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The efficient management of diseases, pests, or endangered spe-
cies is an important global issue faced by agencies constrained by
limited resources. The management challenge is even greater
when organisms are difficult to detect. We show how to prioritize
management and survey effort across time and space for net-
works of susceptible–infected–susceptible subpopulations. We
present simple and robust rules of thumb for protecting desirable,
or eradicating undesirable, subpopulations connected in typical
network patterns (motifs). We further demonstrate that these
rules can be generalized to larger networks when motifs are com-
bined in more complex formations. Results show that the best
location to manage or survey a pest or a disease on a network is
also the best location to protect or survey an endangered species.
The optimal starting point in a network is the fastest motif to
manage, where line, star, island, and cluster motifs range from
fast to slow. Managing the most connected node at the right time
and maintaining the same management direction provide advan-
tages over previously recommended outside–in strategies. When
a species or disease is not detected and our belief in persistence
decreases, our results recommend shifting resources toward man-
agement or surveillance of the most connected nodes. Our analytic
approximation provides guidance on how long we should manage
or survey networks for hard-to-detect organisms. Our rules take
into account management success, dispersal, economic cost, and
imperfect detection and offer managers a practical basis for man-
aging networks relevant to many significant environmental, bio-
security, and human health issues.
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Infectious diseases, invasive pests, and other threats to species
persistence have profound impacts on human health, agricul-

ture, and biodiversity (1–3). Many threatened or invasive species
are difficult to detect and their presence in an area can be un-
certain due to the imperfect nature of most detection methods
(4, 5). Even large charismatic mammals such as the Sumatran
tiger (Panthera tigris sumatrae) or the Sumatran rhinoceros
(Dicerorrhinus sumatrensis) can be surprisingly hard to detect. It
is possible that some areas are being managed while the invasive
pests, diseases, or threatened species have already disappeared.
It is also likely that managers, in the absence of sighting, might
stop managing too early and give up too soon on a species or
disease (6, 7). Managers need to know when to stop managing or
surveying for species in areas of particular interest.
At present the epidemiology, ecology, and conservation liter-

ature provides little guidance on how to approach such a problem.
The problem of how to allocate management and surveillance
effort has been studied for a single cryptic population (8–10). For
example, Regan et al. (8) determined when to stop monitoring
an invasive plant with a long-lived seed bank. Chadès et al. (9)
determined when to stop managing or surveying cryptic threat-
ened species. However, none of these works have accounted for
multiple populations, spatial dispersal, or risk of reinfestation
over time. When managing a cryptic invasive plant over time,

Regan et al. (11) showed that accounting for imperfect detection
but ignoring the risk of reinfestation led to a low probability of
eradication, defeating the purpose of an optimal management
strategy. Other studies on managing metapopulations have ac-
counted for spatial connectivity but have not included imperfect
detection in a systematic manner (12–17).
Metapopulations can be modeled as susceptible–infected–

susceptible (SIS) networks (18). In epidemiology and ecology,
SIS infections are challenging to manage because a treated node
(person or location) can be cured and reinfected (we use the
term “infection” to refer to infectious disease incidence, infesta-
tion by invasive pests, and colonization by endangered species).
SIS network models can represent sexually transmitted diseases
(gonorrhea) (19), other infectious diseases (meningitis, plague,
malaria, and sleeping sickness) (20), metapopulations of invasive
or threatened (21) species, influence in a social network (22, 23),
and computer viruses across physical networks (24, 25). Here, we
build on lessons from previous empirical studies and theoretical
frameworks for optimal decision making (26–28) to develop
coherent guidance for allocating resources across time and space
between three activities: managing, surveying, and doing nothing
for networks of cryptic diseases, pests, and threatened species.
In our case managing a disease or a pest means decreasing its
presence, whereas managing a threatened species means in-
creasing its presence. We represent the spatial structure of pest
invasions, infectious diseases, and threatened metapopulations
(29) as “infected” and “susceptible” nodes in networks (18, 30,
31). The pest, disease, or threatened species can spread from an
infected node to a susceptible node with which it shares a direct
connection (32). We tackle our problem by first assuming a per-
fect detection process. We frame our optimization problem as
a finite Markov decision process (33) and apply the solution to
network motifs (34) (lines, islands, and stars) and combinations
of motifs. Network motifs are small subgraphs that capture
specific patterns of interactions. Studying optimal strategies for
network motifs provides important insight into the management
of more complex networks. We include imperfect detection into
our model and analyze how the management strategy changes as
our belief in the presence of the species or disease decreases.
Our simple, but robust, rules of thumb for efficient management
take into account management success, dispersal, economic cost,
and imperfect detection. Contrary to previous high-profile work
on large-scale networks (31, 35–37), we find that an “outside–in”
control strategy for preventing the spread of infection is in-
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efficient for network motifs. This is a key finding because erad-
ication or effective control is generally possible only where a pest
or a disease occupies a small number of nodes (38). Likewise,
managing rare or threatened metapopulations is by definition
a small network problem.
The first step in solving a resource allocation problem is de-

