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Introduction
Macroautophagy sequesters superfluous cytosol and organelles 
into double-membraned autophagosomes, which finally fuse 
with lysosomes for degradation. Despite identification of  
>30 Atg (autophagy) genes, the molecular mechanism of auto
phagosome biogenesis is poorly understood (Mizushima et al., 
2008; Farré et al., 2009; Nakatogawa et al., 2009). All pro-
posed models predict elongation and final closure or cisternal 
assembly of double-membraned precursors during autophago-
some formation (Axe et al., 2008; Longatti and Tooze, 2009). 
Previous studies assumed that the autophagic machinery medi-
ates the required membrane fusions independent from SNAREs 
(Reggiori et al., 2004) and identified the ubiquitin-like protein 
Atg8 as a key component, especially for elongation of the 

forming autophagosome (Nakatogawa et al., 2007; Xie et al., 
2008). Atg8 is coupled by a ubiquitin-like conjugation system 
to phosphatidylethanolamine (PE; Ichimura et al., 2000). In vitro 
Atg8-PE induced liposome tethering and hemifusion (Nakatogawa 
et al., 2007). However, it remained open how Atg8 mediates 
membrane fusion and why macroautophagy needs a ubiquitin-
like protein.

Autophagosome biogenesis is morphologically reminiscent 
of nuclear envelope expansion and postmitotic Golgi reassembly. 
The mammalian AAA-ATPase p97/VCP is a multifunctional 
enzyme in the ubiquitin–proteasome pathway; for example,  
in ER-associated degradation (ERAD) and ubiquitin fusion 
degradation (for reviews see Jentsch and Rumpf, 2007; Meyer 
and Popp, 2008). Some experiments suggested that p97 only 
handles ubiquitinated proteins (Dalal et al., 2004); others  

The molecular details of the biogenesis of double-
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AAA–adenosine triphosphatase Cdc48 and its substrate-
recruiting cofactor Shp1/Ubx1 as novel components needed 
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diate Golgi reassembly by extracting an unknown mono
ubiquitinated fusion regulator from a complex. We find no 
requirement of ubiquitination or the proteasome system 
for autophagosome biogenesis but detect interaction of 
Shp1 with the ubiquitin-fold autophagy protein Atg8. 
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tethering and hemifusion. Interaction with Shp1 requires 
an FK motif within the N-terminal non–ubiquitin-like Atg8 
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some formation, in contrast to Golgi reassembly, re-
quires a complex in which Atg8 functionally substitutes 
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use of the ubiquitin-like Atg8 during macroautophagy 
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for efficient macroautophagy.
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nonselective macroautophagy, we expressed 3-phosphoglycerate 
kinase (Pgk1) fused to GFP (Pgk1-GFP) and followed with  
immunoblot generation of GFP by proteolysis. The lack of  
GFP in atg1 cells confirmed autophagy dependence of GFP 
formation. shp1 cells were defective in the macroautophagic 
breakdown of this cytosolic marker (Fig. S1 a). During starva-
tion with the proteinase B inhibitor PMSF, autophagic bodies 
accumulate in the vacuoles of wild-type, but not of autophagy-
deficient, cells. Light microscopy showed that shp1 cells failed 
to accumulate autophagic bodies in the vacuole, further sup-
porting a defect in autophagosome formation or their vacuolar 
fusion (Fig. S1 b).

We next assessed the requirement of Cdc48 and Shp1 for 
selective autophagy. Piecemeal microautophagy of the nucleus 
(PMN) requires the core Atg proteins (Krick et al., 2008).  
It occurs at nucleus–vacuole junctions formed by the interaction 
of Vac8, Nvj1, Tsc13, and Osh1 (Roberts et al., 2003). The micro-
nucleophagic rate can be monitored in immunoblots after gener-
ation of proteolysis-resistant GFP through vacuolar breakdown 
of GFP-Osh1 (Krick et al., 2008). cdc48-3 cells at the nonper-
missive temperature and shp1 cells, but not other ubx mutants, 
showed defective PMN (Fig. 1, d and e). The cytoplasm to vacuole 
targeting (Cvt) pathway, as a selective macroautophagic pathway, 
delivers proaminopeptidase I to the vacuole under nonstarvation 
conditions. In shp1 and cdc48-3 cells, mature aminopeptidase I 
formed even at nonpermissive temperature (Fig. 1, a and d; and 
Fig. S1, a and c).

