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Abstract

To evaluate the stability and heterogeneity of cytokine and chemokine profiles in 80 youth with and without
HIV-1 infection, we tested plasma samples at repeated visits without antiretroviral therapy. Among nine ana-
lytes that were quantified using multiplexing assays, interleukin 10 (IL-10), IL-18, and soluble CD30 persistently
showed a positive correlation with HIV-1 viral load (Spearman r¼ 0.40–0.59, p< 0.01 for all). A negative
correlation with CD4þ T cell counts (r¼�0.40 to �0.60, p< 0.01 for all) was also persistent for the three analytes.
Analyses restricted to 48 AIDS-free youth (96 visits) yielded similar findings, as did multivariable models in
which race, sex, age, body mass index, and time interval between visits were treated as covariates. These
relationships reflected two novel features observed for all three analytes. First, their presence in plasma was
relatively stable between visits (r¼ 0.50–0.90, p< 0.03), regardless of HIV-1 infection status. Second, pairwise
correlation was strong and persistent in HIV-1-seropositive youth (r¼ 0.40–0.59, p< 0.01), but not in HIV-1,
seronegatives ( p> 0.13). Additional analytes, especially eotaxin/CCL11 and SDF-1b/CXCL12, had no correla-
tion with HIV-1-related outcomes despite their stability between visits. Overall, circulating IL-10, IL-18, and
soluble CD30 could partially track unfavorable responses to HIV-1 infection in youth. These markers of per-
sistent immune activation are individually and collectively indicative of HIV-1 pathogenesis.

Introduction

Pattern-specific recognition of pathogen invasion
(innate immunity) and antigen-specific T cell or B cell

responses (acquired immunity) are closely regulated by
cytokines and chemokines, which mediate the differenti-
ation, migration, and function of immune cells. In the
majority of individuals infected with HIV type 1 (HIV-1),
persistent immune activation of CD4þ and CD8þ T cells1–4

is often accompanied by defective cytokine responses.5,6

A better understanding of variability (heterogeneity) in
cytokine and chemokine responses to HIV-1 infection
should benefit their use as therapeutic supplements7 or
topical microbicides.8,9

Earlier studies have demonstrated that various cytokines
can have a persistent and reproducible correlation with both
virologic and immunologic outcomes following HIV-1 infec-
tion. In particular, an elevated interleukin (IL)-4:interferon
(IFN)-g ratio has been correlated with high plasma viral load
and rapid loss of CD4þ T cells,6 while increases in IL-4 and
IL-4-induced IgE production appear to coincide with the
emergence of syncytium-inducing viruses.10,11 Emerging

consensus findings point to circulating IL-7, IL-10, IL-15,
IL-18, and tumor growth factor (TGF)-b1 as probable pre-
dictors or biomarkers of HIV-1-related outcomes that range
from infection to disease progression and response to thera-
py.12–19 Analyses of other immune activation markers such as
soluble CD30 (tumor necrosis factor receptor superfamily,
member 8) can be equally informative.20–22 In addition, de-
tection of intracellular cytokines, especially IFN-g, IL-2, and
TNF-a, is increasingly used to gauge the functionality of HIV-
specific T cells.23,24 However, with few exceptions,25 past re-
search has rarely yielded longitudinal data that can elucidate
the timing and trajectory of cytokine or chemokine profile
after HIV-1 infection.

The work described here follows our earlier observations
that serum interleukin 18 (IL-18) is likely a universal and re-
liable predictor of unfavorable outcomes in HIV-1-infected
adolescents and adults26 and that plasma is probably more
suitable than serum when chemokines are studied in paral-
lel.27 By focusing on cytokines and chemokines with a rela-
tively stable presence in plasma, our study has produced clear
evidence that at least three immunologic markers strongly
correlate with variability in HIV-1 pathogenesis.
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Materials and Methods

