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Extra TFIIIC (ETC) sites are chromosomal locations bound in vivo by
the RNA polymerase III (Pol III) transcription factor III C (TFIIIC) com-
plex, but are not necessarily associated with Pol III transcription.
Although the location of ETC sequences are conserved in budding
yeast, and similar sites are found in other organisms, their func-
tions are largely unstudied. One such site, ETC6 in Saccharomyces
cerevisiae, lies upstream of TFC6, a gene encoding a subunit of the
TFIIIC complex itself. Promoter analysis shows that the ETC6 B-box
sequence is involved in autoregulation of the TFC6 promoter.
Mutation of ETC6 increases TFC6 mRNA levels, whereas mutation
immediately upstream severely weakens promoter activity. A
temperature-sensitive mutation in TFC3 that weakens DNA bind-
ing of TFIIIC also results in increased TFC6 mRNA levels; however,
no increase is observed in mutants of TFIIIB or Pol III subunits, dem-
onstrating a specific role for the TFIIIC complex in TFC6 promoter
regulation. Chromatin immunoprecipitation shows an inverse rela-
tionship of TFIIIC occupancy at ETC6 versus TFC6mRNA levels. Over-
expression of TFC6 increases association of TFIIIC at ETC6 (and other
loci) and results in reduced expression of a TFC6 promoter-URA3
reporter gene. Both of these effects are dependent on the ETC6 B-
box. These results demonstrate that the TFC6 promoter is directly
regulated by the TFIIIC complex, a demonstration of an RNA poly-
merase II promoter being directly responsive to a core Pol III tran-
scription factor complex. This regulation could have implications in
controlling global tRNA expression levels.

The eukaryotic RNA polymerase III (Pol III) system is re-
sponsible for synthesizing transfer RNA molecules and other

transcripts, which in yeast include the U6 spliceosomal RNA,
7SL RNA, 5S ribosomal RNA, snr52 small nucleolar RNA, and
the RNA component of RNaseP (1–3). Transcription by Pol III
requires the activity of the multisubunit transcription factor III C
(TFIIIC) complex, which binds to conserved A-box and B-box Pol
III promoter elements and functions to overcome chromatin re-
pression of Pol III transcription and to recruit the TFIIIB complex
(4–6). Although Pol III and its transcription factors are thought
to be dedicated to transcription of these specific genes, a growing
body of evidence has shown that both partial and complete
chromosomally bound Pol III complexes can have effects on
nearby RNA polymerase II (Pol II) promoters (7–11). Chromatin-
bound Pol III complexes also mediate other extratranscriptional
functions, including targeting Ty element integration (12–14),
blocking replication fork progression (15), condensin and cohesin
recruitment (16, 17), and direct inhibition of transcription from
nearby Pol II promoters (9, 18–20).
Studies in both budding and fission yeast initially identified the

presence of genome sequences that bind the TFIIIC complex, but
not Pol III transcription factors TFIIIA and TFIIIB or the Pol III
enzymatic complex itself (10, 21–23). Recently, similar sites have
been identified in human cells (24–27). These B-box–containing
sequences are referred to as either Extra TFIIIC (ETC) or
TFIIIC-only sites in budding yeast and as chromatin organizing
clamps (COCs) in fission yeast (10, 21, 23). Particular TFIIIC-
binding sites have been shown to function as chromatin boundary
elements (8, 10), but the genome-wide function of the TFIIIC-
bound ETC sites remains unknown.

Interestingly, one ETC site in Saccharomyces cerevisiae, ETC6,
lies within the promoter of the TFC6 gene, which encodes a sub-
unit of the TFIIIC complex itself. We hypothesized that the Tfc6
protein, as part of the TFIIIC complex, might autoregulate its own
promoter by binding to ETC6. Autoregulation of gene expression
is critically important in all forms of life, from its role in the lyso-
gen/lytic growth decision of bacteriophage λ (28) to its important
roles in developmental and neuronal gene expression in meta-
zoans (29, 30). Our results identify the B-box within ETC6 as
a functional regulatory element within the TFC6 promoter that
mediates stringent autoregulation of the promoter; this regulation
is sensitive to Tfc6 protein levels and binding of the TFIIIC com-
plex. This appears to be a demonstration of a core Pol III tran-
scription factor complex directly regulating the transcription of
a Pol II-transcribed promoter, and this tight control of Tfc6p levels
could be important in regulating global tRNA expression, which
could have subsequent global effects on translational regulation.

