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The expression pattern of any pair of genes may be negatively correlated, positively correlated, or not correlated at all in

response to different stresses and even different progression stages of the stress. This makes it difficult to identify such

relationships by classical statistical tools such as the Pearson correlation coefficient. Hence, dedicated bioinformatics

approaches that are able to identify groups of cues in which there is a positive or negative expression correlation between

pairs or groups of genes are called for. We herein introduce and discuss a bioinformatics approach, termed Gene

Coordination, that is devoted to the identification of specific or multiple cues in which there is a positive or negative

coordination between pairs of genes and can further incorporate additional coordinated genes to form large coordinated

gene networks. We demonstrate the utility of this approach by providing a case study in which we were able to discover

distinct expression behavior of the energy-associated gene network in response to distinct biotic and abiotic stresses. This

bioinformatics approach is suitable to a broad range of studies that compare treatments versus controls, such as effects of

various cues, or expression changes between a mutant and the control wild-type genotype.

INTRODUCTION

Organisms respond to external cues (biological perturbations) by

synchronized changes in the expression levels of multiple genes,

which together integrate into specific phenotypic outputs. The

development of microarray technology, together with the devel-

opment of a variety of bioinformatics approaches, has enabled

the analysis of the simultaneous response of gene networks

to various developmental, physiological, or external cues at

the systems biology level (Loraine, 2009; Orlando et al., 2009;

Sreenivasulu et al., 2010). As sessile organisms, plants adjust to

environmental stresses through highly compound changes in

gene expression programs. Themodel plantArabidopsis thaliana

is highly suitable for systems biology studies in which large data

sets of microarray expression results have accumulated, partic-

ularly through use of the Affymetrix GeneChip array ATH1, which

contains more than 22,400 unique probe sets representing

;24,000 genes. Thousands of ATH1 arrays have been used

to monitor the expression of the Arabidopsis transcriptome in

various genetic backgrounds and under a variety of biological

conditions, particularly stress-associated cues (for example, see

Craigon et al., 2004). This enormous resource has also been used

for systems biology analyses using a variety of approaches,

including bioinformatics approaches (for example, see Van

Norman and Benfey, 2009).

Bioinformatics analyses of microarrays generally use basic

statistical tests, such as t test, Pearson correlation, and analysis

of variance, as well as various grouping algorithms, such as

clustering, to elucidate groups of genes with similar expression

behavior over multiple experiments. However, these techniques

possess limitations with respect to elucidating genes with

coregulated expression because such coregulated expression

generally occurs only in a subset of the cues (biological per-

turbations) under study. Several published bioinformatics ap-

proaches, such as Mutual Information (Wells et al., 1996) and

Biclustering (Van Mechelen et al., 2004; Dharan and Nair, 2009),

have been developed to address this limitation. We present here

an additional simple, intuitive, and user-friendly bioinformatics

method that can be used by scientists without extensive bio-

informatics expertise. Our method, which is based on our pre-

viously reported Gene Coordination approach (Less and Galili,

2009; Less et al., 2010), is a statistical approach that can

distinguish, for each pair of genes, between different biological

perturbations in which their response (significant stimulation

or suppression of expression) is either positively or negatively

correlated (positive and negative coordination) or not correlated

at all.We have nowdeveloped theGeneCoordination tool further

to enable the assembly of the highly coordinated genes into large

cliques and clusters, possessing similar expression response to

biological perturbations. We have used this approach to analyze

the expression behavior of the entire set of Arabidopsis genes

encoding metabolic enzymes and transcription factors (TFs) to

multiple external cues, including biotic and abiotic stresses as

well as hormonal and nutritional cues.
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DATA SOURCE AND BIOINFORMATICS METHOD

Data Source

Genes encoding enzymeswere identified and collected using the

AraCyc database (http://www.arabidopsis.org/biocyc/index.jsp).

These included 1838 different genes, which are represented by

1726 unique probe sets in the Affymetrix ATH1 microarray. In

addition, we also collected all of the genes indicated to encode

TFs (a total of 1632 genes represented by 1597 probe sets) ac-

cording to the database of Arabidopsis TFs (http://datf.cbi.pku.

edu.cn). Expression data were obtained from the Nottingham

Arabidopsis Stock Centre (http://affymetrix.arabidopsis.info/

AffyWatch.html), which contains hundreds of publicly available

expression profiles. To ensure reliability of the data, we focused

on well-documented experiments containing at least two repli-

cates for both treatment and control in which the treatment could

be described as a relatively short-term response to some exter-

nal cue. Overall, our selected data set contained 758microarrays

representing 211 different biological perturbations, which in total

included 3323 unique probe sets.