fining the objective we seek to achieve. When managing pests
and diseases, our objective is to minimize the number of infected
nodes by taking actions to increase the probability of extinction
of an infected node. When managing threatened species, our
objective is to maximize the number of infected (occupied) nodes
by taking actions that decrease the probability of extinction of an
infected node. These equivalent problems have the same solu-
tion. The best local population to manage for an infestation is
also the best place to manage for a threatened metapopulation.
At each time step, we assume the infection state of each node i

(si = {susceptible, infected}) is observed. Once managed, a node
can remain infected with probability (1 − pm) and infect sus-
ceptible nodes to which it is connected with a probability pd.
When management occurs, the node may become susceptible
and can be reinfected with probability 1 − (1 − pd)

δ, where δ is
the number of infected nodes directly connected to the suscep-
tible node. We assume that each infected node has a probability
of becoming susceptible without management (pe), to account
for the natural, stochastic decline of the infection. We assign an
economic cost, c, every year that results from a node being
infected. Managing a node incurs a cost cm. We consider that
only one node can be managed at a time. This method is the
simplest way to prioritize the order in which nodes are managed
so that our objective is achieved in the most efficient way. We
also demonstrate that our management rules are robust when
several nodes can be managed at a time (Results and Methods).
We assume uniform dispersal, management success, benefit, and
cost across all nodes (Methods and Table S1). However, our
method can accommodate changes and nonuniform assumptions
in any of the following parameters: the probability of a node
being infected if one neighbor is infected (pd), the probability of
a node becoming susceptible if infected and not managed (pe),
the probability of a node becoming susceptible if it has been
managed (pm), the cost of a node being infected (c), and the cost
of managing one node (cm).

Results
When two infected nodes have the same probability of infecting
each other, the optimal strategy is to manage either one. When
several nodes are linked by a directed probability of dispersal, it
is optimal to manage the upstream node before managing the
downstream nodes (Fig. 1A). In the case of a line network with
bidirectional infection risk, the nodes at the extremity of the
infection process have a lower probability of being reinfected
than nodes with two neighbors. The optimal strategy is to start
from either extremity of the network and then manage the
nearest infected nodes sequentially (Fig. 1B). In the case of an
island network, all nodes have an equal probability of being
reinfected once managed; therefore, any node can be the starting
point (Fig. 1C). Star networks are composed of a central node
connected to satellite nodes. Infected satellite nodes are man-
aged until the number of susceptible satellites is equal to or
larger than the remaining number of infected satellites; it is then
optimal to manage the central node before managing the
remaining infected satellites (Fig. 1D). When managing star
networks with lines of nodes of different lengths connected to
a central node, the optimal strategy has three phases: (i) manage
the longest lines from an outside–in direction until just over half
of the nodes connected to the central node remain infected,
(ii) manage the shortest infected line and the central node fol-
lowing an outside–in direction, and (iii) manage the remaining

infected lines starting with the shortest lines following an inside–
out direction.
Fig. 2 shows simple rules of thumb for more complex networks

made up of multiple motifs. When an island is connected to a
line, the risk of reinfection is minimized by starting management
at the extreme node of the line and continuing to the connecting
node, before managing the island. Once the connecting node is

Fig. 1. (A–D) Optimal rules of thumb to manage network motifs of a dis-
ease or an invasive or threatened species.

Fig. 2. (A–D) Optimal rules of thumb to manage small complex networks of
a disease or an invasive or threatened species.
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susceptible, it is optimal to manage the infected nodes closest to
the connecting node. A more complex configuration is an island
connected to two lines (Fig. 2A). Maintaining the same man-
agement direction reduces the risk of reinfection and is therefore
more efficient than managing the “outside” nodes first.
We define a cluster as an island with interconnected nodes.

