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 Abstract 

Overnutrition characterized by overconsumption of food rich in fat and carbohydrates is a sig-

nificant contributor to hypertension, type 2 diabetes, and the cardiorenal syndrome.  Overnu-

trition activates the renin-angiotensin-aldosterone system (RAAS) and causes chronic exposure 

of cardiovascular and renal tissue to increased circulating nutrients, insulin (INS), and angioten-

sin II (ANG II).  Emerging evidence suggests that overnutrition, aldosterone, and ANG II promote 

INS resistance, a chronic condition that underlies these co-morbidities, through activation of 

the mammalian target of the rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling pathway in cardio-

vascular tissue and the kidney. However, a novel ANG II type 2 receptor (AT2R)-mediated cross 

talk between the RAAS and mTOR pathways ameliorates overnutrition-induced activation of 

mTOR/S6K1 signaling in cardiovascular tissue of rats, mice, and humans and confers cardiopro-

tection.  Copyright © 2011 S. Karger AG, Basel

 

 Introduction 

 Diminished insulin (INS) metabolic signaling is a common feature of disease states such 
as obesity, hypertension, diabetes, and the cardiorenal metabolic syndrome (CRS). Overnu-
trition (especially that characterized by excess intake of fat and carbohydrates) is a major 
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factor in the increased prevalence of hypertension, CRS, and diabetes. These co-morbidities 
may be driven by decreases in INS-mediated vascular relaxation, and glucose transport in 
cardiovascular (CV) and skeletal muscle tissue  [1–7] . In addition to overnutrition, several 
other mechanisms, such as enhanced activation of the renin-angiotensin-aldosterone system 
(RAAS), inflammation, and associated abnormalities in INS metabolic signaling, may help 
explain the linkage between INS resistance, hypertension and the CRS  [8–15] .

  There is emerging evidence that overnutrition, aldosterone and angiotensin (ANG) II 
may promote INS resistance through the mammalian target of rapamycin (mTOR)/S6 ki-
nase 1 (S6K1) signaling pathway. The mTOR molecule, a highly conserved nutrient sensor, 
modulates INS metabolic signaling through its phosphorylation [(P)] of S6K1, an evolution-
arily conserved serine (Ser) kinase  [16–21] . Evidence is mounting that chronic activation of 
S6K1, by excessive nutrients, promotes INS resistance in fat, liver, heart, skeletal muscle, and 
renal tissue through increased Ser(P) of the critical INS signaling/docking molecule, INS 
receptor substrate protein-1 (IRS-1), leading to impaired phosphoinositol 3-kinase (PI3-K) 
engagement and protein kinase B (Akt) stimulation  [21–23] . Our recent work indicates that 
S6K1 is activated in CV tissue of an overnutrition rodent model that exhibits diminished INS 
metabolic signaling and biological consequences, such as impaired nitric oxide (NO)-medi-
ated vascular relaxation, cardiac diastolic dysfunction, and promotion of kidney tubuloint-
erstitial fibrosis.

  Research conducted in classically INS-sensitive tissue, such as muscle and liver, indicates 
that S6K1 is activated in conditions of INS resistance due to excessive intake of fat, sucrose, 
and protein  [17–20] . Evidence for the importance of S6K1 signaling in INS resistance is based 
on findings that a murine knockout model of S6K1 mice maintained on a high-fat diet still 
remains INS sensitive ( fig. 1 ) and siRNA knockdown of S6K1 protein in cells potentiates INS 
metabolic signaling  [16] . Further, Ser(P) of IRS-1 was reduced in S6K1 –/–  mice and siRNA-
treated cells  [16] . Studies conducted in fibroblasts exhibiting constitutive S6K1 activation 
revealed that certain IRS-1 Ser moieties (Ser 265 , Ser 302 , Ser 632 , and Ser 1097  of mouse IRS-1) are 
substrates for S6K1  [22] . In man, overnutrition-related reductions in glucose disposal are as-
sociated with overactivation of S6K1 and IRS-1 Ser(P)  [19] . Thus, S6K1 is a convergence point 
that has evolved to suppress INS metabolic signaling under conditions of nutrient overload.