Bioinformatics Approach

Our present research was based on a novel Gene Coordination

approach, developed previously (Less and Galili, 2009), which

includes two basic central aspects: (1) calculating the signifi-

cance of expression differences (cue/control; statistical signifi-

cance defined as P < 0.05 based on a t test) for each of the

studied Arabidopsis genes in response to individual time points

derived from all of the different cues and selection of genes

having significant expression changes in response to one or

more cues; and (2) defining a significant positive or negative

coordination between individual pairs of genes based on the

number of biological perturbations that were either coexpressed

or oppositely expressed relative to the background distribution,

respectively. We further searched for groups of coexpressed

genes that possess among themselves: (1) significant positive

coordination in more than 16 biological perturbations (see Sup-

plemental Figure 1A online; background distribution threshold

calculated as coexpression of pairs of genes in up to 16 biological

perturbations); and (2) a nonsignificant negative coordination in

less than three biological perturbations (see Supplemental Figure

1B online; background distribution threshold calculated as op-

posite expression in up to 16 biological perturbations).

Our bioinformatics approach consisted of three steps. The first

step included the assembly of the individual genes into all possible

pairs of coexpressed genes. The second step included a stepwise

joining of additional genes into each of the pairs of coexpressed

genes, based on the same approach, resulting altogether in 141

different cliques having overlaps in up to 20% of their genes and

possessing an average size of;55 probe sets (genes) per clique.

The final step included clustering of the different cliques according

to their expression coordination in a way that pairs of cliques

possessing a relatively high positive coordination and a relatively

low negative coordination will fall into the same cluster. The

entire three-step bioinformatics approach is described in detail in

Methods and also is illustrated schematically in Figure 1.

EXTRACTION OF BIOLOGICAL INFORMATION

Principal Expression Coordination of Genes Encoding All

Arabidopsis Enzymes and TFs in Response to Various

Stress, Nutrition, and Hormone-Associated Cues

Our approach yielded three distinct clusters, each of which

possesses high positive expression coordination and almost no

negative expression coordination among genes within each

cluster (Figure 2; the three clusters are presented within the

three different squares with black borders). Analysis of the final

clusters also revealed two interesting observations: (1) the cliques

of cluster 1 showed a high negative coordination and no positive

coordination to the cliques of cluster 3 in response to specific

cues; and (2) the cliques of cluster 2 exhibited positive and neg-

ative expression coordination to cliques of cluster 1 and cluster

3 in response to specific cues. Notably, even though the bioin-

formatics process did not include specific efforts to eliminate

overlaps of the same gene(s) in more than one cluster, the actual

clustering results revealed that only two genes appeared in more

than one cluster.

Next, we further analyzed the principal gene expression

patterns of the three different clusters, based on the original

expression ratios calculated directly from the Nottingham Arabi-

dopsis Stock Centre (http://affymetrix.arabidopsis.info/AffyWatch.

html). This was performed in two steps: (1) assembling the genes

of each one of the three clusters together; and (2) calculating

the percentage of genes showing significant upregulation (red

dotted lines) or significant downregulation (blue dotted lines) for

each one of the 211 biological perturbations. The results of this

analysis are illustrated in Figure 3, clusters 1 to 3. In addition, for

each of the given cues (such as salt stress; cues are indicated on

Figure 1. Schematic Diagram of the Gene Coordination Approach.
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top of Figure 3), we ordered the results from left to right to include

increasing time points of the same cue in shoots, followed by

increasing time points of the same cue in roots. The different

clusters showed distinct principal expression patterns, namely:

(1) genes of cluster 1 (Figure 3, top) are apparently mostly up-

regulated as parts of coordinated groups in response to the

different biological perturbations; (2) genes in cluster 3 (Figure 3,

bottom) are apparently largely downregulated as parts of coor-

dinated groups in response to the different biological perturba-

tions; and (3) genes in cluster 2 (Figure 3, middle) are principally

distinct from those of clusters 1 and 3 by being downregulated or

upregulated as parts of coordinated groups in response to the

different cues, particularly abiotic and biotic stresses, respec-

tively (Figure 3, middle; abiotic and biotic stresses aremarked by

bars below and on top of the graph). Interestingly, even though

UV-B light is actually an abiotic stress, this stress yields in gen-

eral similar expression patterns to the various biotic stresses

rather than to the other abiotic stresses in respect to the genes

grouped in cluster 2. Notably, most of the hormone treatments

had quite minor effects on the expression of the highly coordi-

nated genes in the three different clusters (Figure 3, treatments

on the right side). This is likely due to the relatively low dose and

short time exposures (usually not more than 3 h) of the plants

to the different hormones (http://affymetrix.arabidopsis.info/

AffyWatch.html), which may be insufficient to generate signifi-

cant responses.

Elucidation of Biological Processes Enriched in Genes That

Appear in Clusters 1 to 3

Elucidation of highly coordinated regulatory and metabolic gene

networks was performed using the PageMan enrichment tool

(http://mapman.mpimp-golm.mpg.de/pageman/; Usadel et al.,

Figure 2. The Full Coordination Matrix of Genes Encoding TFs and

Metabolic Enzymes.