When managing connected clusters (Fig. 2B), it is optimal to
start from the smallest cluster or, for the same number of nodes,
the least connected cluster. For a connected island and star (Fig.
2C), the star is faster to manage when the number of satellites is
equal to or smaller than the number of nodes of the island. In
contrast, when the number of star satellites is greater than the
number of island nodes, managing the island first reduces the
chance of reinfection. In both cases, the rules of thumb derived
from individual motifs can be applied. For a star connecting four
substars (Fig. 3), the optimal rule of thumb for managing single
star motifs holds.
We compared our rules of thumb to an outside–in control

strategy by simulating the management of 1, 2, and 5 nodes at
a time on large star networks of 101 nodes (Figs. S1–S3). Our
optimal strategy outperforms the outside–in strategy, reducing
the time to eradication and the management required by 31.2%
(90.7 treatments, managing 1 node), 10.7% (20.4 treatments,
managing 2 nodes), and 3.3% (5.6 treatments, managing 5 nodes).
Our rules are also robust to nonuniform dispersal probabilities
(pd) and management success (pm) and consistently outperform
the traditional outside–in strategy (Table S2 and SI Methods).
We found that the relative benefits of our rules of thumb are
greater when fewer patches are managed in each time step. Our
rules of thumb outperform the outside–in strategy because
reinfections are less likely to occur using our priority manage-
ment order. The longer the time it takes to eradicate the in-
fection, the more opportunity there is for reinfections to take
place, and the greater the benefit of our rules of thumb over the
outside–in strategy. By managing multiple patches in a time step,
the time to eradication is reduced, making the performance of
the two strategies more similar.
For all of the complex networks we examined, management

starts with the fastest motif to manage, following the priority
order line, star, island, and cluster. Management of the most
connected node at the right time and maintaining the same
management direction minimize the reinfection risk, providing
potentially important practical advantages over outside–in strat-
egies, particularly in the case of limited management resources.
To determine the management starting point more easily we
asked if a network centrality measure could substitute for our
rules of thumb. Centrality measures are able to rank nodes in
a network according to the topological features that they account
for (see refs. 39–41 for more details). We calculated centrality

measures for nine small networks (Table S3). We found that the
closeness centrality measure correctly predicted the most ap-
propriate node to start from for seven cases of nine but predicted
incorrect starting nodes for the two networks characterized
by connected clusters. Betweenness centrality, eigenvector cen-
trality, and subgraph centrality (42) performed inadequately.
Although closeness centrality often predicted the correct
starting node, it did not predict an optimal priority manage-
ment order, highlighting the continuing need for our opti-
mization framework.
Most pests, diseases, and threatened species cannot be de-

tected perfectly (9). Apparently susceptible nodes may, in fact,
be infected. We extend our framework to take into account our
inability to detect subpopulations perfectly, using the partially
observable Markov decision process (POMDP) (Methods). In
this case, we consider three possible management actions:
Manage a node, survey for the infection, or do nothing. We in-
clude in our optimization model the probability of imperfectly
detecting infected nodes, dn, when doing nothing or managing.
Probability of detection increases when we survey a node, ds > dn.
The cost of survey, cs, is set to half the cost of management.
Using a star network of four nodes, we illustrate the importance
of accounting for imperfect detection where we assume the in-
fection is not observed after each action (see the parameters
used in Table S1).
When all of the nodes in a star are initially infected (Fig. 4),

the order of management follows the rules of thumb we de-
scribed under perfect detection. After this first round of man-
agement, if the infection is not detected in any node, a stochastic
dynamic programming solution recommends doing nothing;
however, when accounting for imperfect detection, our results
recommend managing all of the nodes a second time for this star
network. The number of times a node must be managed depends
on the POMDP parameters used. As our belief in eradication
increases, our solution shifts to surveying the most connected
node. Finally, when our belief that the infection has been erad-
icated from the network has reached a threshold (0.82 in the case
of Fig. 4), and in the absence of observing an infection, “do
nothing” becomes the optimal action. When we observe an in-
fection to be present in a node(s), the belief of eradication falls
to zero and “manage” is recommended.

Fig. 3. Optimal management of a complex star network of a disease or an
invasive or threatened species.