Functionality of the Cvt pathway in shp1 and cdc48-3 
cells seems surprising at first glance, because, as shown sub
sequently, Atg8 interacts with Shp1. However, for unknown rea-
sons, the requirement of Atg8 differs between the Cvt pathway 
and macroautophagy. In Atg8-deficient cells the Cvt pathway  
is blocked, whereas few aberrantly small autophagosomes still 
form during starvation induction of macroautophagy (Abeliovich 
et al., 2000; Chang and Huang, 2007). Indeed, Atg8 is crucial for 
control of autophagosomal size (Nakatogawa et al., 2007; Xie  
et al., 2008). Because few autophagosomes are sufficient for pro-
aminopeptidase I transport (Suzuki et al., 2002), we anticipate 
either that Cdc48 and Shp1 predominantly affect elongation of 
autophagosomes or that few aberrant autophagosomes even form 
without their action.

Macroautophagy does not depend on the 
ubiquitin–proteasome system
To our knowledge, no precise molecular function was assigned 
to Shp1; only slight effects on proteasomal degradation of ubiq-
uitinated proteins were reported (Schuberth et al., 2004). We ana
lyzed whether the role of Cdc48 and Shp1 in macroautophagy 
requires the ubiquitin–proteasome system and respective Cdc48 
cofactors. Ufd1 is a crucial substrate-recruiting Cdc48 cofactor 
(Ye et al., 2001; Jentsch and Rumpf, 2007). In agreement with 
mutually exclusive binding of Shp1 and Ufd1 to Cdc48, no macro-
autophagy defect was detectable in ufd1-1 mutants (Fig. 2 a). 
Macroautophagy was also normal in cells lacking the substrate-
processing cofactors Ufd2 and Ufd3 (Fig. 2 a), the ubiquitin ligase 
Ufd4, the proteasome regulator Ufd5 (Fig. 2 a), the ERAD compo-
nent Der1 (Fig. 2 c), and the proteasome-deficient pre1-1 pre2-2 

reported a direct function in membrane fusion (for reviews see 
Jentsch and Rumpf, 2007; Meyer and Popp, 2008). p97 medi-
ates multiple functions by interacting with numerous ubiquitin-
binding adaptors. During Golgi regrowth, p97 binds via p47 to 
an unknown monoubiquitinated fusion regulator, which pre-
vents untimely SNARE pairing. As an ATPase, p97 then segre-
gates the ubiquitin conjugate from the SNARE to allow fusion. 
Finally, deubiquitination by the cysteine proteinase VCIP135 is 
essential (Kondo et al., 1997; Uchiyama et al., 2002; Wang  
et al., 2004). In this paper, we identify Cdc48 and Shp1/Ubx1, 
the yeast homologues of p97 and p47, as novel components of 
autophagosome biogenesis in Saccharomyces cerevisiae. We 
found no requirement of ubiquitination or the proteasome sys-
tem for macroautophagy but show interaction of Atg8, which is 
dependent on an FK motif in its non–ubiquitin-like N-terminal 
helical domain (NHD), with Shp1. Based on our data, we spec-
ulate that S. cerevisiae autophagosome formation uses a protein 
complex analogous to that mediating mammalian nuclear enve-
lope growth and Golgi reassembly with the distinction that Atg8 
replaces ubiquitin. The cysteine proteinase Atg4 would then be 
equivalent to VCIP135. Our model would explain why efficient 
macroautophagy requires the ubiquitin-fold Atg8- and Atg4- 
dependent delipidation of Atg8-PE.