  Over the past several years, we have explored the mechanisms by which ANG II and al-
dosterone contribute to CV and skeletal muscle INS resistance  [2, 10] . Recent research from 
our laboratory suggests that ANG II may inhibit INS metabolic signaling in CV tissue, in 
part by promoting S6K1-mediated IRS-1 Ser(P). This work in cultured endothelial cells and 
cardiomyocytes, and in ex vivo CV and skeletal muscle tissue, suggests that excessive Ser(P) 
of IRS-1 interferes with IRS-1/phosphoinositol 3-kinase (PI3-K) docking and the consequent 
activation of Akt. In skeletal muscle, cardiomyocytes and vascular smooth muscle cells 
(VSMCs), the PI3-K/Akt pathway stimulates glucose transporter-4 (GLUT4) recruitment to 
the plasma membrane resulting in glucose uptake in all three tissues, as well as relaxation of 
the vasculature  [24, 25]  and diastolic relaxation of the heart  [26–28] . INS-mediated signaling 
via this pathway promotes INS-induced vasorelaxation through increased endothelial NO 
synthase (eNOS) activity and reductions in myosin light chain (MLC) activation in VSMCs 
and decreases in calcium (Ca 2+ ) in cardiac tissue  [29] .

  Utilizing rodent models of RAAS activation (ANG II-infused C57BL/6 mice and trans-
genic Ren2 rats) and overnutrition [db/db mice and Zucker Obese (ZO) rats], we have re-
cently made the novel observation that cardiac and skeletal muscle S6K1 activation and 
Ser(P) of IRS-1 is increased in concert with reduced tissue INS metabolic signaling  [2, 6, 10] . 
In vivo treatment with a low dose of ANG II type 1 receptor (AT 1 R) blocker substantially 
reduced S6K1 activation/IRS-1 Ser(P) and improved INS metabolic signaling. Emerging data 
suggest that AT 1 R-mediated activation of mTOR/S6K1 signaling is involved in cardiac hy-
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pertrophy and increases protein synthesis in VSMCs  [30–32] . Thus, AT 1 R-induced mTOR/
S6K1 activation interferes with INS metabolic signaling and biological responses in CV as 
well as other tissues.

  CV Effects of Overnutrition and RAAS (mTOR/S6K1)-Mediated INS Resistance 

 INS induces vasodilation by enhancing Akt stimulation of eNOS(P) activation and NO 
production. The role of INS-stimulated IRS-1 tyrosine (Tyr) (P) in mediating eNOS activa-
tion is underscored by the observation that IRS-1 overexpression in aortic endothelial cells 
increases NO production  [33] , and introduction of a mutant IRS-1 unable to bind to the p85 
subunit of PI3-K  [33]  reduces INS-stimulated NO production. In VSMC, ANG II increases 
intracellular calcium ([Ca 2+ ] i ) and promotes MLC kinase activation  [34] . INS decreases ANG 
II-induced increases in VSMC [Ca 2+ ] i  and MLC kinase activity  [1] . INS normally promotes 
myocardial glucose uptake and utilization, mechanical-electrical coupling and diastolic re-
laxation via signaling through the IRS-1/PI3-K/Akt pathway  [35–37]  ( fig. 2 ). INS metabolic 
signaling increases coronary vessel NO production which, in turn, contributes to the benefi-
cial effects of INS on glucose uptake, coronary blood flow, and diastolic relaxation  [36–41] . 
These observations suggest coupling between the metabolic and coronary vascular actions 
of INS metabolic signaling in the heart. These beneficial cardiac effects of INS metabolic 
signaling are decreased in states of INS resistance  [37–44] . We have observed ANG II-in-
duced inhibition of NO production can be reversed by inhibition of mTOR/S6K1 in endo-
thelial cells. Cardiomyocytes and cardiac fibroblasts express high-affinity AT 1 R  [10]  and 
many of the adverse effects of ANG II are due to AT 1 R-mediated signaling.