Results
Inhibition of TFIIIC Binding to ETC6 Results in Increased TFC6 Transcript
Levels. We used a combined transcript mapping, bioinformatics,
and mutational approach to identify the potential promoter ele-
ments upstreamofTFC6. 5′-RACEanalysiswas performed tomap
transcriptional start sites, which were identified at bases minus 46,
96, 98, 104, and 110 from the annotated TFC6 translational start
site (Fig. 1A, detailed in Fig. S1).Mapping of the start sites allowed
us to focus on the upstream region to identify promoter elements.
Comparison of theTFC6promoter regions fromfive budding yeast
species revealed regions of high conservation in addition to the
ETC6 site B-box sequence. Regions containing six or more bases
common to all five species over a 12- base stretch were designated
as promoter boxes 1–7, as shown schematically in Fig. 1A (and at
sequence level detail in Fig. S1). These 12-bp boxes were mutated
on plasmids and reintegrated into the yeast genome, andNorthern
blot analysis for TFC6 mRNA was performed for each mutant.
The results in Fig. 1B show that the major effects were seen

clustered across promoter mutants 3, 4, and 5. Mutant 3 signifi-
cantly decreased TFC6 mRNA level, and this mutant is compro-
mised for growth due to limiting TFC6 expression, as complemen-
tation with a TFC6 plasmid restores normal growth (Fig. S2).
Mutants 4 and 5, which both span the ETC6 site, show a twofold
increase in TFC6 mRNA levels, which is consistent with our pre-
vious results deleting this site (8). These results are consistent
with mutant 3 affecting a transcription factor binding site and with
the ETC6 B-box being involved in negative regulation of the
TFC6 promoter.
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To further test the hypothesis that TFIIIC binding to ETC6 is
involved in TFC6 autoregulation, we performed TFC6 Northern
blots on strains containing conditional mutations of the RNA
polymerase III machinery. The mutant tfc3-G349E is a temper-
ature-sensitive allele of a TFIIIC component that reduces binding
affinity (measured in vitro) of the TFIIIC complex for tDNAs
(31). Mutations brf1 II-9 and II-6 are impaired in Brf1p in-
teraction with TBP (32), rpc31-236 is defective in Pol III initia-
tion (33), and rpc160-112 is defective in elongation (34). The
results in Fig. 1C demonstrate that only the tfc3-G349E mutant
contained increased TFC6 transcript levels. This is consistent
with direct TFIIIC-mediated regulation of TFC6 transcription,
and not a result of reduced Pol III activity, as the other muta-
tions that globally impair Pol III transcription had little effect.

Inverse Correlation of TFIIIC Association at ETC6 and TFC6 Transcript
Levels. To confirm that the mutant etc6 and tfc3 strains were in-
deed defective for in vivo binding of TFIIIC to ETC6, we perform-
ed chromatin immunoprecipitation (ChIP) against a carboxyl-
terminal 3×FLAG-epitope tagged Tfc1p subunit (Fig. 2) in both
tfc3-G349E and etc6 B-box mutant strains. The B-box mutation
changes a cytosine residue conserved in all TFIIIC binding sites to
a guanine and is known to inhibit TFIIIC binding in vitro (35). The
results in Fig. 2A illustrate that both mutations lead to loss of
TFIIIC association with the TFC6 promoter in vivo, and reduced
binding correlates with the relative increase in TFC6 transcript
levels in the same mutants (Fig. 2B). The reduced ChIP signal in
the tfc3 mutant was not due to reduced levels of Tfc1p, as
Western blot analysis of wild-type and tfc3-G349E mutant show
similar Tfc1p levels (Fig. S3).