Results and discussion
Cdc48 and its cofactor Shp1/Ubx1  
are essential for macroautophagy  
and micronucleophagy
Cdc48 is essential for viability; we thus used temperature- 
sensitive cdc48-3 mutant cells (Latterich et al., 1995). We mea-
sured macroautophagy with a standard assay (Meiling-Wesse et al.,  
2002; Cheong and Klionsky, 2008). In addition to elongation of 
growing autophagosome membranes, Atg8 is involved in cargo 
recognition. Accordingly, macroautophagy selectively targets part 
of GFP-Atg8 to vacuoles, where degradation yields proteolysis-
resistant GFP. Increasing GFP levels in immunoblots therefore 
reflects the macroautophagic rate. At the permissive tempera-
ture, starved cdc48-3 cells showed normal macroautophagy, and 
shift to nonpermissive 38°C severely blocked macroautophagy 
(Fig. 1, a and b). Cellular survival was unaffected at 38°C.  
To exclude strain-dependent effects, we repeated the experi-
ment in another genetic background (unpublished data). At 23  
or 38°C, no free GFP appeared in autophagy-deficient atg1 
cells (Fig. 1, a and b).

Cdc48/p97 is expected to extract proteins from protein 
complexes or membranes during membrane fusions and other 
processes (for reviews see Jentsch and Rumpf, 2007; Meyer and 
Popp, 2008). To mediate its divergent roles, it associates with 
numerous substrate-recruiting and -processing cofactors (Jentsch 
and Rumpf, 2007; Schuberth and Buchberger, 2008). The Ubx 
domain proteins are Cdc48/p97 regulators involved in substrate 
recruitment (Schuberth et al., 2004). S. cerevisiae has seven 
Ubx proteins, with Shp1/Ubx1 being the mammalian p47  
homologue. The GFP-Atg8 degradation assay showed block of 
starvation-induced macroautophagy in shp1 cells but not in 
cells lacking any other Ubx protein (Fig. 1 c). As a second assay for 

http://www.jcb.org/cgi/content/full/jcb.201002075/DC1
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macroautophagy (Fig. 2 d). Overexpression of mutated ubiquitin 
I44A suppressed Golgi reassembly, which is consistent with the 
proposed extraction of a monoubiquitinated fusion regulator 
from the membrane by the p97–p47 complex (Wang et al., 2004). 
However, overexpression of ubiquitin I44A did not affect macro-
autophagy (Fig. 2 d). To further analyze the requirement of ubiq-
uitination, we used cells lacking the deubiquitinating enzyme 
Doa4. In doa4 cells, processes requiring monoubiquitination, 

cells (Fig. 2 b). Mammalian VCIP135 is distantly related to yeast 
Otu1, another Cdc48 substrate-processing cofactor. otu1 cells 
showed normal macroautophagy (Fig. 2 c). These data argue 
against the need for the ubiquitin–proteasome system in the 
macroautophagic function of Cdc48 and Shp1. Indeed, over
expression of mutated ubiquitin K48A, which is unable to form 
polyubiquitin via lysine-48 that is recognized by the proteasome 
(Chau et al., 1989; Sloper-Mould et al., 2001), did not inhibit 