Study subjects

Subjects selected for this study came from the Reaching for
Excellence in Adolescent Care and Health (REACH) project
(1994–2001).28,29 Briefly, youth receiving active health care
were recruited and enrolled from 13 U.S. cities for longitudi-
nal evaluation and testing, at a 2:1 ratio between HIV-1 se-
ropositive (seroprevalent) and seronegative subjects. The final
cohort had close to 370 youth who were HIV-1 seropositive
and they acquired infection primarily through high-risk sex-
ual activities and occasionally through injection drug use, as
reflected by the low rate of coinfection with hepatitis C virus
(1.7% for HIV-1 seropositives and 0% for high-risk seroneg-
atives).30 The 60 HIV-1-seropositive (HIV-1þ) youth chosen
for this retrospective study all had (1) two treatment-free
visits within the first 2 years of follow-up (duration of infec-
tion unknown but should be less than 5 years and more than 6
months), (2) adequate plasma samples stored at �808C and
never thawed before use, (3) HIV-1 viral load (VL) and CD4þ

T cell (CD4) counts measured at both visits, (4) no more than
12 months between visits, and (5) unlikely complication by
hepatitis C virus infection. Representative of the entire
REACH cohort in terms of age, sex ratio, ethnic backgrounds,
and other characteristics (Table 1), the HIV-1þ youth consisted
of 25 controllers (VL <1000 copies/ml and CD4 count >450
cells/ml) and 35 noncontrollers (VL >16,000 copies/ml and
CD4 count <450 cells/ml) defined earlier in immunogenetic
studies.31,32 For this study, the emphasis was on VL because of
its dual impact on disease progression (pathogenesis) and
transmission to exposed individuals. CD4 decline (expressed
as visit 2 to visit 1 ratio) within the sampling period was
also tested as a proxy for CD4 slope. Selection of 20 HIV-1-
seronegative (HIV-1�) youth emphasized a relatively equal
number of African-Americans and non-African-Americans.
These research activities conformed to the U.S. Department of
Health and Human Services guidelines for protection of hu-
man subjects. The protocols for obtaining written informed
consent, blood sample, clinical information, data manage-
ment, and data analysis were approved by institutional re-
view boards (IRBs) at each clinical site, with further approval
by the IRB at the University of Alabama at Birmingham (un-
der Protocol X070405012).

Multiplexing enzyme-linked immunosorbent assay
(SearchLight)

Highly sensitive SearchLight proteome array (Aushon
BioSystems, Inc., Billerica, MA; formerly Thermo Fisher Sci-
entific, Rockford, IL) was used to quantify nine analytes in
plasma samples collected with EDTA-coated tubes. Capture
antibodies (in array format) spotted on the bottom of 96-well
polystyrene microtiter plates were specific for nine analytes,
including two cytokines (IL-10 and IL-18), five chemokines
(eotaxin/CCL11, MIP-1a, MIP-1b, RANTES/CCL5, and SDF-
1b/CXCL12) and two inflammatory markers (soluble CD30
and C-reactive protein). EDTA-plasma samples were tested in
duplicate at three dilutions (1:2, 1:50, and 1:1000). The bound
protein analytes were incubated with biotinylated detection
antibodies. After addition of streptavidin-horseradish perox-
idase (HRP) and SuperSignal ELISA Femto Chemilumines-
cent substrate, the light signal produced from the HRP-

catalyzed oxidation of substrate was captured by digital
scanning (SearchLight Imaging System). The scanned image
was processed using ArrayVision customized software. Pro-
duct concentrations at individual spots were extrapolated off
a standard curve. The lower limits of detection ranged from
0.2 pg/ml for IL-10 to 6.2 pg/ml for MIP-1a. The results were
highly reproducible (coefficients of variation <20% in >80%
of test samples). Testing of the first eight analytes was based
on (1) initial screening of 42 analytes (representing TH1 and
TH2 cytokines, C-X-C and C-C motif chemokines, growth
factors, as well as markers of inflammation and angiogenesis)
using the Human Cytokine Array III (RayBiotech Inc., Nor-
cross GA),33 (2) dismissal of IFN-g, IL-2, IL-4, IL-6, and tumor
necrosis factor alpha (TNF-a) as informative markers of HIV-1
pathogenesis in the REACH cohort,34 (3) analysis of serum
samples from the REACH cohort,26 and (4) successful quan-
tification in over 90% of samples from HIV-1þ youth. Inclu-
sion of C-reactive protein (CRP) was based on its frequent
recognition as a reliable marker of chronic inflammation re-
lated to various immune disorders.35,36