Overexpression of TFC6 Inhibits Expression from Its Own Promoter. If
Tfc6 protein levels are directly autoregulating Tfc6’s own pro-
moter, then overexpression ofTFC6 froman episomal plasmid can

be predicted to reduce transcription from the endogenous chro-
mosomal promoter. To test this hypothesis, we created diploid
yeast strains that have the URA3 ORF precisely replacing one
chromosomal copy of the TFC6 ORF (Fig. 3A). These strains
allowed us to assess the level of TFC6 promoter activity inde-
pendently of episomal expression by assessing growth on media
lacking uracil. TFC6 was overexpressed in strain DDY4520, both
from its own promoter on a high-copy plasmid containing the
entire TFC6 gene and from the ADH1 promoter on a low-copy
plasmid. IncreasedTFC6 expression has no effect on growth of this
strain on media lacking only histidine compared with cells trans-
formed with the HIS3 vector (Fig. 3B), showing that increased
Tfc6p levels alone do not inhibit growth. However, when the same
cells were plated on minimal media lacking both histidine and
uracil, the average colony sizes formed by cells containing either
the high-copy or ADH1-promoter plasmid were consistently 65–
70% of controls containing empty vector. This effect is dose-de-
pendent, as expression ofTFC6 from its own promoter on a lower-
copy ARS-CEN plasmid reduces average colony size to only 89%
of controls (Fig. S4). ChIP against TFC1-3×FLAG showed that
overexpressionofTFC6 resulted in increased association ofTFIIIC
at ETC6 (Fig. 3C), as the amount of TFC6 promoter DNA
immunoprecipitated was ∼1.7 times the vector control. This cor-
related with a decrease in TATA binding protein (TBP) associa-
tion at the TFC6 promoter, as the anti-TBP ChIP signal was only
∼70% compared with the vector control (Fig. 3C). These results
show that overexpression of TFC6 increases the degree of TFIIIC
association with ETC6 and reduces expression from its own pro-
moter, presumably due to increased stability of TFIIIC binding to
the ETC6 site, leading to reduced TBP association.

Autoregulation of TFC6 Is ETC6 Site B-Box–Dependent and Tfc6p-
Specific. If increased binding of TFIIIC to ETC6 is indeed re-
sponsible for reduced growth on media lacking uracil, then a
strain with URA3 driven by a TFC6 promoter containing the
defective B-box within ETC6 would be insensitive to overex-
pressed TFC6 when grown on media lacking uracil. Strain
DDY4521 is identical to DDY4520 except for the presence of
the C-to-G mutation in the ETC6 B-box upstream of the URA3
marker. The results in Fig. 4A confirm that the inhibition is

Fig. 1. Characterization of the S. cerevisiae TFC6 promoter suggests auto-
regulation by the TFIIIC complex. (A) Transcriptional start sites upstream of
TFC6 were mapped by 5′-RACE analysis and are detailed in Fig. S1. TFC6
promoter regions of highest homology among five budding yeast species are
designated as promoter boxes 1–7 and are also detailed in Fig. S1. (B) Mutant
promoters were reintegrated into the yeast chromosome, and relative TFC6
mRNA levels were determined by Northern blotting. Expression was de-
termined from three independently isolated strains for each mutation; one
each is shown here. (C) Temperature-sensitive mutation in TFC3, but not in
other Pol III mutations, results in increased TFC6 transcript levels. Strains
containing mutant alleles of TFIIIC, TFIIIB, and Pol III components were grown
at permissive temperature (30 °C) and then pulsed for 1 h at the non-
permissive temperature (37 °C) before RNA extraction and Northern analysis.

Fig. 2. TFIIIC binding to ETC6 is inversely correlated to TFC6mRNA levels. (A)
Strains containing 3×FLAG epitope-tagged TFC1 and either tfc3-G349E or
etc6 B-box mutant alleles were constructed, chromatin extracts were pre-
pared for immunoprecipitation, and relative TFIIIC association at the TFC6
promoter was determined. (B) Reduction of TFIIIC binding by either mutation
is correlated to increased TFC6 mRNA levels.
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mediated through the ETC site, as when TFC6 is overexpressed
in the strain containing the mutant B-box; no reduction of colony
size is observed on media lacking uracil.
We next asked if overexpression of other TFIIIC subunits