Figure 1.  Macroautophagy and PMN require Cdc48 and Shp1. (a) GFP levels from GFP-Atg8 degradation reflect the autophagic rate. S. cerevisiae cells 
grown stationary at 23°C were starved at 23 or 38°C and analyzed in immunoblots with antibodies to GFP (top), proaminopeptidase I (middle), and Pgk1  
as a loading control (bottom). (b) Quantification of GFP levels, mean and SD, from at least three experiments. (c) Immunoblot measurement of macro
autophagy in ubx mutants at 30°C. (d) GFP levels from breakdown of the PMN marker GFP-Osh1 reflect the PMN rate. Cells were treated as in panel a. 
(e) Measurement of the PMN rate, as in panel d, in ubx mutants at 30°C.
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requires Ypt7. Accordingly, the part of GFP-Atg8 enclosed in  
autophagosomes is protease protected in ypt7, but not in wild-
type, cells because of the rapid vacuolar fusion of autophagosomes 
(Fig. 3 d). The absence of protease-protected GFP-Atg8 in starved 
shp1 cells indicated defective autophagosome biogenesis or 
closure (Fig. 3 d). Many S. cerevisiae Atg proteins colocalize 
at the pre-autophagosomal structure (PAS), the site of autophago-
some biogenesis. However, strong cytosolic staining masked  
detection of Cdc48 and Shp1 at the PAS in direct and indirect  
fluorescence microscopy. Because Shp1 is dispensable for pro-
aminopeptidase I maturation, it may function in elongation of the 
isolation membrane, a role proposed for Atg8 (Nakatogawa et al., 
2007; Xie et al., 2008). We thus examined whether Shp1 affects 
localization or lipidation of Atg8. Upon starvation, 42% of shp1 
and 32% of wild-type cells showed GFP-Atg8–positive PAS 
punctae (Fig. 3 e), indicating normal Atg8 PAS recruitment. Also, 
Atg8-PE was formed in shp1 cells, and compared with wild 
type, the Atg8 level was slightly increased, most likely as a result 
of the autophagic defect (Fig. 3 f).

Shp1 interacts with Atg8 and Cdc48
We used the split-ubiquitin system to test interaction of Atg8 with 
Shp1. We fused the baits with the Nui (N-terminal ubiquitin half) 

such as the multivesicular bodies pathway, are also affected. 
doa4 cells in two genetic backgrounds showed efficient macro-
autophagy (Fig. 2 e). In sum, macroautophagy requires Cdc48 and 
Shp1 independent of ubiquitination and proteasomal degradation.

Shp1 affects autophagosome biogenesis
Next, we examined at which step Shp1 affects macroautophagy. 
The last step is intravacuolar lysis of autophagic bodies depen-
dent on vacuolar acidification and proteinases. Light and electron 
microscopy showed no vacuolar accumulation of autophagic 
bodies in starved shp1 cells (Fig. 3, a–c). Fluorescence micros-
copy further demonstrated that, in contrast to wild-type cells, the 
autophagic cargo GFP-Atg8 did not reach the vacuole in shp1 
cells (Fig. 3, a and b). GFP-Atg8–positive autophagosomes did 
not accumulate in the cytosol and were also not detected in shp1 
cells by electron microscopy (unpublished data). The presence of 
mature carboxypeptidase Y (Fig. S1 c) in starved shp1 cells 
ruled out that disturbed vacuolar proteolysis caused the GFP-Atg8 
degradation defect. Shp1 thus affects either biogenesis of auto
phagosomes or their vacuolar fusion. We distinguished between 
these possibilities in a protease protection experiment with sphero
plasts hypotonically lysed under conditions that preserved the  
integrity of autophagosomes. Vacuolar fusion of autophagosomes 

Figure 2.  The ubiquitin–proteasome system is 
dispensable for macroautophagy. The autoph-
agic rate was determined as in Fig. 1. Mutants 
defective in the Cdc48 substrate-recruiting co-
factor Ufd1, the substrate-processing cofactors 
Ufd2 and Ufd3, the ubiquitin-ligase Ufd4, the 
proteasome regulator Ufd5 (a), the protea-
some (b), the deubiquitinating cofactor Otu1 
(c), the ERAD component Der1 (c), and the 
deubiquitinating enzyme Doa4 (e) show nor-
mal macroautophagy rates. Overexpression 
of ubiquitin-K29A, -K48A, and -I44A did not 
interfere with macroautophagy (d).
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it removes the C-terminal arginine from Atg8-FGR to allow lip
idation, and it delipidates Atg8-PE (Nakatogawa et al., 2009). 
Therefore, in atg4 cells, Atg8-FGR is unlipidated, whereas 
Atg8-FG is permanently lipidated. Coimmunoprecipitation of 
Shp1-HA chromosomally expressed in atg4 cells showed a 
clear interaction with GFP-Atg8-FG (Fig. 4 c). No clear pre-
cipitation of GFP-Atg8-FGR was detectable (unpublished 
data). This suggests that Shp1 might preferentially interact 
with Atg8-PE.