Fig. 4. Resource allocation recommended over time for the management
of a hypothetical invasive species when infection may be undetected on
a star network (Inset). mi, manage node i; si, survey node i; and dn, do
nothing. The red line represents the probability (belief) of eradication of the
infection from the network. The other lines represent the belief in eradi-
cation of the individual nodes. The probability of eradication starts at zero
for each node because initially, the network is assumed to be infected.
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When we do not have any prior information about the in-
fection of the network, every infection state in every node is
equally probable (Fig. S4). In this case, our solution recommends
first managing all of the nodes at least once and more than once
if the node is highly connected (e.g., node 2, Fig. S4). The action
of surveillance then becomes optimal. In the absence of de-
tection of the infection under surveillance, our belief that the
infection is eradicated reaches a high value (e.g., probability of
eradication in the network >0.82). It is then recommended to
do nothing.
Under imperfect detection, as our belief in eradication in-

creases, our control strategy evolves through three phases:
Manage, survey, and do nothing. As demonstrated in Chadès
et al. (9), the problem of when to stop managing and surveying
a single population of cryptic species is dependent on the rela-
tive cost of survey and management, the cost of the infection, the
benefits of eradication, and the efficiency of management and
surveillance determine the switching points (9). To avoid re-
running the POMDP algorithms for every network studied, we
build on this work and derive an analytic approximation by
transforming our network POMDP problem into a single
POMDP. To make the transformation, we assume the dispersal
probability between nodes is a less important factor than the
number of subpopulations (Methods). Although this assumption
may not always hold, this approximation is the best indicator of
how long we can afford to manage derived thus far and forms
the basis for future theoretical work. We find that, in the ab-
sence of sighting, as the number of subpopulations increases, the
time we should spend managing increases substantially irre-
spective of the economic costs (Fig. S5).

Discussion
We identify simple rules for the management of small networks
under perfect and imperfect detection of susceptible–infected–
susceptible network invasions, infections, and threatened meta-
populations. Our findings provide guidance for managers in
determining (i) where to prioritize management over time and
space to achieve the most efficient control strategy and (ii) when
the species or the disease is difficult to detect, how long they
should invest in active management or in surveying and when it is
reasonable to stop investing limited resources. Our simulation
results demonstrate the improvement in performance when fol-
lowing our rules of thumb over traditional outside–in manage-
ment approaches on large motif networks. Our rules are also
robust to nonuniform distribution of dispersal and management
efficiency. When deciding where we should prioritize manage-
ment, a key finding is to start with the fastest motifs to manage
and keep the same management direction through the network.
Centrality measures are not good proxies for determining the
priority order of management of nodes. Finally we derived an
analytic approximation providing guidance on the time we
should spend managing and surveying across a network in the
absence of detection.
Details of the number of nodes, the costs and benefits of

managing nodes, and the dispersal probability drive the optimal
management strategies. In ecology and economics, evaluating the
loss of a species or the impact of a pest or disease is a challenging
and often highly subjective undertaking (43). We find that for
a pest or disease with high management costs combined with
a high dispersal probability a do nothing strategy can be optimal
when control becomes unachievable under budget constraints. In
contrast, high economic value of a threatened species and low
detection probability result in management and surveying for
longer periods of time being optimal (ref. 9 and Fig. S5).
To derive our rules of thumb we have assumed uniform dis-

persal across all nodes; however, infection/colonization processes
can be driven by directed factors such as transport vectors (wind,
water, or road dispersal). In this case, directed dispersal changes

the management rules (Fig. 2D). Although our optimization tool
can accommodate differences in parameters across a network,
such information is often not available. In the absence of explicit
information, expert elicitation can be used and these qualitative
values can be incorporated into our framework (44).
We were able to derive management strategies for many dif-

ferent kinds of small networks (<25 nodes). Deriving a priority
order of which nodes to manage is useful only for networks that
exhibit a clear structure. Highly connected networks will not
benefit from our approach as the amount of resources invested
to manage the threat will be more important than the order of
nodes managed. In other words networks need to be sparsely
connected to benefit from our approach. If a structured network
is found but the number of nodes is too large to be solved fol-
lowing our approach, we recommend using an abstraction pro-
cess or decomposition methods to extract small subnetworks
(45–47). An alternative approach is to use a model that does not
include network structure at all, such as a diffusion process (48).
Managers of diseases might find our rules counterintuitive as