  To evaluate the cardiac functional effects of INS metabolic signaling we utilize positron 
emission tomography (PET). In the INS-resistant state, myocardial glucose uptake and me-
tabolism is impaired, leading to diastolic dysfunction, attenuated myocardial blood flow, 
and impaired ischemic reconditioning. PET imaging, using  18 F-deoxyglucose ( 18 FDG), is 
used to evaluate INS-stimulated glucose uptake ( fig. 3 )  [41, 45] . We have utilized magnetic 
resonance imaging in conditions of overnutrition and excessive tissue RAAS activation, and 

WTS6K1–/–

  Fig. 1.  Wild-type (WT) and S6K1 –/–  mice after 6 
months of high-fat diet. Reprinted with permission 
from Macmillan Publishers Ltd. ( Nature   [16] , 
Copyright 2004). 
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have demonstrated impaired/prolonged diastolic relaxation  [7] . We have further demon-
strated that both impaired INS-stimulated glucose uptake and diastolic dysfunction are re-
lated to impaired systemic and myocardial INS metabolic signaling in models of obesity and 
increased tissue RAAS expression  [2, 7] . Interestingly, we have also observed that drug treat-
ments that improved INS resistance in rodent models of overnutrition attenuated mTOR/
S6K1 signaling. Collectively, these observations indicate that a combination of enhanced tis-
sue RAAS activation and a westernized high-sucrose/high-fat diet will reduce INS metabol-
ic signaling and enhance mTOR/S6K1 activation to a greater extent than either intervention 
alone. 

  AT2R } mTOR Signaling Loop in Overnutrition, Hyperinsulinemia, and Excess RAAS 

Activation 

 Accumulating evidence suggests that AT 2 R is a modulator of cardiac pathology  [46–51] . 
AT 2 R is up-regulated in failing human hearts  [50] , the vasculature of diabetic patients  [47] , 
and animal models of INS resistance, myocardial infarction, senescence, and hyperinsu-
linemia  [49, 52] . AT 2 R signaling reduces fibroblast growth and myocardial hypertrophy  [53] . 
The suppression of AT 2 R activation interferes with anti-hypertrophic/anti-fibrotic effects of 
AT 1 R blockade in experimental myocardial infarction  [54–58] . In cardiomyocyte-specific 
AT 2 R transgenic mice, moderate overexpression of AT 2 R in ventricular myocytes is cardio-
protective under conditions of pressure overload induced by aortic banding  [54] . On the 
other hand, excessive AT 2 R overexpression in ventricular myocytes leads to dilated cardio-
myopathy  [56] .

  Signaling pathways that increase AT 2 R protein in cardiac pathology are not well under-
stood. Interestingly, hyperinsulinemia-induced cardiac hypertrophy is accompanied by a re-
duction in AT 1 R, an increase in AT 2 R, and activation of S6K1 via the PI3-K/Akt signaling 
pathway  [57] . The association between increases in AT 2 R protein and S6K1 activation in INS-
induced cardiac hypertrophy prompts us to posit that mTOR/S6K1-induced increases in 
translation could, in part, contribute to increases in AT 2 R protein levels. Thus, conditions that 
activate mTOR-mediated signaling in cardiac tissue could also elevate AT 2 R protein levels 
 [58–60] . Activated mTOR nucleates two large protein complexes, mTOR-Raptor complex 1 
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  Fig. 2.  Function/metabolic effects of INS in cardiac muscle cells. 
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(mTORC1) and mTOR-Rictor complex 2 (mTORC2) that mediate mTOR signaling. When as-
sociated with Raptor, mTOR functions as the physiological Thr 389  kinase for its substrate S6K1 
 [61, 62] . Ribosomal protein S6 (RPS6) is a substrate of S6K1 and a key factor for protein syn-
thesis in various cell types  [62, 63] . Thus, activation of mTOR/S6K1 increases translation of 
different proteins via the S6K1-RPS6 pathway. The second substrate of mTOR is 4E-BP, which 
in its hypophosphorylated form functions as a translational repressor by binding to transla-
tion initiation factor eIF4E. In this context, mTORC1 enhances protein synthesis by inhibi-
tory phosphorylation of 4E-BP on Thr 37  and Thr 46 . Interestingly, hyperinsulinemia-induced 
cardiac hypertrophy is accompanied by a reduction in AT 1 R, an increase in AT 2 R, and activa-
tion of S6K1  [57] . The association between increases in AT 2 R protein and S6K1 activation in 
INS-induced cardiac hypertrophy prompted us to posit the existence of an mTOR-S6K1 } AT 2 R 
signaling loop that may serve to protect the heart during conditions of overnutrition.