We confirmed this interaction in a pull down with GST-
Atg8. Incubation of crude extracts of S. cerevisiae cells chromo-
somally expressing Shp1-HA from its own promoter resulted in 
strong binding of Shp1-HA to GST-Atg8 but not to GST (Fig. 4 e). 
Pgk1 did not bind to GST-Atg8 or GST, confirming selective  
interaction (unpublished data). In mass spectrometry of the 

and preys with its Cub (C-terminal domain), followed by a  
modified Ura3. Protein interaction restores ubiquitin and leads 
to Ura3 degradation. Slower growth without uracil thus indicates 
protein interaction (Müller and Johnsson, 2008). Clear inter
action between Shp1 and Atg8 was detected (Fig. 4, a and b). No 
significant interaction was observed between Shp1 and Atg11, 
Tlg1, or Ubc6 (Fig. 4, a and b). In atg4 cells deficient in Atg8 
lipidation, interaction between Atg8 and Shp1 was only rather 
weak but reproducible (Fig. 4, a and b), pointing to the possibil-
ity that Shp1 preferentially interacts with Atg8-PE. In wild-type 
cells, we expected only transient interaction of Atg8 with Shp1 
and Cdc48 as a result of Atg8 delipidation by Atg4. Consistently, 
only little Atg8 coimmunoprecipitated with chromosomally ex-
pressed Shp1-HA (Fig. S2 a). To stabilize the complex, we de-
leted ATG4 and expressed Atg8-FG. Atg4 has two functions:  

Figure 3.  Shp1 affects autophagosome biogenesis.  
(a and b) Fluorescence microscopy of starved cells showed 
defective vacuolar uptake of GFP-Atg8. No GFP-Atg8–positive  
autophagosomes accumulated in the cytosol. (c) Electron  
microscopy of starved shp1 cells showed no vacuolar accumu-
lation of autophagic bodies. (d) Lysed spheroplasts of starved  
cells were trypsin digested with and without detergent. Immuno
blots with GFP antibodies showed proteolysis-resistant GFP-
Atg8 (inside autophagosomes) in ypt7 but not in wild-type 
and shp1 cells. GFP-Atg8 breakdown yields GFP*. (e) Cells 
with a GFP-Atg8–positive PAS punctum were scored in fluores-
cence microscopy. The mean and SD of two experiments are 
shown, with >200 cells analyzed per strain. (f) To analyze 
Atg8-PE, extracts were separated in 6 M urea SDS-PAGE and 
immunoblotted with anti-Atg8.

http://www.jcb.org/cgi/content/full/jcb.201002075/DC1
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Atg8-N8 lacking the first helix of the NHD and to 60% for 
Atg8-N24 lacking the complete NHD (Nakatogawa et al., 
2007; Fig. S2 b). We thus analyzed its relevance for interaction 
with Shp1 by incubating immobilized GST-Atg8-N8 and GST-
Atg8-N24 with extracts from cells chromosomally expressing 
Shp1-HA. We observed no binding (Fig. 4 e). Putatively, the 
NHD might help to discriminate ubiquitin from Atg8. Compari-
son of the first eight amino acids of Atg8 with its mammalian 
homologues LC3, -aminobutyrate type A receptor-associated 
protein, and GATE-16 showed that amino acids 5 and 6 are 
strongly conserved (Fig. 4 d). We generated an Atg8-F5G/K6G 
mutant that was unable to bind Shp1-HA (Fig. 4 e). We also gen-
erated an Atg8-S3A/T4A mutant that still effectively bound 
Shp1-HA (Fig. 4 e). We thus identified the FK motif within the 
Atg8 NHD as essential for Shp1 binding. Nakatogawa et al. (2007) 
reported that an Atg8-L50A mutant in the ULD was lipidated 
and showed increased multimerization and liposome cluster
ing but almost no formation of autophagic bodies. As a control, 
we also generated an Atg8-L50A mutant and found normal bind-
ing to Shp1 (Fig. 4 e), supporting the crucial role of the NHD for 
Shp1 binding. To demonstrate the existence of a ternary Atg8, 
Shp1, and Cdc48 complex, we used GST-Atg8 and extracts of 

