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Abstract
Recent published sequencing of fungal genomes has revealed that these microorganisms have a
surprisingly large number of secondary metabolite pathways that can serve as potential sources for
new and useful natural products. Most of the secondary metabolites and their biosynthesis
pathways are currently unknown, possibly because they are produced in very small amounts and
are thus difficult to detect or are produced only under specific conditions. Elucidating these fungal
metabolites will require new molecular genetic tools, better understanding of the regulation of
secondary metabolism, and state of the art analytical methods. This review describes recent
strategies to mine the cryptic natural products and their biosynthetic pathways in fungi.
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Secondary metabolites are remarkable resources for medically useful compounds. Fungi live
in complex ecosystems and must compete with other organisms, such as bacteria, algae,
other fungi, protozoans and small metazoans. They have evolved the ability to produce
secondary metabolites that kill, or inhibit the growth of, their competitors. Thus, it is not
surprising that fungal secondary metabolites have included a number of important drugs
such as the antibiotic penicillin (1), the immunosuppressant cyclosporine (2), and the anti-
hypercholesterolemic agent lovastatin (3) (Figure 1) [1]. Recent genome sequencing,
however, has revealed that genes involved in secondary metabolite biosynthesis are more
abundant than anyone had anticipated. This suggests that there is still a vast number of
compounds with new chemical structures that could be isolated from filamentous fungi [2].

*npkeller@wisc.edu; clayw@usc.edu.

NIH Public Access
Author Manuscript
Nat Prod Commun. Author manuscript; available in PMC 2011 May 24.

Published in final edited form as:
Nat Prod Commun. 2009 November ; 4(11): 1505–1510.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fungi are known to produce several classes of secondary metabolites, including polyketides,
non-ribosomal peptides, other amino acid derived compounds and terpenes [1]. Genomic
analysis in Aspergillus nidulans, for example, identified 27 polyketide synthases (PKSs) and
14 non-ribosomal peptide synthetases (NRPSs), which are responsible for polyketide and
non-ribosomal peptide biosynthesis, respectively [3]. Fungal polyketides are produced by
multidomain type I PKSs which are iterative in nature and can be further grouped into
nonreduced (NR), partially reduced (PR), and highly reduced (HR) PKSs by examining the
existence of additional tailoring domains encoded in the gene [4,5]. An important feature
that can facilitate genetic analysis of secondary metabolism biosynthesis pathways in fungi
is the fact that the genes of individual secondary metabolite pathways are usually clustered
together in the genome [6].

For reasons still not well understood, most biosynthetic gene clusters are either cryptic or
expressed at levels too low to result in product detection in standard laboratory culture
conditions. Systematically varying fermentation parameters, an approach termed OSMAC
(One Strain-Many Compounds), has been successful in eliciting the production of some of
these unknown compounds [7,8]. An example of combining OSMAC and bioinformatic
analysis is the discovery of aspoquinolones A – D (4 – 7,Figure 2) by Scherlach and
Hertweck [9]. They recognized that the A. nidulans genome codes for multiple anthranilate
synthases, which are responsible for quinoline or quinazoline alkaloid biosynthesis. They
cultivated A. nidulans in numerous growth conditions and discovered aspoquinolones by UV
and mass spectrometry screening.

Although the OSMAC approach allows to an extent the revelation of the hidden reservoir of
chemical diversity, most biosynthetic gene clusters in fungi are still underexplored. It
appears that some chemical or environmental signals for inducing secondary metabolite
genes are missing in laboratory culture conditions. Genome mining thus offers a powerful
tool for discovering cryptic natural products, especially when signaling pathways from
external stimuli to gene expression are elucidated. The recently published genomes from A.
nidulans, A. niger, and A. oryzae demonstrate that the majority of pathways identified in
Aspergilli is neither redundant in different species nor duplicated within a given genome [2].
Excitingly, we now have genetic tools for gene-targeting to study these pathways with
remarkable facility [10-12].