  We have recently shown that the ZO rat, a genetic model for overnutrition and the CRS, 
has significant maladaptive changes in cardiac tissue  [2, 7, 10] . The ZO rat heart exhibits 
prolonged diastolic relaxation time and reduced initial diastolic filling rate as well as in-
creased interstitial and pericapillary fibrosis, and elevated 3-nitrotyrosine and NADPH ox-
idase-dependent superoxide production compared to heart tissue of syngeneic Zucker lean 
(ZL) controls  [7] . Since overnutrition, a predicted activator of mTOR, is the key contributor 
for cardiac pathology in this model system, we tested for co-existence of mTOR-mediated 
signaling and elevation of AT 2 R in the left ventricle of the ZO rat heart. Our recent data show 
increased cardiac activation of mTOR signaling, characterized by downstream activation of 
RPS6 and inhibition of 4E-BP in hypertrophic hearts of 12-week-old ZO rats, which manifest 
diastolic dysfunction. Moreover, in the ZO rat heart, AMP kinase, normally a compensatory 
negative modulator of mTOR, remained unactivated in ZO compared to ZL cardiac tissue. 
Second, as in the case of failing human hearts, we observed that dysfunctional, hypertro-
phied ZO rat hearts exhibited an increase in AT 2 R protein levels. Since AT 2 R functions as a 
cell growth inhibitor and has cardioprotective effects, this observation suggests that the in-
crease in the AT 2 R protein can be a downstream event of mTOR-S6K1 signaling and the 
subsequent increase in translation ( fig. 4 ). Additionally, we observed that chronic exposure 

  Fig. 3.  Micro-PET determination of INS/glucose uptake [Cooper, Am J Physiol Heart Circ Physiol, 2007; 
American Physiological Society, used with permission]. 
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to ANG II or INS induced mTOR/S6K1 signaling and increased AT 2 R protein in mouse car-
diomyocytes and human VSMCs. Interestingly, drug treatments that attenuated mTOR/
S6K1 signaling in CV tissue of the ZO rat, mouse cardiomyocytes or human VSMCs also 
reduced AT 2 R protein. Conversely, agonist activation of AT 2 R in cardiomyocytes inhibited 
stimulatory phosphorylation of RPS6, the downstream effector of mTOR/S6K1 signaling. 
These findings suggest a novel branch of cross talk between RAAS and mTOR mediated by 
AT 2 R and the existence of a novel signaling loop (mTOR } AT 2 R signaling loop) in CV tissue 
of rats, mice and humans in conditions of overnutrition.

  Impact of Overnutrition and mTOR Signaling on the Kidney 

 There is emerging evidence that the mTOR/S6K1 pathway is involved in a spectrum of 
kidney diseases, including that of diabetic kidney disease  [64–70] . Diabetic kidney disease is 
often characterized by progression of albuminuria to proteinuria and a gradual but progres-
sive decline in glomerular filtration rate  [71, 72] . Many individuals who are destined to de-
velop diabetic kidney disease manifest the clinical characteristics of the CRS prior to the 
development of overt diabetes  [72] . In evolving through the renal abnormalities character-
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  Fig. 4.  Up-regulation of the AT 2 R may be a protective feedback mechanism to regulate excess mTOR/S6K1 
signaling in cardiomyocytes. Excess nutrients (due to overnutrition) or chronic exposure to ANG II/INS 
can activate mTOR/S6K1 signaling, increase translation, induce myocardial remodeling and left-ventric-
ular hypertrophy, and up-regulate AT 2 R protein levels. AT 2 R can be activated by redirected ANG II (due 
to ANG receptor blocker-mediated inhibition of ANG II binding to the AT 1 R) or AT 2 R agonist. AT 2 R sig-
naling inhibits phosphorylation of RPS6 and regulates excess mTOR/S6K1 signaling and subsequent car-
diac pathology. 
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izing the CRS to that of diabetic kidney disease, the morphological process is characterized 
by glomerular hypertrophy and hyperfiltration, podocyte loss and associated glomeruloscle-
rosis, and finally progressive tubulointerstitial fibrosis  [72] .