pull-down eluates, Cdc48, but not Shp1, was identified (unpub-
lished data). The binding of Shp1 to Escherichia coli–expressed 
nonlipidated GST-Atg8 might reflect the binding of Shp1 to un-
lipidated Atg8. However, we favor an alternate explanation. Lip-
idation induces Atg8 oligomerization, and mutations impairing 
oligomerization affect liposome tethering and phagophore elon-
gation (Nakatogawa et al., 2007). In vitro Atg8 oligomerization 
is enhanced at 10-µM concentrations. We therefore propose that 
the 20-µM concentration of GST-Atg8 on beads could mimic 
oligomerization and thus lipidation. Atg8 contains a C-terminal 
ULD and a 24 amino acid NHD that is absent in ubiquitin. Crys-
tallography of Atg8 bound to a peptide of the cargo receptor 
Atg19 showed a closed conformation in which the NHD buries 
part of the ULD (Noda et al., 2008). During this study, the nu-
clear magnetic resonance solution structure of Atg8 (Schwarten 
et al., 2010) unraveled flexibility in the NHD. The structure with 
the lowest target function showed the first eight amino acids in 
an open conformation projected away from the ULD. Specula-
tively, oligomerization releases the NHD from the ubiquitin-like 
domain (ULD) and induces the open conformation (Nakatogawa 
et al., 2007). Truncation of the NHD affected autophagosomal 
elongation and reduced the macroautophagic rate to 70% for 

Figure 4.  Interaction of Atg8, Shp1, and 
Cdc48. The split-ubiquitin system proposed 
preferential interaction of Shp1 with lipidated 
Atg8. Protein interaction results in slower 
growth on medium lacking uracil. Dilutions  
were dropped on medium with (a) and  
without (b) uracil. Ste14-Cub/Nui-Ubc6,  
positive; Ste14-Cub/pRS314, negative control. 
(c) Shp1-HA from lysates (L) of starved atg4 cells 
expressing GFP-Atg8-FG were immunoprecipi-
tated with HA antibodies. S, supernatant; IP, 
immunoprecipitate. Immunoblots with GFP 
(top) and HA antibodies (bottom) are shown. 
*, cross-reaction. (d) Atg8 N terminus aligned 
with mammalian homologues. (e) GST fusions  
on beads were incubated with lysates of  
cells chromosomally expressing Shp1-HA with  
native promoter. (f) As in panel e, GST fusions 
were incubated with lysate from cells chromo-
somally expressing Shp1-HA and Cdc48-GFP 
with native promoters. AL, alkaline lysis; W, 
wash, PD, bound. Immunoblots with HA (top) 
or GFP antibodies (bottom). The Cdc48-GFP 
double band might be a result of proteolysis.
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Both studies do not provide insights into the molecular function 
of p97 during macroautophagy but underline the medical relevance 
of macroautophagy.

Materials and methods
Antibodies
Generation of anti–proApe I was described in Barth and Thumm (2001). 
Anti-GFP antibodies were purchased from Roche. Anti-Pgk1 and anti– 
carboxypeptidase Y were purchased from Invitrogen, and anti-HA was ob-
tained from Santa Cruz Biotechnology, Inc.

Strains
YYH3/PM373 MATa ura3-52 leu2-3,-112 his4-519 ade1-100 ufd1-1 and 
its wild type are described in Johnson et al. (1995). Other ufd and ubx de-
letions were obtained from Euroscarf. pre1-1 pre2-2 cells were described 
in Heinemeyer et al. (1993). MATa leu2 pep4::URA3 cdc48-3 cells  
(Latterich et al., 1995) were crossed with WCG4- (Thumm et al., 1994) 
or BY4741 (Euroscarf). Ascospores with the cdc48-3 allele were selected. 
atg deletions are in the WCG background.