we do not recommend managing the most connected nodes first.
There are several plausible explanations for this. First, our rules
provide a priority order of management from the initial condi-
tion of all nodes being infected. This order might not correspond
to the starting management point of some diseases, e.g., when
only a few nodes in a wider known network are infected. Al-
though our optimal strategy defines an optimal action for any
infection stage, it is impossible to derive a unique priority order
that applies to every infection stage. Second, although common,
the assumption that a node can represent the state of a sub-
population might not reflect epidemic dynamics; however, we
can consider a node as a representation of an individual and our
rules continue to apply to a network of infected individuals.
Third, we assume the structure of the network is known. There-
fore, the infection cannot spread to unknown connected nodes
and managing the most connected node does not bring any ad-
ditional advantage. Finally, the susceptible–infected–susceptible
network model might not capture the complexity of some dis-
eases where vaccinated or recovered and immune states are
possible; other models such as susceptible–infected–recovered
(SIR) might be more appropriate.
We present general solutions for the management of con-

nected subpopulations of pests, diseases, and threatened species
arranged in a SIS network. The efficient management of dis-
eases, pests, or threatened species is a globally important issue,
especially in agencies constrained by limited resources. The
challenge of managing new incursions is even greater when the
species or disease is cryptic and impossible to detect perfectly.
To date, most of the literature in network theory has focused on
making predictions about large complex systems such as food
webs, epidemics, and gene regulation (49, 50). We provide gen-
eral rules of thumb for setting management priorities in small
networks, where our chances of eradication or recovery of a
species are maximized (51). Our results provide a practical basis
to manage SIS networks relevant to many significant biosecurity,
human health, and environmental issues.

Methods
When there is perfect detection, finding the optimal management strategy
for an infected network can be solved using Markov decision process (MDP)
and stochastic dynamic programming (SDP) (33). In our case MDP is incon-
venient for two reasons: The computational complexity grows exponentially
with the number of nodes and SDP methods mostly provide a single optimal
solution. Determining alternative optimal solutions is essential when de-
riving rules of thumb. We overcome these disadvantages by modeling our
SIS network management problem as a factored Markov decision process
(FMDP) (26), taking advantage of the structure of our problem and fast
optimization methods from artificial intelligence.

A factored MDP is a MDP that explicitly represents the independent
relationships between variables of the system (conditional independence).
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A factored MDP is defined by four elements: a factored set of states (S),
a finite set of actions (A), a transition probability function (P), and a reward
function (R). Let s in S be the state of the network at any given time t and s
represent the nodes infected or the susceptible state: s = (s1, s2, . . . , sn),
where the state variable si ∈ Si = {infected, susceptible} represents the state
of the node i. The system has 2n possible states. Let a in A be the decision the
manager can make at any given time t and a represent the nodes managed
by the decision makers: a = (a1, a2, . . . , an), where the components ai ∈ Ai =
{manage, do nothing}, the set of decisions available in node i. Because we
are interested in the prioritization of management, we assume only one
node can be managed at each time step. Our simulation results have shown
that when we increase the number of nodes we can manage at a time, our
rules continuously outperform the outside–in strategy (Results and SI
Methods). As currently defined, our model and approach will still hold when
more resources are available, allowing the management of several nodes at
a time. However, the computational complexity is dependent on the number
of actions we consider. If we were to consider managing k nodes among n at
a time, the size of the action set grows with k, |A| = n!/(n − k)!, limiting the
use of our methods to very small networks.

The dynamics of the system are captured by a matrix P that contains
the transition probabilities of moving from any state to any other state of
the system under different actions following the SIS process (Introduction
and Fig. S6). In classical MDP solution methods, all transition probabili-
ties must be represented and stored using |A| matrices of |S| by |S| dimen-
sions. Each element of these matrices represents a transition probability:
pðstþ1jst ; aÞ ¼ ∏i¼1;...;npðsitþ1js1t ; . . . ; snt ; aÞ.

A factored MDP takes into account the independence between state
variables explicitly, using a dynamic Bayesian network implemented as al-
gebraic decision diagrams (ADD) (Fig. S6). For example, let us consider a line
network with three nodes. The classic MDP needs to store the probabilities
of transition for every state given all possible states of nodes 1, 2, and 3,
even though node 1 does not affect the state of node 3 and vice versa. In
this way the classic algorithms are inefficient because they store information
that is not needed to find the optimal solution. A better way is to use the
structure of the network to store information for the nodes that directly
affect the state of nodes 3 and 1; e.g., p(s3t+1 | s3t, s2t, s1t, a) = p(s3t+1 | s3t, s2t, a)
and p(s1t+1 | s3t, s2t, s1t, a) = p(s1t+1 | s2t, s1t, a)—this simplification is factored
MDP. If an optimization problem has many independent variables, we can
solve larger-size MDPs using factored MDP because we have fewer state
interactions to consider and store. In our case, as the network studied
becomes larger, the savings gained by representing the network dynamic
increase exponentially.

