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Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60
million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if
untreated and the current drug therapies have significant limitations due to toxicity and difficult
treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The
pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage
HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei
gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have
better safety and efficacy than eflornithine alone, while being easier to administer. This
breakthrough represents the only new therapy for HAT since the approval of eflornithine. A
number of research programs are on going to exploit the unusual biochemical pathways in the
parasite to identify new targets for target based drug discovery programs. HTS efforts are also
underway to discover new chemical entities through whole organism screening approaches. A
number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but
none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation
underscores the need for continued effort to identify new chemical agents for the treatment of
HAT.

African sleeping sickness – disease and impact
African sleeping sickness is a fatal vector-borne disease caused by the protozoal pathogen,
Trypanosoma brucei [1–3]. It is endemic in sub-Saharan Africa where it is transmitted by
the bite of the tsetse fly. The WHO estimates that as many as 60 million people are at risk to
contract Human African trypanosomiasis (HAT), which is caused by the T. b. gambiense
(West Africa) and T. b. rhodesiense (East Africa). T. b. gambiense accounts for greater than
90% of the disease, with tens of thousands of cases reported yearly [4, 5]. HAT is found
primarily in rural communities and the primitive medical care in these regions likely results
in significant under reporting of the disease burden. T.b. rhodesiense also infects both wild
and domesticated animals. Cattle contribute significantly as a reservoir for human infection,
and disease in these animals contributes to malnutrition. Several other subspecies of
trypanosomes are also endemic in Africa but are limited to infection of animals (T.b. brucei,
T. congolense and T. evansi). These species are unable to sustain human infection due to the
presence of the trypanosome lytic factor (TLF) in human serum [6]. T.b. gambiense is
inherently resistant to TLF, while T.b. rhodesiense, is protected from lysis through
expression of a lytic resistance gene (serum resistance-associated (SRA)) protein.
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Symptoms and diagnosis
The clinical manifestations of the HAT depend both on the subspecies of the parasite and on
the stage of infection [2, 4]. T. brucei is an entirely extracellular parasite that in the early
stages replicates in the blood, and in latter stages migrates into the central nervous system
and is found in the cerebral spinal fluid (CSF). Early stage disease is manifest by fever,
headache, malaise, weight loss, and arthralgia, with symptoms of fever, sometimes
accompanied by rigor and vomiting, cycling over several day intervals. Skin legions or
chancre may also be present. The underlying etiology of the cyclic symptoms is antigenic
variation of the parasite surface coat (variant surface glycoprotein (VSG))[7]. Switching of
the expressed VSG gene occurs at a sufficient frequency to render useless the host immune
response. Late stage disease is marked by progressively worsening neurological symptoms
including head-ache, sleep disorders, personality changes (e.g. anxiety, irritability, violence,
delirium), motor weakness and visual impairments. T.b. rhoesiense causes a virulent, rapidly
fatal disease with high parasitimia that kills patients within weeks to months. It progresses
quickly to CNS involvement, and leads to multiple organ involvement, including significant
cardiac symptoms [8, 9], endocrine and gastrointestinal problems. T.b. gambiense is
characterized by low parasitimia and a slower time course before CNS involvement.
Symptoms are manifest over many years leading to the classic neurological symptoms and
progression to coma and death for which sleeping sickness has been named.

Disease diagnosis and stage assessment is primitive and relies on the microscopic
identification of parasites in the blood, lymph or CSF, often requiring concentration
techniques to increase sensitivity, particularly for patients infected with T. b. gambiense
[10]. A card agglutination test is used to screen for possible T.b. gambiense infections with
conformation relying on microscopic identification. Elevated white blood cells and IgM
levels also suggest the presence of the parasite. PCR-based methods amenable to the field
have been described but are not in wide use [11, 12].