would affect URA3 expression from the TFC6 promoter. Large-
scale proteomic studies of yeast protein expression have esti-
mated the number of protein molecules per yeast cell (36), and
the results suggest that Tfc3p, Tfc4p, and Tfc6p are the most
limiting components of the TFIIIC complex. Tfc1p appears to be
present in large excess, whereas Tfc7p and Tfc8p are at in-
termediate levels. Indeed, this apparent excess of at least Tfc1p
and Tfc7p was determined to exist as a chromatographically
separable subcomplex in yeast extracts (37). We confirmed that
Tfc6p is limiting relative to Tfc1p, as Western blots of protein
extracts from strains containing the identical triple FLAG epi-
tope on each gene show a large relative excess of Tfc1p com-
pared with Tfc6p (Fig. S5). These endogenous ratios suggest that
overexpression of other limiting subunits might also increase the
level of TFIIIC complex binding to ETC6 and reduce TFC6
promoter activity, whereas overexpression of TFC1 should have
no effect because it is already in excess. Plasmids (2μ) containing
TFC1, TFC3, TFC4, and TFC6 were separately transformed into
strain DDY4403 (TFC6 promoter-URA3, similar to DDY4520,
but in the S288C background) and plated on media lacking both
histidine and uracil. Colony sizes were determined at 6 days of
growth, and the results are shown in Fig. 4B. As expected,
overexpression of TFC1 had no effect on cell growth, nor did
overexpression of TFC4. Expression of TFC3 appeared to inhibit
growth slightly, but not as much as TFC6. These results dem-
onstrate that the TFC6 promoter is preferentially sensitive to
increased levels of its cognate gene product.

Overexpression of TFC6 Results in Elevated TFIIIC Association at Multiple
Loci. Because TFIIIC binding at ETC6 was increased upon over-
expression of Tfc6p, we tested other B-box–containing loci by
ChIP for enrichment of the TFIIIC complex. The results in Fig. 5
demonstrate that, at all loci tested, which included three tDNAs,
the ZOD1/UFO1 locus, and ETC4 and ETC5, an increase in
TFIIIC association was observed upon episomal expression of
TFC6. The magnitude of this increase varied from 1.2-fold to over
2-fold. Despite this seemingly general increase in TFIIIC binding,
we have not yet identified any tDNAs or other loci that show
altered levels of Pol III transcription (Discussion).

Discussion
Although Pol III is dedicated to transcription of tDNAs and
a handful of other RNAs, genome-wide ChIP studies in yeast
have demonstrated the presence of the transcription factor
complex TFIIIC at chromosomal locations not associated with the
Pol III complex (10, 21–23). Recently, similar studies using hu-
man cells and high-throughput sequencing detection (ChIP-Seq)
have demonstrated the presence of such sites beyond yeast (24–
27). These loci—ETC sites, COCs, or TFIIIC-only sites—have
been shown to affect expression of neighboring Pol II genes by
acting as chromatin boundary elements (8, 10). This study set out
to further characterize the role of the TFIIIC binding site ETC6 in
S. cerevisiae, which lies in the promoter of the TFC6 gene
encoding a subunit of the TFIIIC complex itself. The location of
this site was noted by Moqtaderi and Struhl in their study char-
acterizing ETC sites (23), and they suggested the possibility that
TFIIIC might regulate this promoter. Our results confirm their
speculation, as we show that ETC6 is a functional promoter ele-
ment of the TFC6 gene that mediates autoregulation of TFC6
expression in response to Tfc6 protein levels. We show that in-
hibition of TFIIIC binding to ETC6 results in increased TFC6
transcript levels, whereas overexpression of Tfc6p increases as-
sociation of the TFIIIC complex at ETC6 and inhibits expression
from the TFC6 promoter. These results suggest that Pol II tran-
scription of TFC6 is sensitive to the level of its own protein
product, a product that is part of what was previously thought to
be a dedicated core Pol III transcription factor. Although such
crosstalk between Pol II transcription factors and Pol III pro-
moters has been described for the octamer binding proteins and
the SNAPc complex in mammalian systems (38), they appear to
be general Pol II transcription factors that act on a limited subset
of Pol III promoters. Therefore, this does appear to be a dem-
onstration of a core Pol III factor regulating Pol II transcription.
The results presented here also beg the question of how does the

TFIIIC complex inhibit expression from its own promoter? Data in
Fig. 3 show reduction in TBP association at the TFC6 promoter
when TFC6 is episomally overexpressed; although this may be due
to direct inhibition of TBP binding, this reduction might also be
a consequence of other mechanisms. We previously suggested (8)
that inhibition may occur via an insulator-like mechanism, with
bound TFIIIC inhibiting upstream transcription factors from re-
cruiting a productive preinitiation complex at the transcription
start site. However, because the key TFC6 promoter element
(mutant site 3) is immediately upstream of the ETC6 B-box, we