When solving the corresponding optimization problem, we seek to de-
termine an optimal strategy π : S→ A that minimizes the expected number of
nodes infected over an infinite time horizon. The optimal strategy matches
an optimal action to each possible state of the system. For any network thus
specified, we first determine the conditional dependence/independence
between nodes over one time step. We automatically generate the corre-
sponding FMDP model and solve the optimization process using the fast
algorithm stochastic planning using decision diagrams (SPUDD) (27). We
then analyze the solutions and derive clear management rules.

In reality many pests, diseases, and threatened species cannot be detected
perfectly. A factored partially observable Markov decision process (FPOMDP)
model is an augmented FMDP with a factored set of observations (Z) and an
observation function (O). Similar to a factored MDP, a factored POMDP is
a POMDP that explicitly represents the independent relationships between
variables of the system. In our case the FPOMDP tackles the problem of
deciding the most appropriate management action given the difficulty of
detecting an infected node. We define the finite set of local observations for
each node at time t, zi = {Absent, Present} and their corresponding obser-
vation function oi that maps to each state–action pair a probability distri-
bution over zi. In other words, the probability of detection of the infection
given that the node is infected and that the previous decision is to do

nothing is defined by oi(Present | Infected, Do nothing). Let z in Z be an
observation of the whole system z = {z1, . . . , zn}. We define the observation
function of the system as the joint probability of the local observation
function: O(z | s, a) = o1(z1 | s1, a1)x . . . x on(zn | sn, an).

As it is neither practical nor tractable to use the history of the action–
observation trajectory to compute or represent an optimal solution, belief
states are preferred to summarize and overcome the difficulties of in-
complete detection. Indeed, Astrom (52) has shown that belief states are
sufficient statistical tools to summarize all of the observable history of
a POMDP without loss of optimality. A POMDP can be cast into a framework
of a fully observable Markov decision process where belief states represent
the continuous but fully observable state space. Here, a belief state b is
defined as a distribution probability over states in S. In our case, solving
a FPOMDP is finding a strategy π : B× T ↦ A, mapping an allocation of re-
source a ∈ A given a current belief state b ∈ B and a time step t ∈ T. An
optimal strategy minimizes the expected sum of costs or rewards (R) over
a finite time horizon, T. This expected summation is also referred to as the
value function (53). A value function essentially ranks strategies by assigning
a real value to each b.

Whereas various algorithms from the operations research and artificial
intelligence literature have been developed over the past years, the com-
putational complexity of exact algorithms remains intractable for most
problems: Finite horizon POMDPs are PSPACE-complete (54) and infinite-
horizon POMDPs are undecidable (55). In the last few years, approximate
methods have been developed to solve POMDPs (28, 56–59). Among these
approaches we chose symbolic perseus, a point-based approach for factored
POMDP. Point-based approaches approximate the value function by
updating it only for some selected belief states. The point-based methods
sample belief states by simulating some random interactions in the envi-
ronment and then update the value function and its gradient over those
sampled belief states. The symbolic perseus method (28) benefits from both
the factored representations of FPOMDP using ADD and a fast point-based
method using Perseus (58).

In summary, being able to model our optimization problems as a factored
MDP (under perfect detection) or factored POMDP (under imperfect de-
tection) is innovative and constitutes a key point of our work. Factored MDP
and POMDP allow us to (i) compactly represent the optimization problems
using trees and dynamic Bayesian networks, (ii) implement efficient com-
putation using algebraic decision diagrams, and (iii) identify management
rules by using decision trees to represent all of the optimal solutions in a
structured way.

We derived an analytic solution for a population of invasive species fol-
lowing previous work by Chadès et al. (9) (SI Methods). We also derived an
analytic approximation for n independent populations by transforming an
n-population POMDP into a single POMDP (SI Methods and Fig. S5). Due to
the high level of complexity of an n-population POMDP, we were unable to
include interactions between populations. In most cases, interactions be-
tween populations are likely to increase the local persistence of each pop-
ulation. As a consequence, our approximation provides a lower time limit for
which it is beneficial to manage or survey. This approximation constitutes a
first step toward further theoretical development.
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