Current state of drug therapy
Drugs are the only therapeutic option for the treatment of HAT as there is no vaccine and no
prospects that one will be developed. HAT is managed with a combination of suramin (T.b.
rhodesiense) and pentamidine (T.b. gambiense) for early stage disease prior to CNS
involvement, and melarsoprol and eflornithine for late stage disease (Figure 1 and Table 1)
[1]. It is likely that nifurtimox/eflornithine combination therapy (NECT) will supplant
eflornithine alone as a treatment option. A just completed clinical trial led the WHO to place
NECT on its Essential Medicines List and to the recommendation that it should be
considered as the front line treatment for late stage T.b. gambiense by Government control
programs[13]. Eflornithine is not effective against T.b. rhodesiense, thus melarsoprol
remains the only option for late stage disease [14].

Early stage HAT. Suramin
Suramin has been available since 1920 and was developed as a follow-up to the observations
that closely related dyes had anti-trypanosome activity (e.g. trypan blue) [1]. The
mechanism of action is not known, though the fact that it is concentrated in the parasite via
receptor-mediated endocytosis may account for its selective antityrpanosomal activity.
Resistance has not occurred in the field, suggesting that it has multiple cellular targets.
Suramin is effective against early stage infection by both T.b. rhodesiense and T.b.
gambiense [1]. However its use is typically restricted to T.b. rhodesiense since pentamidine
is available for treatment of T.b. gambiense. Suramin does not cross the blood brain barrier
and is ineffective against late stage disease. A range of side effects have been reported and
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include nausea, vomiting, fatigue and shock followed by renal toxicity and neurological
complications such as headache and peripheral neuropathy after several doses.

Early stage HAT. Pentamidine
Pentamidine is one of several diamidines that shows significant anti-trypanosomal activity
[1, 15, 16]. The mechanism of action is not known for any of these, however pentamidine is
significantly concentrated by the parasite (reaching millimolar levels) and this may be a key
factor in its selective toxicity. Transport of pentamidine by T. brucei is energy dependent
and requires the adenine/adeonsine P2 transporter in combination with a low-capacity high-
affinity (HAPT) transporter and a high-capacity low affinity transporter (LAPT), explaining
why resistance does not develop readily in the field [17]. A cell line containing a knockout
of the P2 transporter was selected for pentamidine resistance, yielding a line that was 100-
fold resistant to pentamidine as a result of the apparent loss of HAPT activity. This line is
also highly resistant to melarsoprol suggesting that the loss of both the P2 and HAPT
transporters is necessary to generate high-level pentamidine and melarsoprol resistance. In
contrast, transport of other diamidines such as DB289 and diminazene aceturate occurs
predominantly via the P2 transporter, allowing changes in a single protein to yield
resistance.

Pentamidine is used for the treatment of early stage T.b. gambiense but not for T.b.
rhodesiense where it has reduced activity. It has broad spectrum anti-parasitic [16] activity
and has also been used for leishmaniasis [18]. Pentamidine is not effective against late stage
HAT, and it had been presumed not to cross the blood brain barrier. Recent studies show
that it enters the CNS but not in sufficient concentrations to be effective against late stage
disease [19]. Pentamidine causes significant toxicity in at least half of the patients, with life
threatening hypoglycemia being the most serious.

Late stage HAT. Melarsoprol
Melarsoprol is an organic arsenical that was discovered to have antitrypanosomal activity in
1949 and it is active against both stages of T.b. gambiense and T.b. rhodesiense [1]. Because
of its extreme toxicity it is reserved for late stage disease, and is now only recommended for
the treatment of late stage T.b. rhodesiense for which there are no other options. The
molecular mechanism behind the trypanocidal activity of melarsoprol is not understood. A
prodrug, it is rapidly converted to melarsin oxide after administration. It reacts with many
biomolecules through reversible interaction with sulfhydryl groups in both the parasite and
the host and its toxicity likely results from these interactions [1]. Increasing numbers of
treatment failures are being reported [20] and field isolates that are ten-fold less sensitive to
the drug have been identified. In the laboratory melarsoprol resistance has been associated
with the P2 transporter[17]. However this appears to be only one of the factors leading to
melarsopral treatment failure. Cells overexpressing the P-glycoprotein multidrug resistance
pump are also less sensitive to melarsoprol [21]. Significantly, not all treatment failures
result from drug resistance and other factors are thought to play a role [22].