Manipulating expression of cluster-specific regulatory activators to
discover novel secondary metabolites

The presence of cluster-specific regulatory activators in fungal biosynthetic gene clusters is
a common feature, including tri6 for tricothecene biosynthesis [13], aflR for aflatoxin
biosynthesis [14], and ctnA for citrinin biosynthesis [15], among others [16]. Yu et al.
showed “proof-of-concept” that one could overexpress a pathway specific regulatory gene
and generate a final metabolite [14]. Bergmann et al. first demonstrated that ectopic
overexpression of apdR, a Zn2Cys6 regulator gene within a cryptic hybrid PKS-NRPS gene
cluster, placed under the control of an inducible promoter results in the concerted activation
of the gene cluster, allowing the identity of two new cytotoxic metabolites, aspyridones A
(8) and B (9) (Figure 3) [17]. Using a similar approach, the asperfuranone (10) gene cluster
was discovered in our laboratory by replacing the endogenous promoter of a regulatory
activator in the asperfuranone gene cluster, afoA, with an inducible promoter (Figure 4) [18].
Deletion of afoD, a key hydroxylase in the asperfuranone biosynthesis, resulted in
accumulation of the benzaldehyde derivative 11. This result established the function of two
PKSs, one HR-PKS (AfoG) and one NR-PKS (AfoE), together involved in the 11
biosynthesis, prompting the proposed***** asperfuranone biosynthesis pathway. The
advantage of this approach is that only a regulatory activator needs to be handled and in
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some cases, concerted expression of all pathway genes can be triggered. Because the large
quantities of genomic sequence data from a wide variety of organisms are accessible and
still exponentially growing in publicly databases, this approach clearly will provide a new
avenue for drug discovery [19].

Discovery of LaeA, a global regulator of secondary metabolism
The identification of LaeA (loss of aflR expression), a nuclear protein regulating secondary
metabolite production in Aspergillus spp., leads to the hypothesis that LaeA functions as a
global regulator of secondary metabolism in this genus [20]. Loss of LaeA decreased
sterigmatocystin (12) and penicillin (1) production in A. nidulans and gliotoxin (13)
production in A. fumigatus (Figure 5). Sequence analysis of LaeA indicated it encodes a
methyltransferase with some sequence similarity to histone and arginine methyltransferases.
The sequence similarity as well as the sub-telomeric locations of many of the targets of
LaeA suggests that this protein acts via chromatin remodeling [1]. A whole-genome
comparison of the transcriptional profile of wild-type, ΔlaeA, and complemented control
strains of A. fumigatus showed that LaeA controls transcription of at least 9.5% of the
genome, and 13 of 22 secondary metabolite gene clusters were positively regulated by
LaeA. Seven of these regulated clusters are sub-telomeric, in the regions with a high degree
of heterochromatin [21]. Microarray analysis of laeA deletion and overexpression A.
nidulans strains, as proof-of-principle, led to the discovery of the terrequinone A (14) gene
cluster (Figure 5) [22]. Thus, manipulation of laeA expression levels will be of benefit to
identify previously unknown metabolites in fungi.

Epigenetic regulation of fungal secondary metabolism
Efforts to uncover the mechanism of the global regulator LaeA revealed that some
subtelomeric secondary metabolite clusters were located in heterochromatic regions of the
genome. Importantly, gene transcription of telomere-proximal gene clusters and the level of
the corresponding molecular generation are controlled by epigenetic regulation such as
histone deacetylation. Deletion of hdaA (histone deacetylase) or treatment with a histone
deacetylase (HDAC) inhibitor in Aspergillus nidulans resulted in the transcriptional
activation of sterigmatocystin (12) and penicillin (1) gene clusters, both located in
subtelomeres [23]. Cichewicz et al. rationally hypothesized that small-molecular epigenetic
modifiers such as HDAC or DNA methyltransferase inhibitors could modulate secondary
metabolite production. Treatment of Cladosporium cladosporioides with 5-azacytidine (a
DNA methyltransferase inhibitor) stimulated the production of several oxylipins including
(9Z,12Z)-11-hydroxyoctadeca-9,12-dienoic acid (15), its methyl ester (16), and a glycerol
conjugate (17) (Figure 6). In contrast, administration of suberoylanilide hydroxamic acid (an
HDAC inhibitor) yielded production of a complex series of perylenequinones including
cladochromes (18 – 23) and calphostin B (24). Treatment of a Diatrype species with 5-
azacytidine elicited the formation of lunalides A (25) and B (26) [24]. The Cichewicz group
also isolated nygerone A (27) from Aspergillus niger when culturing with suberoylanilide
hydroxamic acid [25]. These results demonstrate the potential of triggering cryptic
metabolites through chemical epigenetic methodology.