Genes were classified into three clusters (clusters 1 to 3) based on their

expression behavior (see text). The coordination scale is provided on the

right, and the Euclidian distance between the different cliques compos-

ing the entire matrix is indicated on the left. Euclidian distance is a

mathematical distance function between two objects, which in this case

measures the relative similarity (or difference) between different cliques

with respect to the overall changes in the expression levels of their genes

in response to the different stress cues. Gene expression raw data

analysis was performed using the robust multichip analysis algorithm,

and a t test was used to calculate the P value of the expression change of

each probe set in each biological perturbation. For gene coordination

calculation, each expression change possessing a P value of <0.05 was

considered to be a significant change. C1, C2, and C3, clusters 1, 2, and

3, respectively.

Figure 3. Characteristics of the Three Different Clusters.

Clusters 1 to 3 are given in the top, middle, and bottom panels,

respectively. The different cues are indicated on top. Red graphs and

blue graphs represent the percentages of upregulated and downregu-

lated genes, respectively, as indicated on the y axis in the left hand side.

For each of the given cues, the individual diamond-shaped dots are

ordered from left to right to include increasing time points of the same

cue in shoots, followed by increasing time points of the same cue in

roots.
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2006; Table 1). The most enriched networks of cluster 1, whose

genes are mainly upregulated in most analyzed cues, were as-

sociated with: (1) hormone metabolism (abscisic acid and eth-

ylene) and hormonal signal transduction; and (2) transcription

regulation (APETALA2/Ethylene-responsive elements and WRKY

TFs). The most enriched network of cluster 2, whose genes are

principally downregulated in abiotic stresses while upregulated in

biotic stresses and UV-B light, was the compound energy net-

work, including glycolysis and the pentose phosphate pathway,

tricarboxylic acid (TCA) cycle, mitochondrial electron transport,

and ATP biosynthesis (from now on this network is defined as

energy-associatedmetabolism). In addition, cluster 2was strongly

enriched in the category of amino acid biosynthesis, particularly

the Lys and Met branches of the Asp family pathway, whose

catabolism is associated with energy production (Arruda et al.,

2000; Galili, 2002; Angelovici et al., 2009, 2010a, 2010b; Araujo

et al., 2010), as well as Glu, Arg, Ser, and Gly that are associated

with photorespiration. The most significantly enriched networks in

cluster 3, whose genes are mainly downregulated in most ana-

lyzed cues, included amino acid metabolism (Asp family and

branched-chain amino acids), photosynthesis and its associated

tetrapyrrole biosynthesis pathway, starch metabolism, lipid me-

tabolism (particularly fatty acid synthesis), and C1 metabolism.

SELECTED EXAMPLES OF THE TRANSLATION OF DATA

EXTRACTED FROM THIS BIOINFORMATICS APPROACH

INTO METABOLIC REGULATION

ABioinformatics-Based Viewpoint onMetabolic Regulation

The adjustment and reorganization of metabolism play a central

regulatory role in the adaptation of plants to external cues,

particularly to biotic and abiotic stresses. Yet, our current un-

derstanding of principal regulatory aspects associated with the

reorganization of biological gene networks at the systems biol-

ogy level is limited due to insufficient availability of suitable

bioinformatics approaches. For example, the Pearson correla-

tion approach can elucidate a significant negative or positive

expression correlation between two genes only if there is such a

correlation in the entire set of biological perturbations under

study. However, in nature, different genes may be positively

correlated, negatively correlated, or not correlated at all in

response to different biological perturbations. In addition, the

commonly used clustering approach forces individual genes to

belong only to a single cluster. Yet, in biological reality, a given

gene can possess a variety of functions and, as a consequence,

also possess numerous expression correlation patterns with

different sets of genes in response to different biological per-

turbations; hence, other approaches are needed, such as, for

example, theFuzzy clustering approach (http://reference.wolfram.

com/applications/fuzzylogic/Manual/12.html). The three-step bio-

informatics approach that we describe in this article identifies

three major patterns of gene expression behaviors with minimal

gene overlaps between them, which possess distinct functions in

metabolic regulation. The separation of the genes into these three

major patterns of gene expression is based on their real expres-

sion patterns in which: (1) genes of cluster 1 are mostly upregu-

lated as coordinated groups in response to the various cues,

although some of the genes of cluster 1 may be downregulated in

a relatively noncoordinated manner in response to some cues;

(2) genes of cluster 3 are for the most part downregulated as co-

ordinated groups in response to the various cues, although some

of the genes of cluster 3 may be upregulated in a relatively non-

coordinated manner in response to some cues; and (3) genes of

cluster 2 are principally both upregulated and downregulated as

coordinated groups in response to different cues.

Interaction of Energy-Associated Metabolism with Amino

Acid Metabolism

Themost intriguing observation is the clustering of themajority of

the energy-associated network (including the oxidative pentose

phosphate pathway, the TCA cycle, mitochondrial energy trans-

port, and ATP biosynthesis) in cluster 2, implying that this net-

work possesses distinct gene expression patterns relative to

other metabolic networks, being mainly downregulated in re-

sponse to abiotic stresses and upregulated in response to biotic

stresses and UV-B light (Table 1, Figure 3). Even though UV-B

light is considered an abiotic stress, it is metabolically distinct

from other abiotic stresses with respect to the energy status,

which is significantly depressed in most abiotic stresses (Baena-

Gonzalez et al., 2007; Baena-Gonzalez and Sheen, 2008), but

apparently not as much in UV-B light. Interestingly, genes en-

coding biosynthetic enzymes of a number of amino acid meta-

bolic networks were also enriched in cluster 2. This pattern of

metabolic regulation suggests that amino acid metabolism is

tightly linked to respiration and energy regulation.