Autophagic rate measurement
The GFP-Atg8 breakdown assay is described in Meiling-Wesse et al. 
(2002). Measurement of PMN was described in Krick et al. (2008). For 
these assays, cells expressing either GFP-Atg8 or GFP-Osh1 from plasmids 
were grown to stationary phase and then were shifted to SD-(N) medium 

cells chromosomally expressing Cdc48-GFP and Shp1-HA with 
native promoters (Fig. 4 f).

We next analyzed the relevance of Shp1 domains for inter-
action with Atg8. Shp1 contains a ubiquitin-associated domain 
(UBA) involved in ubiquitin binding, an SEP (Shp1, eyes-closed, 
p47) domain involved in p47 trimerization, and a Cdc48/p97-
binding Ubx domain (Fig. 5 a). BS1 or SHP box is a second p97 
binding site of p47 at the end of the SEP domain. Because of the 
second Cdc48 binding site, BS1 deletion of the Ubx domain alone 
did not block macroautophagy (Fig. 5 b). Accordingly, deletion of 
the SEP and UBX domain, which removes both Cdc48 binding 
sites, severely inhibited autophagy (Fig. 5 b). The C-terminally 
truncated Shp1 variants were chromosomally integrated. The  
N-terminally truncated Shp1 species were  on plasmids with the 
CUP1 promoter. Deletion of the UBA domain had no obvious  
effect on autophagy, irrespective of induction with exogenous 
Cu2+ (Fig. 5 d, left) or, when grown in normal medium, containing 
traces of Cu2+ (Fig. 5 d, right). All truncated Shp1 variants inter-
acted with Atg8 (Fig. 5, c and e). This suggests that Atg8 binding 
requires the domain between the UBA and the SEP domain. We 
thus expect that the Atg8-FK motive, which, as part of the NHD, 
is absent in ubiquitin, interacts with this Shp1 domain.

Defects in the secretory pathway affect autophagosome 
biogenesis (Ishihara et al., 2001; Reggiori et al., 2004). However, 
because Atg8 does not affect sorting via the ER and Golgi, the 
complex of Atg8 with Cdc48-Shp1 cannot have such an indirect 
effect on macroautophagy. Our data further suggest that the auto
phagic function of Shp1 requires neither the ubiquitin–proteasome 
system nor the Shp1 UBA domain. In addition, Atg8 mutants 
with impaired tethering and hemifusion, including Atg8-N24, 
showed unaltered PAS localization (Nakatogawa et al., 2007), 
leading to the conclusion that Atg8 mediates phagophore elonga-
tion at the PAS (Nakatogawa et al., 2007). Most recently, LC3 
was shown to mediate phagophore elongation, whereas the  
-aminobutyrate type A receptor-associated protein/GATE-16 
subfamily most likely mediates autophagosome sealing (Weidberg 
et al., 2010).

In analogy to Golgi reassembly, we speculate that Atg8 may 
act as a fusion regulator, which must be extracted from a complex 
with a fusion mediator by the AAA-ATPase Cdc48 and its adap-
tor Shp1. In this hypothetical model, deubiquitination by the cys-
teine proteinase VCIP135 would be reflected by Atg8 delipidation 
by the cysteine proteinase Atg4, which is needed for efficient 
macroautophagy. Indeed, GATE-16, a mammalian Atg8 homo-
logue, interacts with the SNARE GOS-28 (Müller et al., 2002). 
Because another study detected no SNAREs at the PAS (Reggiori 
et al., 2004), further work is needed to clarify whether small 
amounts of SNAREs that escaped detection are involved in auto
phagosome elongation or whether unknown components, proba-
bly Atg proteins, take over their role. While finishing our study, 
two papers reported that mammalian p97/VCP mutants of patients 
suffering from the multisystem degenerative disease IBMPFD 
(inclusion body myopathy, Paget disease of bone, and fronto
temporal dementia) cause macroautophagic defects by disturbing  
autophagosome maturation (Ju et al., 2009; Tresse et al., 2010). 
One study suggests that p97 might selectively affect autophagic 
degradation of ubiquitinated proteins (Tresse et al., 2010).  