Statistical analyses

Several routine statistical procedures in the Statistical
Analysis Software (SAS) package, version 9.2 (SAS Institute,
Cary, NC) were used to determine (1) intervisit correlation for

Table 1. Characteristics of HIV-1 Seropositive

and Seronegative Youth Selected

from the REACH Cohort

Characteristics HIVþ youth HIV� youth

No. of subjects 60a 20b

Sex ratio (M/F) 0.33 (15/45) 0.67 (8/12)
Ethnicity

African-American (AA) 44 11
Otherc 16 9

Age at visit 1d 17.6� 1.3 17.6� 0.8
Age at visit 2d 18.4� 1.4 17.9� 1.0
Interval (in days)
between visits

237� 107 170� 25

BMI at visit 1 27.6� 7.3 28.3� 9.5
BMI at visit 2 27.5� 7.5 28.4� 9.7
Earliest visit date March 1996 March 1996
Latest visit date October 2000 November

1999
Plasma HIV-1 viral load (log10 copies/ml)

Visit 1 3.68� 1.57 NA
Visit 2 3.69� 1.68 NA

CD4þ T cell counts (cells per ml)
Visit 1 502� 342 1016� 345
Visit 2 480� 378 870� 368
Change (visit 2

to visit 1 ratio)
0.93� 0.30 0.86� 0.24

aRepresentative of HIV-1-seropositive youth in the REACH cohort
(duration of infection unknown).

bWith an emphasis on relatively equal representation of African-
Americans and others. NA, not applicable.

cMostly Hispanic Americans in this group.
dThese selected visits correspond to the first two eligible for

analyses of HIV-1-related outcomes in the absence of antiretroviral
therapy. Summary data as shown correspond to mean� standard
deviation.

HIVþ, HIV-1 seropositive; HIV�, HIV-1 seronegative.
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all analytes and two major HIV-1-related outcomes (i.e., VL
and CD4 count), (2) visit-specific pairwise correlation among
all analytes measured on the same day, and (3) visit-specific
correlation between individual analytes and HIV-1-related
outcomes, including CD4 T cell change or decline (visit 2 to
visit 1 ratio). To emphasize the strength and persistence of
correlations, the Spearman method was used throughout this
work; estimates of correlation coefficients (rho¼ r) were
highlighted if the p values reached the minimal statistical
significance level (0.05) at both visits (results from visit 2
tested the hypothesis derived from visit 1). Whenever possi-
ble, statistical adjustments were made for race, sex, age, BMI,
and the time interval between visits.

Results

Analyses based on 60 HIV-1-seropositive youth

Among HIV-1þ youth (Table 1), 25 controllers and 35
noncontrollers differed starkly in VL and CD4 count
( p< 0.0001 for all comparisons). In controllers, VL was
2.04� 1.03 log10 (mean� standard deviation) and 1.99� 0.91
at visit 1 and visit 2, respectively, with corresponding CD4
counts of 834� 257 and 849� 290 cells/ml. In noncontrollers,
VL was 4.80� 0.54 log10 at visit 1 and 4.91� 0.79 log10 at visit
2, with corresponding CD4 counts of 274� 150 and 217� 127.
Declines in CD4 within the sampling intervals also differed
between these two subgroups (the visit 2 to visit 1 ratio was
1.07� 0.28 for controllers and 0.82� 0.27 for noncontrollers,
p< 0.0001 by Student’s t-test).