Response of Transcriptional, Hormonal, and Signal

Transduction Networks to Biotic and Abiotic Stresses

Genes associated with transcriptional, hormonal, and signal

transduction networks were profoundly enriched in cluster 1,

which includes genes whose expression is induced in a coordi-

nated manner (Table 1). The major fraction of genes in this group

is associatedwith themetabolism of the hormone ethylene, while

a smaller fraction of genes is associated with the hormone

abscisic acid. These two hormones are well documented to be

involved in response of plants to various stresses (Cutler et al.,

2010). In addition, a number of genes associated with signal

transduction as well as a large number of genes controlling

stress-associated TFs of the APETALA2/Ethylene and WRKY

families were also enriched in cluster 1. These results imply that

exposure to stresses stimulate the expression of a large set of

coordinated networks of regulatory genes controlling hormone

metabolism, signal transduction cascades, and TFs that regulate

the response of the plants to these stresses.

Exposure to Stress Causes a Highly Coordinated

Downregulation of Gene Networks Particularly Associated

with Photosynthesis, Tetrapyrrole Biosynthesis, as Well as

Sugar, Lipid, and Amino Acid Metabolism

Interestingly, genes associated with amino acid metabolism

(particularly the Asp family and branched-chain amino acid
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Table 1. Overrepresented Regulatory, Metabolic, and Hormonal Categories of Each Cluster

