Skip to main content
. 2011 May 24;6(5):e20179. doi: 10.1371/journal.pone.0020179

Figure 2. Strategy options for mass treatment.

Figure 2

(A) Three scenarios of seasonal mosquito densities simulated by the model: green line = highly seasonal: 96% of infectious bites occur in the peak 3 months; red line = moderately seasonal: 50% of infectious bites occur in the peak 3 months; blue line = not seasonal (for comparison). (B)&(C) Example simulations showing the impact of MDA on slide-prevalence in a scenario of highly seasonal transmission if carried out (B) blue line: prior to the rise in mosquito densities (month 3 in this simulation) as shown in (A), versus (C) orange line: just prior to the peak of the transmission season (month 6 in this simulation). Baseline slide-prevalence in the absence of MDA is shown in gray for comparison. (D)&(E) Model-estimated cumulative % infectious bites averted per person after 1 round of mass treatment over the following 2 years (D) comparing different antimalarial types and (E) comparing different screening criteria used to allocate treatment, in a scenario of moderate transmission intensity (baseline slide-prevalence = 15%) with moderate seasonal variation (as in Figure 2A). Mass treatment is carried out prior to the high transmission season. ‘Short-acting’ = 10 days prophylaxis, ‘long-acting’ = 30 days prophylaxis. MDA = no screening; MSAT PCR = PCR-positive individuals are treated; MSAT M = microscopy-positive individuals are treated; MSAT M1 = microscopy detects all those in the more infectious A and D states in the model and not those in the U state (microscopy sensitivity = 58% in the scenario shown); MSAT M2 = microscopy sensitivity is 75% for infected individuals regardless of infection state (D, A or U); MSAT M3 = microscopy sensitivity is 50% for infected individuals regardless of infection state (D, A or U).