For the nine analytes (eotaxin/CCL11, MIP-1a, MIP-1b,
RANTES/CCL5, SDF-1b/CXCL12, IL-10, IL-18, soluble
CD30, and CRP) tested in EDTA-plasma samples, IL-10, IL-18,
and soluble CD30 were positively correlated with HIV-1 VL
and inversely correlated with CD4 counts at both visits (Table
2 and Fig. 1), with r values ranging from 0.26 ( p< 0.05) to 0.59
( p< 0.0001) in tests of VL. Statistical adjustments for race, sex,
age, BMI, and visit interval did not substantially alter these
relationships (Supplementary Table S1; Supplementary Data
are available online at www.liebertonline.com/aid). The
other six analytes (CRP, eotaxin, MIP-1a, MIP-1b, RANTES/
CCL5, and SDF-1b/CXCL12) had no clear correlation with
HIV-1 VL or CD4 counts at any visit (results not shown).

The three analytes (IL-10, IL-18, and soluble CD30) asso-
ciated with HIV-1-related outcomes all had relatively stable
concentrations between visits (Table 2), with soluble CD30
being most stable (intervisit r¼ 0.85 and p< 0.0001) and IL-10
the least (r¼ 0.75 and p< 0.0001). On the basis of assay

quality (coefficient of variation< 5% for duplicate samples),
intervisit stability, and magnitude of correlation at both visits,
soluble CD30 was the best predictor of HIV-1 VL, which was
in turn a strong predictor of CD4 counts (r¼ 0.87 and 0.91 for
visit 1 and visit 2, respectively; p< 0.0001 for both).

When 12 patients with severe immunodeficiency (i.e., CD4
count <200 cells/ml) were excluded, the key findings re-
mained similar (Supplementary Table S2). Again, soluble
CD30 was the best predictor of HIV-1 viral load (r¼ 0.76 for
visit 1 and 0.74 for visits 2, p< 0.0001 for both visits). Further
(exploratory) analyses using the 12 youth with severe im-
munodeficiency (<200 CD4 count per ml of blood) revealed
that eotaxin/CCL11 at any visit strongly correlated with visit
2 viral load (r¼ 0.73 and 0.86, p< 0.01 and <0.001 for visit 1
and visit 2 eotaxin, respectively). However, plasma eotaxin/
CCL11 did not correlate with CD4 counts at any visit ( p> 0.13
in all tests involving the 12 patients). Similar tests for other
analytes were not informative (results not shown).

In alternative analyses, both IL-18 and soluble CD30 had a
persistent inverse correlation with CD4 change/decline
(r��0.25 and p� 0.05) (Table 3), while IL-10 showed a cor-
relation at visit 2 (r¼�0.28 and p¼ 0.02) and not at visit 1
(r¼�0.13 and p¼ 0.32). Relative changes in these three ana-
lytes (visit 2 to visit 1 ratios) were not informative in any of the
statistical models ( p� 0.19).

Comparisons between HIV-1- seropositive
and -seronegative youth

For visit 1, the three plasma analytes (IL-10, IL-18, and
soluble CD30) associated with HIV-1-related outcomes were
all present at higher concentrations in HIV-1þ than HIV-1�

youth ( p< 0.001 for all) (Table 4). The analytes with the
clearest (>10-fold) difference between HIV-1þ and HIV-1�

youth were MIP-1a and CRP ( p< 0.0001), with the former
being undetectable (<6.2 pg/ml) in 18 out of 20 HIV-1�

youth. Two other analytes, eotaxin and SDF-1b/CXCL12, had
*4-fold higher concentrations in HIV-1þ than HIV-1� youth
( p< 0.0001 for both), while MIP-1b and RANTES/CCL5 had
a slight trend for higher concentrations in HIV-1� than HIV-
1þ youth, although the difference did not reach statistical
significance ( p> 0.20 for both). Results for visit 2 mostly
mirrored those for visit 1 (Table 4), except that IL-10 concen-
trations were no longer different between HIV-1þ and HIV-1�

youth ( p¼ 0.48 by Wilcoxon U-test).
As in HIV-1þ youth (Table 2), IL-10, IL-18, and soluble