Levels Count P Value Levels Count P Value

Cluster 1 Cluster 3

1. Hormone metabolism 47 1E-04 1. Amino acid metabolism 65 1E-05

1.2 Abscisic acid 9 1E-03 1.2 Synthesis 53 6E-07

1.2 Ethylene 23 2E-06 1.2.3 Asp family 18 2E-05

1.2.3 Signal transduction 17 4E-08 1.2.3.4 Misc. homoserine 5 8E-03

2. RNA NE 1.2.3 Branched-chain group 9 1E-03

2.2 Transcription regulation NE 1.2 Degradation NE

2.2.3 APETALA2/Ethylene-responsive element 32 3E-05 1.2.3 Ser-Gly-Cys group 6 2E-03

2.2.3 WRKY domain 26 1E-07 1.2.3.4 Gly 4 3E-02

3. Stress NE 2. Photosynthesis 47 1E-22

3.2 Abiotic NE 2.2 Light reaction 27 3E-14

3.2.3 Heat 5 2E-03 2.2.3 Photosystem II 14 9E-10

Cluster 2 2.2.3.4 Polypeptide subunits 14 9E-10

1. Glycolysis 18 2E-06 2.2.3 Photosystem I 13 4E-09

1.2 Enolase 3 1E-03 2.2.3.4 Polypeptide subunits 13 4E-09

2. Oxidative pentose phosphate 10 1E-04 2.2 Photorespiration 6 6E-03

2.2 Oxidative pentose phosphate 6 4E-03 2.2.3 Gly cleavage 3 1E-02

3. TCA 19 4E-08 2.2 Calvin cycle 14 6E-08

3.2 TCA 17 4E-09 2.2.3 GAP 4 3E-03

3.2.3 Pyruvate DH 5 5E-03 3. Tetrapyrrole synthesis 22 7E-08

3.2.3 Succinyl-CoA ligase 3 1E-03 3.2 Mg chelatase 4 3E-03

3.2.3 Succinate dehydrogenase 3 1E-03 4. Major CHO metabolism 23 2E-02

4. Mitochondrial electron transport/ATP synthesis 27 1E-16 4.2 Synthesis 23 3E-03

4.2 NADH-DH 15 1E-11 4.2.3 Starch synthesis 1E-03

4.2.3 Complex I 4 2E-04 4.2.3 Starch degradation 9E-03

4.2.3 Cytochrome C reductase 6 5E-05 5. Secondary metabolism NE

4.2.3 Cytochrome C oxidase 6 1E-04 5.2 Isoprenoids 26 6E-04

5. Amino acid metabolism 63 8E-19 5.2.3 Nonmevalonate pathway 11 3E-03

5.2 Synthesis 55 3E-21 5.2.3 Carotenoids 6 2E-03

5.2.3 Glu family 5 1E-04 6. Lipid metabolism 46 4E-03

5.2.3.4 Arg 6 2E-05 6.2 FA synthesis/elongation 16 1E-03

5.2.3 Asp family 15 3E-07 6.2.3 Pyruvate DH 4 1E-02

5.2.3.4 Met 7 1E-04 6.2 FA desaturation 5 6E-04

5.2.3.4 Lys 4 4E-03 7. Hormone metabolism NE

5.2.3 Ser-Gly-Cys group 9 9E-05 7.2 Brassinosteroid 11 2E-02

5.2.3.4 Ser 5 1E-04 7.2.3 Synthesis/degradation 9 2E-02

5.2.3 Aromatic amino acid 13 4E-05 7.2.3.4 Sterols 8 6E-04

5.2.3.4 Chorismate 6 6E-04 8. Nucleotide metabolism NE

5.2.3.4 Trp 5 5E-03 8.2 Salvage 7 1E-02

6. Nucleotide metabolism 32 1E-10 8.2 Deoxynucleotide 5 6E-04

6.2 Synthesis 17 4E-10 9. C1 metabolism 12 6E-04

6.2.3 Pyrimidine 6 3E-04 10. RNA NE

6.2.3 Purine 9 3E-06 10.2 Transcription regulation NE

7. Protein 24 1E-06 10.2.3 TCP 7 2E-02

7.2 Amino acid activation (tRNA ligase) 16 5E-09

7.2 Targeting 4 2E-04

7.2.3 Mitochondria 3 1E-03

8. Cell wall NE

8.2 Precursor synthesis 13 4E-05

8.2.3 UGD 3 5E-03

9. C1 metabolism 7 7E-03

Functional categories that are overrepresented in the list of genes were clustered. Overrepresentation analysis was performed by the PageMan

enrichment tool (http://mapman.mpimp-golm.mpg.de/pageman/). Only functional categories with more than three genes are shown. The background

genes are available in Supplemental Table 1, and the genes from each cluster are available in Supplemental Table 2. The elaborated analysis is

available in Supplemental Table 3. NE, not enriched.
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metabolic pathways) and sugar metabolism (particularly starch

metabolism) were associated with cluster 3 (Table 1), implying

that their expression is downregulated in a coordinated manner

upon exposure to stress, particularly abiotic stresses. Since

abiotic stresses generally cause energy deprivation, plants usu-

ally adjust to the stress-associated energy deprivation mainly by

metabolizing sugars into energy and suppressing genes encod-

ing biosynthetic enzymes of amino acids to conserve energy,

and inducing genes encoding catabolic enzymes of amino acids

to generate additional energy from protein degradation (Baena-

Gonzalez and Sheen, 2008; Bunik and Fernie, 2009; Sulpice

et al., 2009; Hey et al., 2010). In this context, genes encoding

catabolic enzymes of the Asp family pathway appear in cluster 1,

an observation that is supported by several reports showing

that both expression and activity of the LKR/SDH gene of Lys

catabolism are stimulated by abiotic stresses (Moulin et al., 2000,

2006; Stepansky and Galili, 2003; Stepansky et al., 2006).

Another metabolic pathway that was enriched in cluster 3 is

the tetrapyrrole biosynthesis pathway, which leads to the syn-

thesis of chlorophyll. Since exposure to stress generally sup-

presses photosynthesis to minimize photosynthesis-associated

damages, the coordinated downregulation of genes associated

with the tetrapyrrole biosynthesis pathway is expected (Tanaka

and Tanaka, 2007).

ADVANTAGES AND UTILITY OF THE GENE

COORDINATION APPROACH

In compound biological systems, expression correlation be-

tween pairs of genes may occur only under certain stages of

development or upon exposure to certain external cues. In most

experimental studies, the specific conditions or biological per-

turbations in which expression of pairs of genes is scientifically

correlated is unknown at the initiation of the study and thus

cannot be isolated from the other biological perturbations in

which there is no expression correlation between these pairs of

genes. Thus, analysis of expression correlation between pairs or

even groups of genes under a broad scope of experimental

conditions, in which positive or negative expression correlation

between the two genes naturally occurs only under a small fraction

of these conditions, is expected to yield relatively low or insignif-

icant correlation. Such results make it difficult to decide whether to

invest additional research to study the potential biological linkage

between different genes. A major advantage of the present ap-

proach is that it very simply and intuitively identifies specific sets

of biological perturbations in which there is significant expres-

sion correlation between pairs of genes or even between multiple

genes.We termed such expression correlation under a specific set

of biological perturbations as Gene Coordination because the

expression of such pairs of genes may be noncorrelated or even

oppositely regulated under other sets of biological perturbations.

COMPARISON TO OTHER

BIOINFORMATICS APPROACHES

Most bioinformatics approaches used to group genes based on

gene expression data sets can be divided along two main

dimensions: the type of grouping algorithm that is used to group

genes with similar gene expression patterns, and the distance

function, which is used to measure the similarity between two

gene expression patterns. Our approach differs from most other

commonly used bioinformatics methods along these two dimen-

sions. While the most commonly used distance functions, such

as Pearson correlation and Mutual Information (Wells et al.,

1996), usually establish expression pattern similarity based on

the expression levels alone (absolute values or log ratios), our

approach integrates both the expression ratio and the signifi-

cance of the expression change. In our approach, we assume

that in order to understand expression relationships of gene

networks, it is more important to accurately establish whether a

particular gene is significantly upregulated or downregulated

rather than the magnitude of its upregulation or downregulation.

