity and high parental investment in
offspring (11), would be more vulnerable to fisheries collapse. We did this by
fitting a model with fecundity, egg diameter, and their interaction. In all cases,
we evaluated a model’s significance with a χ2 test comparing the reduction in
deviance between a null model (only the mean) and the focal model.

To test whether fishery characteristics affected our results, we used the
assessment data to build a generalized linear model for the proportion of
stocks collapsed as a function of relative fishing mortality. We then used
the model residuals in linear regressions that included each of the life-
history characteristics.

Phylogenetically Independent Contrasts. To correct for shared evolutionary
history among species, we fit linear regressions through the origin on phy-
logenetically independent contrasts generated with the Analyses of Phylo-
genetics and Evolution package (49) in R 2.12.1. We used a simple phylogeny
based upon the taxonomic classification of each species and equal branch
lengths. In all cases, the response variable was the proportion of stocks
collapsed within each species. This approach cannot account for differences
in variance driven by the number of stocks in each species.
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