CD30 also had a stable presence in the plasma of HIV-1�

Table 2. Pairwise Correlation among Three Plasma Analytes and Two HIV-1-Related

Outcomes in 60 Youth from the REACH Cohort
a

Parameter IL-10 IL-18 Soluble CD30 HIV-1 viral load CD4þ T cell

IL-10 0.749 (<0.0001) 0.353 (<0.01) 0.397 (<0.01) 0.434 (<0.001) �0.407 (0.001)
IL-18 0.428 (<0.001) 0.771 (<0.0001) 0.259 (<0.05) 0.402 (<0.01) �0.449 (<0.001)
Soluble CD30 0.499 (<0.0001) 0.334 (0.009) 0.852 (<0.0001) 0.523 (<0.0001) �0.395 (<0.01)
HIV-1 viral load 0.594 (<0.0001) 0.404 (0.001) 0.568 (<0.0001) 0.869 (<0.0001) �0.797 (<0.0001)
CD4þ T cell �0.594 (<0.0001) �0.430 (0.001) �0.510 (<0.0001) �0.823 (<0.0001) 0.913 (<0.0001)

aEach individual is analyzed for two treatment-free visits within the first 3 years of longitudinal follow-up study. Results (Spearman r and
p values in parentheses) from visit 1 are over the diagonal; results from visit 2 are below the diagonal; comparison between visit 1 and visit 2
are in italics. The best predictor of HIV-1 viral load within each visit is shown in bold.
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youth, although the ranking differed slightly among the three
analytes: IL-18 was most stable in the absence of HIV-1 in-
fection (r¼ 0.90 and p< 0.0001) and IL-10 was least stable
(r¼ 0.50 and p< 0.03). However, there was no pairwise cor-
relation among these analytes at any visit in the HIV-1� youth

( p> 0.13 for all), which contrasted with findings based on
HIV-1þ youth (Table 2).

Stability ranking for the other analytes in the absence of
HIV-1 infection was as follows: eotaxin/CCL11 (r¼ 0.94 and
p< 0.0001)> SDF-1b/CXCL12 (r¼ 0.72 and p< 0.001)>CRP
(r¼ 0.71 and p< 0.001)>MIP-1b (r¼ 0.63 and p< 0.01)>
RANTES/CCL5 (r¼ 0.49 and p¼ 0.03). For HIV-1þ youth, the
ranking was slightly different: eotaxin/CCL11 (r¼ 0.86)>
SDF-1b (r¼ 0.73)>RANTES/CCL5 (r¼ 0.67)>MIP-1b (r¼
0.60)>CRP (r¼ 0.57) ( p< 0.0001 for all intervisit relation-
ships). Overall, eotaxin/CCL11 and SDF-1b/CXCL12
were quite stable regardless of HIV-1 infection status. The
relative ranking for MIP-1a could not be compared because
most plasma samples from HIV-1� youth had undetectable
levels.

Discussion

With attention to adequate and repeated sampling of HIV-
1þ and HIV-1� youth, our analysis produced clear evidence
that multiple cytokines, chemokines, and related products
have a relatively stable presence in EDTA-plasma samples

Table 3. Alternative Analysis of CD4þ T Cell Change

in 60 Youth from the REACH Cohort
a

Visit 1 Visit 2 Visit 2 to visit 1 ratio

Plasma analyte r p r p r p

IL-10 �0.13 0.32 �0.28 0.03 �0.17 0.19
IL-18 �0.27 0.04 �0.25 0.05 0.04 0.75
Soluble CD30 �0.40 <0.01 �0.35 <0.01 0.09 0.51

aCD4þ T cell counts at two separate visits are converted to a ratio
(visit 2 to visit 1) before being treated as an alternative outcome
measure. Spearman correlation (r) and associated p value are shown
for each of the three analytes at both visits and for the ratio of these
analytes (also visit 2 to visit 1).