Moreover, in our distance function, we take into account only

biological perturbations in which both genes are significantly

upregulated or downregulated in order to establish positive and

negative gene coordination. In the second dimension, most

grouping algorithms can be divided into clustering and Biclus-

tering approaches. The main limitation of clustering approaches

is that they cluster genes along the entire data sets, while in

nature, genes can be coregulated only in a limited set of biolog-

ical perturbations. In those cases, distance functions calculat-

ing similarity between different expression patterns across all

biological perturbations in a given data set are suboptimal,

especially in large data sets containing unrelated biological per-

turbations. Biclustering approaches (Van Mechelen et al., 2004;

Dharan and Nair, 2009) were specifically developed to resolve

this limitation. In Biclustering, the algorithm is tuned to identify

groups of genes having similar gene expression patterns in a

subset of biological perturbations. By its nature, Biclustering can

assign the same gene to multiple groups of genes, a fact that

makes its output difficult to decipher by nonexpert users. Our

approach lies in between these two approaches, such that our

distance function takes into account only that portion of the

biological perturbations that are relevant to each pair of genes. In

this respect, our approach is more similar to the Biclustering

approach, but our grouping algorithm clusters groups of highly

coordinated genes, resulting in clusters in which the vastmajority

of the genes appear only in one cluster and in this respect it is

more similar to traditional clustering. This improves the efficiency

of extraction of new biological insights. Another recently pub-

lished bioinformatics approach adapted to the analysis of com-

plex interrelationships of biological networks is MetNetAPI

(Sucaet and Wurtele, 2010). API is an adaptable application

programming interface that simplifies the operation and utiliza-

tion of MetNetDB (http://metnet.vrac.iastate.edu/MetNet_db.

htm), a database enclosing regulatory networks of metabolism

and interactions between them, occurring at the transcription,

translation, and posttranslation levels in Arabidopsis plants.

SUMMARY AND FUTURE PROSPECTS

We have developed a dedicated method to elucidate the coor-

dinated response of gene networks to external cues and have

used it to analyze the response of the genes encoding the entire
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set of TFs and metabolic enzymes to abiotic and biotic stresses,

as well as to some nutritional and short-term hormonal treat-

ments. We show that energy-associated metabolism is regu-

lated as a highly coordinated gene network that is largely

downregulated in response to abiotic stresses and induced

in response to some biotic stresses and UV-B light (cluster 2).

This super gene network behaves differently from other gene

networks, such as: a network containing genes encoding stress-

associated TFs as well as enzymes of stress hormones metab-

olism (ethylene and abscisic acid) and amino acid catabolism,

which is induced by biotic and abiotic stresses (cluster 1); and a

network encoding mostly enzymes of amino acids and chloro-

phyll biosynthesis whose expression is principally suppressed

by biotic and abiotic stresses (cluster 3). Since this method

identifies groups of genes having coordinated stimulation or

suppression of expression, these groups can be used further,

employing different bioinformatics approaches that operate on

groups of genes, to discover additional biological insights. For

example, such groups can be used to estimate the similarity

between different treatments (biological perturbations) as deter-

mined based on their effects on the expression levels of the

genes within each group (Less and Galili, 2009).

METHODS

Gene Expression Analysis and Gene Coordination Calculation

Gene expression analysis and calculation of GeneCoordinationwas done

as described previously (Less and Galili, 2009). In brief, gene expression

raw data analysis was done using the robust multichip analysis algorithm,

and a t test was used to calculate the P value of the expression change of

each probe set in each biological perturbation. For gene coordination

calculation, each expression change possessing a P value of <0.05 was

considered to be a significant change. For gene coordination calculation,

we transformed the gene expression matrix into a three-value matrix. In

this matrix, each expression change (treatment versus control) possess-

ing a P value of <0.05 was given the value of 1 if it includes upregulation of

expression or 21 if it includes a downregulation of expression. Expres-

sion changes possessing a P value of >0.05 were assigned a 0. Since we

have only applied mathematical transformation to the expression matrix,

there is no need to apply a false discovery rate at this stage. Positive

coordination of expression between each pair of genes was defined as

the number of perturbations inwhich both genespossess either the value of

1 or21 in the transformed matrix, meaning that both genes were upregul-

ated or downregulated. By contrast, negative coordination was defined as

the number of perturbations in which one gene possesses the value of

1while the other gene possesses the value of21 in the transformedmatrix,

meaning that one gene is upregulated while the other is downregulated.

Calculation of the Gene Coordination Background Model

To determine the threshold values for positive and negative coordination,

we calculated the expected distribution of positive and negative coordi-

nation, assuming that there is no coordination between genes, using the

following background model. First, a Coordination matrix was calculated

as described previously (Less and Galili, 2009) from the transformed

expression matrix of21, 0, and +1. Second, to calculate the background

distribution, we shuffled the transformed matrix (21, 0, +1) 100 times,

using Monte Carlo simulation, and recalculated positive and negative

coordination values for all gene pairs. In the Monte Carlo shuffling

simulation, we randomly rearranged the order of the biological perturba-

tions for each gene independently. This procedure resulted in ;5.5

million random positive and negative coordination values per iteration.