Fig. 3. Overexpression of Tfc6p down-regulates gene expression driven by the TFC6 promoter and increases the association of the TFIIIC complex to ETC6. (A)
Diploid strain DDY4520 was constructed to contain the URA3 ORF integrated in place of the TFC6 ORF on one copy of chromosome IV to test the effects of
episomal TFC6 overexpression. (B) Vector controls, 2μ HIS3 TFC6, or ARS-CEN HIS3 ADH1-promoter-TFC6 plasmid transformants were plated on media lacking
histidine or both histidine and uracil, and colony sizes were measured after 3 d (minus histidine) or 5 d (minus histidine and minus uracil) at 25 °C. (C) ChIP of
TFC1-3×FLAG strains transformed with vector or ADH1 promoter-TFC6 plasmid show increased Tfc1p association and decreased TBP at ETC6 when TFC6 is
overexpressed. Quantitative results were averaged from three separate determinations.
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also consider that TFIIIC and the putative transcription factor may
be in competition for binding to the same region of DNA.
Although much work has been done on the global control of

Pol III transcription by the Maf1-mediated pathway (39–41), few
studies have looked at the role of the regulation of expression of
the Pol III transcription factors themselves. In yeast, over-

expression of TFIIIB70 (Brf1p) elevates expression of promoter
mutant tDNAs (42). In mammalian cells, overexpression of Brf1
stimulates Pol III transcription, and shRNA inhibition of Brf1
expression reduces oncogenic transformation and tumor forma-
tion in a mouse model (43, 44). These results indicate that levels
of the Pol III transcription factors can have critical roles in
regulating Pol III transcription and cell proliferation.
Autoregulatory circuits have been identified as key compo-

nents controlling gene expression and have evolved in organisms
from bacteriophage to humans (30). Bacteriophage λ uses its CI
repressor protein to both positively regulate its own expression
and then negatively regulate itself when the cellular concentra-
tion of the protein reaches proper levels, a key circuit in main-
taining the inducible lysogenic state (28). Neuronal terminal
differentiation genes in Caenorhabditis elegans are controlled by
autoregulated terminal selector transcription factors, and dis-
ruption of this process can lead to defective neuron function
(29); many other instances of autoregulation could be cited (30).
Given these considerations, the results presented here suggest
that in yeast there exists a tight autoregulation of TFC6 ex-
pression that maintains its protein product as a limiting com-
ponent of the TFIIIC complex. This fact raises the question as to
why yeast need to maintain such stringent control of Tfc6p ex-
pression and therefore of TFIIIC activity. Because we observe
that overexpression of Tfc6p differentially increases the Tfc1p
ChIP signal at several loci (Fig. 5), we speculate that altered Tfc6
levels might differentially regulate TFIIIC occupancy genome-
wide and possibly differentially affect expression levels of tRNAs
and other Pol III transcripts. Recent studies have shown that
slowly translated rare/suboptimum codons play a role in fine-
tuning translational regulation and protein stability and activity
(45–49); therefore, altered Tfc6p levels might differentially af-
fect the production of tRNAs decoding these regulatory codons,
potentially having global effects on translational regulation. Al-
though we have not yet detected any differences in Pol III
transcription upon overexpression of Tfc6p (from a limited set of
Pol III-transcribed genes tested), a genome-wide analysis may
reveal particular tDNAs whose expression is altered. Because
many tDNAs are present in multiple copies, such differences
may be revealed only by tagging of individual loci to distinguish
altered expression levels.
The work presented here is significant in that it appears to be

a demonstration of a core Pol III transcription factor that can
directly regulate transcription from a Pol II promoter, in that this
stringent regulation could potentially be important in global gene
expression, and in that it adds another potential avenue of
crosstalk between the different RNA polymerase systems (50). In
addition, because ETC-like sites have now been confirmed in
human cells, the role of the TFIIIC complex in genome organi-
zation and global control of gene expression may be more prev-
alent than previously realized.