FIG. 1. Persistent correlation of plasma IL-10 with HIV-1 viral load (a, c) and CD4þ T cell counts (b, d) at two separate visits
without antiretroviral therapy. Each panel represents univariate correlation analysis of data from 60 individuals using the
Spearman method. Projected slope and its 95% confidence intervals at each visit are shown in solid and broken lines,
respectively. Similar findings are seen with IL-18 and soluble CD30 (Table 2).
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and that three analytes are highly informative in terms of their
persistent correlation with two HIV-1-related outcomes, es-
pecially VL. These findings support the notion that circulating
immunologic markers may closely track viral pathogenesis.
Of note, the three products (IL-10, IL-18, and soluble CD30)
positively correlated with HIV-1 VL and inversely so with
CD4 counts are all markers of immune activation, which is
consistent with evidence from previous studies featuring
different demographic characteristics.13,17,20–22,37,38 Among
the three analytes, IL-10 has the best defined function prop-
erties in viral infection or clearance.39–41 Compared with IL-18
and soluble CD30, use of plasma IL-10 as a biomarker for
HIV-1 pathogenesis per se is somewhat compromised by its
lack of persistent correlation with CD4 decline during HIV-1
infection (Table 3) and by its apparent fluctuation even in
healthy subjects (Table 4).

Immune activation in HIV-1-infected individuals is driven
by viral antigens as well as endotoxins (lipopolysaccharides,
LPS) derived from translocated bacteria,42–44 even in patients
with minimal viral replication.45,46 Circulating LPS is a pro-
minent marker of HIV-1 pathogenesis,47 as is the soluble form
of the endotoxin receptor CD14.48,49 The three immunologic
markers identified in our study population may also imply
the importance of LPS and soluble CD14 through various
immune pathways associated with HIV-1 infection in youth.
While activated CD4þ (mostly TH2) and CD8þ (cytotoxic) T
cells are the major source of IL-10 production in humans,50 IL-
18 and CD30 can be released by a variety of cells.50,51 Persis-
tent alteration in these products is expected to have a broad
impact on innate and adaptive immune responses. In study
populations in which frequent coinfections with other path-
ogens (e.g., hepatitis C virus and mycobacteria) may further
complicate systemic immune responses, it remains to be seen
if IL-10, IL-18, and soluble CD30 can maintain their respective
correlation with established markers of HIV-1 pathogenesis.
Data from seroconverter cohorts (rare for adolescents and
youth) should be particularly informative.

As in most studies to date, correlates of protective (favor-
able) immune responses to HIV-1 infection continue to be
elusive. Lack of close relationships between circulating beta
chemokines (i.e., MIP-1a and MIP-1b and RANTES/CCL5)
and HIV-1-related outcomes was especially disappointing,

because these small molecules have well-recognized anti-
HIV-1 activities, mostly through binding to CCR5, the major
HIV-1 coreceptor. High concentrations of b-chemokines in
plasma are expected to interfere with HIV-1 dissemination, as
demonstrated by in vitro assays.52,53 Yet even high concen-
trations of RANTES/CCL5 had no differential impact on VL
or CD4 counts. As we pointed out earlier,27 quantitative as-
says that can distinguish various b-chemokine isoforms and
cleavage products33,54 may provide new insights: it is possible
that certain isoforms, including nonallelic products encoded
by closely related genes, are more potent than others in their
antiviral properties and these can be differentially distributed
among tissue compartments. Judging from preliminary find-
ings on eotaxin/CCL11 in patients with severe immunodefi-
ciency, timing of the chemokine response can be another
critical issue. The specific role of eotaxin/CXCL11 in late stage
of HIV-1 infection may deserve some further investigation.

Unfavorable outcomes following HIV-1 infection are also
associated with cellular factors, including CD38 and PD-1 on
CD8þ T cells.1,3,4,55–58 Work based on the REACH cohort and
other youth populations has produced confirmatory findings
about the prognostic value of CD8þCD38þ T cell percent-
age,59–62 suggesting that hyperimmune activation is also a
common feature in youth and children. Use of soluble instead
of cellular factor as correlates or predictors of HIV-1 patho-
genesis is usually advantageous because quantification of
cellular factors requires an ample amount of viable cells.
Nonetheless, assessment of normal and abnormal ranges of
specific cytokines, chemokines, and related products in ex-
tracellular compartments will require close attention to stan-
dardized procedures for sample processing, followed by
vigorous testing in different study populations. Our data from
HIV-1þ and HIV-1� youth should serve this purpose well.