The values of 16 for positive coordination and 3 for negative coordination

were chosen because values of more than 15 and less than 4 never

appeared in our Monte Carlo simulation.

Assembly of Probe Sets into Cliques

Cliques of probe sets were defined as probe sets that have high positive

coordination and low negative coordination between themselves. Two

lists of gene pairs were used to build the cliques. The first was a positive

list, containing probe set pairs having a positive coordination ofmore than

16 and a negative coordination of less than 3. The second list was a

negative, containing probe set pairs having a negative coordination of

more than 3. The first step of building the cliques used a greedy approach,

which tries to add asmany probe sets as possible to each probe set pair in

the positive list. Each probe set that was added to a given clique needed

to fulfill two criteria: (1) exhibiting positive coordination with at list 30% of

the probe sets already presenting this clique; and (2) exhibiting no

negative coordination with any of the probe sets already present in the

clique (according to the negative list). After the elimination of identical

cliques, this step resulted in 1382 different cliques, from which 1267

contained 10 probe sets or more. The attribute of our greedy approach

resulted in a large number of cliques with some redundancy (each probe

set was on average in ;20 cliques); therefore, the second step of

generating the final cliques included themerging of closely related cliques

with small distance, which means they had a relatively high degree of

overlapping probe sets. For this merging, we calculated the distance

between each pair of cliques based on the amount of overlapping probe

sets as follows:

Di;j ¼ 12
�
oPi;j=min

�
Si;Sj

��

with D being the distance between two cliques, i and j the indexes of the

different cliques, oP the number of overlapping probe sets, and S the

number of probe sets in each clique. Finally, we used the above distance

matrix (further distance algorithm; available within the MATLAB software)

to cluster all 1267 cliques, using a distance of 0.2 as the threshold for

merging of overlapping cliques. This process resulted in 141 final cliques

having an average size of ;55 probe sets per clique.

Assembly of the Probe Sets into Clusters of Cliques

To elucidate further the expression coordination relationship between the

different cliques, we defined a positive or a negative coordination be-

tween each pair of cliques as the mean of positive or negative coordi-

nation between all possible probe sets of each of the clique pairs:

cPi; j ¼
X

x¼1:I

X

y¼1:J

pPx;y

cNi; j ¼
X

x¼1:I

X

y¼1:J

pNx;y

where cP and cN are the positive and negative coordination between

cliques and pP and pN are the positive and negative coordination

between probe sets. i and j are the indexes of the different cliques, and

I and J are the number of probe sets in each clique.

For the clustering analysis of the final cliques, we used the following

distance function:

Di;j ¼ 202 cPi;j 1 cNi;j

where i and j are the indexes of the different cliques and cP and cN are the

positive and negative coordination between the cliques (a constant of 20

was used to avoid negative distances).

1270 The Plant Cell



Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Establishment of the Background Distribu-

tion for Positive and Negative Coordination between Pairs of Genes.

Supplemental Table 1. Full List of Enzymes and TFs.

Supplemental Table 2. List of Genes Separated into Cliques and

Clusters.

Supplemental Table 3. The Elaborated Analysis of Overrepresented

Categories of Each Cluster Analyzed by PageMan.

ACKNOWLEDGMENTS

We thank Ron Milo for his helpful comments. This research was

supported by The Israel Science Foundation (Grant 764/07) and the

United States–Israel Binational Agricultural Research and Development

Fund (Grant IS-3331-02). G.G. is an incumbent of the Bronfman Chair of

Plant Science at the Weizmann Institute of Science.

Received January 4, 2011; revised March 3, 2011; accepted March 12,

2011; published April 12, 2011.

REFERENCES

Angelovici, R., Fait, A., Fernie, A.R., and Galili, G. (2010a). A seed

high-lysine trait is negatively associated with the TCA cycle and slows

down Arabidopsis seed germination. New Phytol. 189: 148–159.

Angelovici, R., Fait, A., Zhu, X.H., Szymanski, J., Feldmesser, E.,

Fernie, A.R., and Galili, G. (2009). Deciphering transcriptional and

metabolic networks associated with lysine metabolism during Arabi-

dopsis seed development. Plant Physiol. 151: 2058–2072.

Angelovici, R., Galili, G., Fernie, A.R., and Fait, A. (2010b). Seed

desiccation: A bridge between maturation and germination. Trends

Plant Sci. 15: 211–218.

Araujo, W.L., Ishizaki, K., Nunes-Nesi, A., Larson, T.R., Tohge, T.,

Krahnert, I., Witt, S., Obata, T., Schauer, N., Graham, I.A., Leaver,

C.J., and Fernie, A.R. (2010). Identification of the 2-hydroxyglutarate

and isovaleryl-CoA dehydrogenases as alternative electron donors

linking lysine catabolism to the electron transport chain of Arabidopsis

mitochondria. Plant Cell 22: 1549–1563.

Arruda, P., Kemper, E.L., Papes, F., and Leite, A. (2000). Regulation of

lysine catabolism in higher plants. Trends Plant Sci. 5: 324–330.

Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J.