Accruing evidence linking chromatin modifications with secondary metabolite cluster
regulation led us to examine the hypothesis that additional chromatin modifying proteins
were important in their regulation. We examined a member of COMPASS (complex
associated with Set1) which methylates lysine 4 on histone 3 (H3K4) [26,27]. The
COMPASS complex consists of eight members, Set1, Bre2, Sdc1, Shg1, Spp1, Swd1, Swd2,
and Swd3. Evidence from Set1 trimethyl-defective mutants in Saccharomyces cerevisiae
suggest that mono- and/or dimethylation of H3K4 is important for cell growth, whereas
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trimethylation is required for silencing in telomeric regions [28]. CclA, an ortholog of bre2
in S. cerevisiae, was deleted in A. nidulans. Chemical profiling followed by genetic analysis
led to the identification of two NR-PKS gene clusters, one cluster responsible for
monodictyphenone (28), emodin (29) and emodin derivatives (30 – 33), and a second
encoding the enzymes for F9775A (34) and B (35) (Figure 7) [29]. Interestingly, chromatin
immunoprecipitation (ChIP) analysis of the two up-regulated genes in the
monodictyphenone cluster of ΔcclA mutant showed that not only H3K4 but also H3K9 di-
and trimethylation levels were suppressed. One non-activated gene nearby, however, was
associated with only reduced levels of di- and trimethylation at H3K4 but not H3K9. Thus,
strongly reduced levels of di- and trimethylation at H3K4 and H3K9 are required for de-
repression during secondary metabolism. Since not all secondary metabolite gene clusters
contain pathway specific activators, modification of the chromatin landscape provides
another means to active cryptic gene clusters [29].

Histone proteins are substrates for a wide array of modifications including acetylation,
methylation, phosphorylation, and ubiquitination. SUMO is a small ubiquitin-like protein
that is added posttranslationally to a number of proteins in the cell. In A. nidulans, there is a
single SUMO gene, and the deletion of sumO causes only a slight inhibition of growth [30].
Secondary metabolite analysis showed that ΔsumO mutant decreased the production of
austinol (36) and dehydroaustinol (37), dramatically increased the production of asperthecin
(38), and did not alter the production of emericellamides (39 – 43) (Figure 8A). The
aromatic nature of asperthecin (38) suggested an NR-PKS is responsible for its biosynthesis
and the pathway was established through a series of knockout genetic analysis (Figure 8B)
[31]. However, the mechanisms underlying SUMO regulation of secondary metabolism
remains elusive; it may occur at different levels of regulation, including chromatin
modification of the gene cluster, transcription factor modification, or the consequences of
the effects on growth or primary metabolism.

Conclusion
With an ever-increasing number of complete genome sequences at hand, many novel gene
clusters have now been identified. However, the corresponding secondary metabolites
remain elusive, and researchers worldwide are working together to annotate gene function in
the post-genomic era [32]. This review presents that, given exciting new approaches for
identifying novel natural products, the next frontier of natural product discovery will be a
synergistic combination of genomics, molecular genetics, biochemistry, and natural product
chemistry to mine the fungal metabolome for useful natural products. Clearly, natural
product chemistry and molecular genetics have a new interrelationship. Collaborations
between mycologists, geneticists, biochemists and chemists are essential to facilitate the
discovery of novel natural products and the genes involved in their biosynthesis, which in
the end will benefit the commercial search of enzymatic reactions [33]. The OSMAC
approach, co-culture experiments [25], specific regulator activation, and epigenetic
regulation will continue to play crucial roles for discovering cryptic novel natural products.
Although epigenetic approaches might have serious drawbacks, chiefly because targeting
some histone-modifying complexes for loss-of-function could have negative effects on other
cellular processes, continued development of genome mining tools will make these cryptic
systems a potentially invaluable resource for the discovery of new chemical entities.
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Figure 1.
Chemical structures of medicinally important natural products: penicillin G (1), cyclosporine
A (2), and lovastatin (3).
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Figure 2.
Compounds isolated from A. nidulans by combining bioinformatic analysis and the OSMAC
approach.
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Figure 3.
Unlocking a fungal cryptic PKS-NRPS via activation of a pathway-specific regulator to
produce aspyridones A (8) and B (9).
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Figure 4.
Unlocking fungal cryptic dual PKSs via activation of a pathway-specific regulator to
produce asperfuranone (10).
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Figure 5.
>Increasing secondary metabolite production via overexpression of the global regulator,
LaeA.
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Figure 6.
Unlocking fungal cryptic secondary metabolites via addition of DNA methyltransferase and
histone deacetylase (HDAC) inhibitors to the culture medium.

Chiang et al. Page 12

Nat Prod Commun. Author manuscript; available in PMC 2011 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Unlocking fungal cryptic secondary metabolites via epigenetic regulation: Deletion of CclA,
a member of the COMPASS complex.
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Figure 8.
(A) Unlocking fungal cryptic secondary metabolites via deletion of SumO protein. (B)
Proposed biosynthetic pathway of asperthecin (38) generated from genetic and chemical
analysis.
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