  The initial hypertrophic process is likely mediated by overnutrition and RAAS stimula-
tion of the mTOR signaling pathway  [64, 70, 73] . The mTOR molecule is a large protein with 
many domains, and when complexed with G � L and Raptor (regulatory-associated protein 
of mTOR) it forms the rapamycin-sensitive complex referred to as mTORC1  [35, 44, 63] . The 
activity of mTORC1 appears to be regulated through a dynamic interaction between mTOR 
and Raptor mediated by G � L. While the initial hypertrophic and proliferative lesions in 
diabetic kidney disease are now thought to occur through mTOR, the regulatory role of 
S6K1, the substrate of mTORC1, in the kidney appears to occur through promotion of prox-
imal tubule epithelial cell fibrosis  [64–70] . Recent data suggest that targeting reductions in 
mTOR activity by targeting mTORC1 and S6K1 with rapamycin treatment improves tubu-
lointerstitial fibrosis and proteinuria in rodent models of diabetic nephropathy and polycys-
tic kidney disease  [64–70] .

  Rapamycin is clinically used to suppress rejection of transplanted organs. In addition to 
its immunosuppressive actions, rapamycin inhibits growth factor-mediated proliferation 
and promotes survival of many non-immune cells, including renal tubular cells and fibro-
blasts  [64–70, 73–75] . There is increasing interest in using rapamycin to promote prolonged 
survival in aging as well as expanding its use in chronic disease management.

  Recent data suggest that aldosterone stimulates proliferation of mesangial cells  [76] , in 
part through downstream mTOR/S6K1 signaling  [76] . Tubulointerstitial fibrosis is the criti-
cal mechanism by which tubular atrophy and loss of nephron mass occur and thereby pro-
mote progressive kidney disease  [77, 78] . In young rodent models of kidney disease, ANG II 
has been shown to induce epithelial-mesenchymal transition (EMT) through actions on the 
AT 1 R in the proximal tubule, a process that leads to tubulointerstitial fibrosis  [79–82] .

  EMT and disruption of adhesion molecules contribute to tubulointerstitial fibrosis  [83, 
84] . EMT is a phenotypic conversion with loss of epithelial cell-basement membrane adher-
ens junctions and acquisition of a fibroblastic phenotype. Disruption of adhesion molecules 
is the first phase of EMT that results in tissue fibrosis  [85–87] . Recent evidence has estab-
lished EMT as a critical initial mechanism for tubulointerstitial fibrosis in humans and oth-
er species. Tubulointerstitial fibrosis is characterized by loss of differentiated epithelial cells 
and activation of renal fibroblasts leading to fibrosis. Under unstressed, basal conditions, 
proximal tubule cells are attached to each other and to the basement membrane through 
specialized junctional complexes (adherens junctions) that include molecules such as cad-
herin. During injury, epithelial cells lose polarity and the mechanisms of adhesion. The best-
studied cadherin in the promotion of EMT is E-cadherin, which typically resides in epithe-
lial tissue; however, it is not found in human proximal tubule cells. Recent data suggest the 
cadherin in the kidney and specific to the proximal tubule is N-cadherin  [87, 88] . N-cadherin 
in the proximal tubule has been shown to bind cytoskeletal components that provide a struc-
tural foundation for adherens junctions. Of note, cadherins not only function as static struc-
tural components of adherens junctions but also play a role in cell signaling pathways  [88] . 
Alterations in cadherin expression have been studied in various carcinogenesis models to 
understand the mechanism of EMT in the fibrotic process  [83–85] . Recent evidence further 
indicates the mTOR pathway is a critical player in the progression of tubulointerstitial fibro-
sis to progressive kidney disease  [64–70] . Therefore, the collective evidence from rodent and 
culture models further suggests targeting reductions in RAAS activity may slow progressive 
kidney disease through potential mechanisms that improve cadherin expression as well as 
promote survival  [10]  ( fig. 5 ).
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  Fig. 5.  Proposed mechanism by which ANG II promotes an exaggerated response on mTOR in the kidney 
with downstream activation of S6K1 and associated tubulointerstitial fibrosis. FTS-1 = Fibroblast tran-
scription site-1; FSP1 = fibroblast secretory protein-1. 
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