Materials and Methods
5′-RACE analysis was performed using the FirstChoice RLM-RACE kit (Ambion-
Applied Biosystems; #AM1700). Construction of the promoter mutants is
described in the legend to Fig. S1. Each mutant intergenic region was rein-
tegrated into chromosome IV by transformation into strain DDY3453 (etc6Δ::
URA3) and selection on 5-FOA media and was verified by PCR of genomic
DNA and digestion of the PCR products with DrdI to verify the presence of
the mutation. DDY3453 was created by standard yeast knockout techniques
using oligonucleotides DDO-792 and -793 to amplify URA3 from plasmid
pRS406 (51). The genotypes of all yeast strains used in this study are listed in
Table S1, and all plasmids used are described in Table S2. All oligonucleotide
sequences are listed in Table S3. Northern blot analyses were performed as
described (9).

Plasmids expressing TFIIIC subunits Tfc1p, Tfc3p, and Tfc6p were con-
structed by PCR amplification of each gene in addition to ∼500 bp upstream
and downstream from yeast genomic DNA (primers and details available on
request) using the high-fidelity Phusion DNA polymerase (New England
Biolabs; F-530S). Functional expression was verified by complementation of
mutant strains. TFC4 was subcloned from a previously characterized plasmid

Fig. 5. Overexpression of TFC6 increases TFIIIC association at multiple
genomic loci. Strain DDY4381 (TFC1-3×FLAG) was transformed with either
empty vector or pDD1234 (ADH1 promoter-TFC6) to overexpress Tfc6p.
Binding of TFIIIC was assessed at several B-box sites by ChIP using anti-
FLAG antibody; each B-box site showed increased enrichment when Tfc6p
was overexpressed. As in Fig. 3, determinations were performed in trip-
licate and normalized to the GAL locus signal; one pair of lanes is shown
for each locus.

Fig. 4. Down-regulation of the TFC6 promoter by Tfc6p requires the ETC6
B-box and is specific to TFC6 overexpression. (A) Strain DDY4521 was con-
structed to contain a mutant B-box linked in cis to the TFC6 promoter driving
URA3. TFC6 was overexpressed as in Fig. 3 and was unable to down-regulate
the TFC6 promoter containing the mutant B-box, as indicated by no change
in colony sizes. (B) Overexpression of other TFIIIC subunits in DDY4403. High-
copy 2μ plasmids encoding each gene driven by its native promoter were
transformed into the URA3 reporter strain and plated on minimal media
lacking histidine and uracil, and colony sizes relative to the vector control
were determined as in Fig. 3.
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PCF1 (kindly provided by Ian Willis, Albert Einstein College of Medicine, New
York). Each gene was cloned into the HIS3-marked pRS series of ARS-CEN and
2μ vectors (51, 52).

ChIP was performed as described (8), using the same TFC1-3×FLAG allele
crossed into the appropriate strains. Anti-FLAG monoclonal M2 was from
Sigma (F1804), and anti-yeast TBP was from Santa Cruz Biotechnology (sc-
33736). Quantitation of ChIP signals was determined by radioactive PCR
according to Kurdistani and Grunstein (53), except that samples were re-
solved on 1.2% agarose gels. ChIP signals were normalized to the background
PCR signal generated using primers homologous to the non-TFIIIC binding
GAL1-10 intergenic region (oligos DDO-1023 and -1024) to control for back-
ground and sample variation. All quantitative ChIP results were averaged
from three independent determinations.

TFC6 promoter-URA3 ORF reporter strains were constructed by standard
yeast recombination methods, using oligonucleotides DDO-1201 and DDO-
1202 homologous to the ends of the URA3 ORF in addition to 50 bases im-
mediately upstream and downstream of the TFC6 ORF to amplify the coding

sequence of URA3. Ura+ recombinants expressing URA3 from the TFC6 pro-
moter were slow growing on media lacking uracil (requiring 4–5 d to appear)
and were slightly temperature sensitive; therefore, all colony growth
experiments were performed at 25 °C. To compare colony sizes, tfc6Δ::URA3
cells were transformed with empty pRS vector (51, 52) or HIS3-marked TFIIIC
subunit expressing plasmids and plated on minimal media lacking histidine.
His+ isolates were grown in liquid media lacking histidine and plated at ∼50
colonies/plate onmedia lacking histidine and onmedia lacking both histidine
and uracil. Plates were incubated at 25 °C for 3 d (minus histidine) or for 5–6
d (minus histidine and uracil) before photographing. Relative colony sizes
from 30 to 50 colonies were measured for each sample using ImageJ software
(http://rsbweb.nih.gov/ij/).
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