Figure 5.  Relevance of Shp1 domains for Atg8 interaction. (a) Shp1 do-
mains and generated Shp1 variants. (b) The autophagic rate is measured 
as in Fig. 1 a with cells chromosomally expressing Shp1 truncations with 
native promoter. GFP, top; HA antibodies, bottom. (c and e) As in Fig. 4 e, 
GST-Atg8 beads were incubated with extracts of cells expressing chromo-
somally (c) or plasmid-encoded (e) truncated HA-tagged Shp1 variants.  
S, supernatant; W, wash; PD, bound. (d) Autophagic activity of Shp1-UBA-HA 
with the CUP1 promoter. Left, induction with 50 µM Cu2+; right, medium 
without exogenous Cu2+.
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an amplified product of Atg4-His forward and Atg4-His reverse and pFa6a-
His3MX6. Strains were transformed with GFP-Atg8 or GFP-Atg8-FG (Suzuki  
et al., 2001).

Cells were starved for 4 h in SD-(N), and then 40 OD600 of cells was 
glass-bead lysed in PBS, 0.5% Triton X-100, and protease inhibitors. After 
centrifugation, 5% of the lysate was taken. After 2 h at 4°C with 0.6 µg HA 
antibody, 2.5 mg protein A Sepharose CL-4B in PBS was added to the rest. 
After 2 h at 4°C, beads were sedimented, and 2 OD600 of supernatant was 
taken and washed three times with lysis and twice with wash buffer (PBS 
and 250 mM NaCl). Wash buffer corresponding to 2 OD600 was taken.  
Finally, beads were resuspended in Laemmli and immunoblotted using 
double eluate volume.

Split-ubiquitin assay
1 OD600 of cells was diluted 1:10, 1:100, 1:1,000, and 1:10,000 on to 
plates with uracil and on plates without uracil but with 250 µM methionine 
and 100 µM CuSO4 (Laser et al., 2000).

In SEY6210, ATG4 was deleted using S1 Atg4 ko NAT and S2 Atg4 
ko NAT (Janke et al., 2004). For MET25-SHP1-Cub-RURA3, SHP1 was am-
plified with Shp1-Cub forward and Shp1-Cub reverse, cut with Cla1–Sal1, 
and ligated in MET25-Cub-RURA3 (provided by F. Reggiori [University Medi-
cal Centre Utrecht, Utrecht, The Netherlands] and N. Johnsson [Universitaet 
Ulm, Ulm, Germany]). For CUP1-Nui-ATG8, ATG8 was amplified with Nui-Atg8 
forward and Nui-Atg8 reverse, cut with BamH1–Xho1, and ligated in 
pRS314-Nui-PCUP1-Nub (provided by N. Johnsson; Wittke et al., 1999). 
CUP1-Nui-ATG11 and CUP1-Nui-Tlg1 were obtained from F. Reggiori.

Electron microscopy
Cells starved for 4 h in SD-(N) were permanganate fixed and embedded 
in Epon (Epple et al., 2003). An electron microscope (JEM1200EX-II; JEOL) 
was used.

Online supplemental material
Fig. S1 shows the defect of shp1 cells in unselective starvation-induced 
macroautophagy. Fig. S2 shows coimmunoprecipitation of Shp1-HA and 
GFP-Atg8 in wild-type cells and proaminopeptidase I maturation in cells 
expressing N-terminally truncated Atg8 variants. Table S1 shows oligo
nucleotides used in this study. Online supplemental materials are available 
at http://www.jcb.org/cgi/content/full/jcb.201002075/DC1.
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