The search for clinically and epidemiologically useful bio-
markers in human proteomes has yielded some success be-
fore.63 High concentrations of three soluble products of
cellular receptors (CD27, CD40L, and CD120a/TNFR1) and
plasma IL-6 in HIV-1 patients before combination therapy
have been shown to predict AIDS-defining illnesses after
treatment.64 In patients with viral hepatitis, two commercially
available serum marker panels (FibroSURE and FIBROSpect
II) appear to be equally reliable in gauging the success of

Table 4. Overall Comparison of Nine Plasma Products (Analytes) Between 60 HIV-1-Seropositive

and 20 Seronegative Youth

Visit 1 resultsa Visit 2 resultsa

Analytes HIVþ youth HIV� youth p value HIVþ youth HIV� youth p value

IL-10 2.4 (1.6–2.8) 1.3 (0.8–1.9) <0.001 2.1 (1.4–3.3) 2.0 (1.3–2.7) 0.48
IL-18 332 (261–403) 135 (101–167) <0.0001 329 (251–428) 145 (110–192) <0.0001
Soluble CD30 2.7 (1.8–3.8) 1.0 (0.8–1.3) <0.0001 2.1 (1.6–4.0) 1.1 (0.9–1.6) <0.0001
Eotaxin/CCL11 88 (61–132) 20 (15–48) <0.0001 86 (61–133) 23 (12–40) <0.0001
MIP-1a 61.5 (52.3–68.9) <6.2 NA 66.2 (54.5–72.4) <6.2 NA
MIP-1b 48 (38–62) 38 (29–68) 0.21 47 (40–56) 39 (31–78) 0.27
RANTES/CCL5 14.3 (5.2–39.9) 26.5 (4.8–57.9) 0.29 14.8 (5.6–37.4) 14.9 (7.0–50.9) 0.61
SDF-1b/CXCL12 1220 (916–1847) 310 (142–360) <0.0001 1277 (924–1808) 253 (151–402) <0.0001
C-reactive protein (CRP) 1421 (540–3368) 117 (23–190) <0.0001 943 (482–3440) 127 (27–1340) <0.001

aConcentrations are shown in pg/ml for all analytes except soluble CD30, RANTES/CCL5, and CRP (in ng/ml). The median and
interquartile range (IQR) are shown for each analyte and p values are based on Wilcoxon U-tests (NA, not applicable when most values are
below the lower limit of detection).
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interferon-based therapy in patients with hepatic C virus in-
fection.65 A combination of several CXCR3-related chemo-
kines (CXCL9, CXCL10, and CXCL11) may provide
noninvasive markers of hepatic fibrosis.66,67 Soluble immu-
nologic markers highlighted in studies of hepatitis B and C
bear no close similarity to markers derived from studies of
HIV-1 infection. Such disease- or pathway-specific findings
clearly imply distinct underlying mechanisms and/or sites of
viral pathogenesis. Efforts to identify and confirm immuno-
logic markers specific for HIV-1 infection should eventually
benefit the design of targeted intervention.

HIV-1-specific questions aside, our work has also indicated
that cytokine and chemokine concentrations in plasma can
remain relatively stable in youth regardless of HIV-1 infection
status. Differences in stability ranking, as seen occasionally
between HIV-1þ and HIV-1� youth, may hint at the disrup-
tion of certain interactive pathways following HIV-1 infection.
Stability ranking as a novel measure of plasma analytes may
become useful in distinguishing HIV-1 controllers from non-
controllers. Thus, an analysis of stability alone may lead to
new findings important to HIV-1 pathogenesis.
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