(2007). A central integrator of transcription networks in plant stress

and energy signalling. Nature 448: 938–942.

Baena-Gonzalez, E., and Sheen, J. (2008). Convergent energy and

stress signaling. Trends Plant Sci. 13: 474–482.

Bunik, V.I., and Fernie, A.R. (2009). Metabolic control exerted by the

2-oxoglutarate dehydrogenase reaction: A cross-kingdom compari-

son of the crossroad between energy production and nitrogen as-

similation. Biochem. J. 422: 405–421.

Craigon, D.J., James, N., Okyere, J., Higgins, J., Jotham, J., and

May, S. (2004). NASCArrays: A repository for microarray data gen-

erated by NASC’s transcriptomics service. Nucleic Acids Res. 32:

D575–D577.

Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R.

(2010). Abscisic acid: Emergence of a core signaling network. Annu.

Rev. Plant Biol. 61: 651–679.

Dharan, S., and Nair, A.S. (2009). Biclustering of gene expression data

using reactive greedy randomized adaptive search procedure. BMC

Bioinformatics 10 (suppl. 1): S27.

Galili, G. (2002). New insights into the regulation and functional signif-

icance of lysine metabolism in plants. Annu. Rev. Plant Physiol. Plant

Mol. Biol. 7: 153–156.

Hey, S.J., Byrne, E., and Halford, N.G. (2010). The interface between

metabolic and stress signalling. Ann. Bot. (Lond.) 105: 197–203.

Less, H., Angelovici, R., Tzin, V., and Galili, G. (2010). Principal

transcriptional regulation and genome-wide system interactions of the

Asp-family and aromatic amino acid networks of amino acid metab-

olism in plants. Amino Acids 39: 1023–1028.

Less, H., and Galili, G. (2009). Coordinations between gene modules

control the operation of plant amino acid metabolic networks. BMC

Syst. Biol. 3: 14.

Loraine, A. (2009). Co-expression analysis of metabolic pathways in

plants. Methods Mol. Biol. 553: 247–264.

Moulin, M., Deleu, C., and Larher, F. (2000). L-Lysine catabolism is

osmo-regulated at the level of lysine-ketoglutarate reductase and

saccharopine dehydrogenase in rapeseed leaf discs. Plant Physiol.

Biochem. 38: 577–585.

Moulin, M., Deleu, C., Larher, F., and Bouchereau, A. (2006). The

lysine-ketoglutarate reductase-saccharopine dehydrogenase is in-

volved in the osmo-induced synthesis of pipecolic acid in rapeseed

leaf tissues. Plant Physiol. Biochem. 44: 474–482.

Orlando, D.A., Brady, S.M., Koch, J.D., Dinneny, J.R., and Benfey,

P.N. (2009). Manipulating large-scale Arabidopsis microarray expres-

sion data: Identifying dominant expression patterns and biological

process enrichment. Methods Mol. Biol. 553: 57–77.

Sreenivasulu, N., Sunkar, R., Wobus, U., and Strickert, M. (2010).

Array platforms and bioinformatics tools for the analysis of plant

transcriptome in response to abiotic stress. Methods Mol. Biol. 639:

71–93.

Stepansky, A., and Galili, G. (2003). Synthesis of the Arabidopsis

bifunctional lysine-ketoglutarate reductase/saccharopine dehydro-

genase enzyme of lysine catabolism is concertedly regulated by

metabolic and stress-associated signals. Plant Physiol. 133: 1407–

1415.

Stepansky, A., Less, H., Angelovici, R., Aharon, R., Zhu, X., and

Galili, G. (2006). Lysine catabolism: An effective versatile regulator of

lysine level in plants. Amino Acids 30: 121–125.

Sucaet, Y., and Wurtele, E.S. (2010). MetNetAPI: A flexible method to

access and manipulate biological network data from MetNet. BMC

Res. Notes 3: 312.

Sulpice, R., et al. (2009). Starch as a major integrator in the regulation of

plant growth. Proc. Natl. Acad. Sci. USA 106: 10348–10353.

Tanaka, R., and Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher

plants. Annu. Rev. Plant Biol. 58: 321–346.

Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Blasing, O.E.,

Redestig, H., Sreenivasulu, N., Krall, L., Hannah, M.A., Poree, F.,

Fernie, A.R., and Stitt, M. (2006). PageMan: An interactive ontology

tool to generate, display, and annotate overview graphs for profiling

experiments. BMC Bioinformatics 7: 535.

Van Mechelen, I., Bock, H.H., and De Boeck, P. (2004). Two-mode

clustering methods: A structured overview. Stat. Methods Med. Res.

13: 363–394.

Van Norman, J.M., and Benfey, P.N. (2009). Arabidopsis thaliana as

a model organism in systems biology. Wiley Interdiscip. Rev. Syst.

Biol. Med. 1: 372–379.

Wells, W.M., III, Viola, P., Atsumi, H., Nakajima, S., and Kikinis, R.

(1996). Multi-modal volume registration by maximization of mutual

information. Med. Image Anal. 1: 35–51.

Arabidopsis-Coordinated Gene Networks 1271