Melarsoprol is reserved for the treatment of late stage T.b. rhodesiense and is recommended
for T.b. gambiense only where eflornithine is unavailable. Historically the dosing schemes
were empirically derived. For T.b. gambieinse a new 10-day dosage regiment was developed
based on experimental assessment of pharmacokinetics and is now recommended [14].
Adaptation of the simplified dosing scheme for T.b. rhodesiense awaits clinical
demonstration of its efficacy (C. Burri, personal communication). Melarsoprol is highly
toxic resulting in a treatment related death rate reported to be 5.9% during the recent clinical
trial of the 10-day treatment regime[14]. Reactive encephalopathy has an occurrence rate of
5–10% and half of those affected by this complication die. Beyond this, vomiting and
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abdominal cramping, peripheral neuropathy, hypertension and heart damage are also
common side effects of the drug.

Late stage HAT. Eflornithine and nifurtimox/eflornithine combination (NECT)
Eflornithine, or D,L-α-difluoromethylornithine, is a mechanism-based inhibitor of the
pyridoxal-5’-phosphate dependent enzyme, ornithine decarboxylase (ODC)[1]. ODC
catalyzes the first committed step in the biosynthesis of polyamines (Figure 2), which are
required for cell growth [23, 24]. Eflornithine originally was developed for cancer therapy
though it was never registered for this use. It was discovered to have anti-trypanosomal
activity in 1980, leading to its approval and registration for clinical use in 1990. Eflornithine
is the only clinically utilized anti-trypanosomal agent with a known mechanism of action. X-
ray structural data has captured the eflornithine complex with T. brucei ODC in a covalent
bond with an active site cysteine [25] (Figure 3). Eflornithine is equally effective at
inactivating both the trypanosomal and human enzymes, however important differences
have been identified at the cellular level that are likely to contribute to the observed species
selectivity and to the acceptable toxicological profile, including differences in intracellular
turnover rate between the mamamalian and T. brucei enzymes.

Eflornithine is recommended for treatment of late stage T.b. gambiense and has been
clinically demonstrated to have a better safety profile than melarsoprol [26]. It is less
effective against T.b. rhodesiense and is not used for this disease. The molecular basis for
this species difference is not understood. Past issues with affordable supplies of the drug
have been resolved clearing the way to more wide spread use of this drug. Large doses are
required for effective treatment, which may be partially explained by the finding that
eflornithine does not efficiently enter the CNS [27]. The treatment regiment is extremely
challenging to administer in rural settings and represents the main limitation to its use.

A clinical trial of combination nifurtimox-eflornthine (NECT) using a shortened course of
eflornithine has recently been completed [13]. The cure rate for NECT (96.5%) was higher
than for eflornithine alone (91.6%), and fewer severe adverse events (grade 3–4) were
recorded (14% vs 29%). Treatment related deaths were also lower for NECT (0.7%) versus
eflornithine alone (2%), and both treatments led to substantially fewer treatment-related
deaths than for melarsoprol (5.9%)[14]. The side effects for eflornithine alone include
seizures, fever, infections, neutropenia, hypertension and diarrhea. These effects are
generally reversible once drug is discontinued provided they are properly managed. Septic
shock was identified as the cause of the eflornithine-related deaths in the study. For NECT
fewer patients suffered from drug-related diarrhea, infections, fever, skin rash or
hypertension, however more reported nausea, vomiting and tremors. NECT is significantly
easier to administer than eflornithine alone, it requires less eflornthine, which while donated
for HAT therapy is expensive to synthesize. Overall the data indicates that NECT should be
considered the front line treatment for late-stage T.b. gambiense infection.

Resistance to eflornithine has not been observed in field, however it can be readily generated
in the lab where reduced drug influx and/or increase putrescine uptake appear to account for
drug resistance [1]. These data suggest that the increasing use of eflornithine as a single
agent leaves it exposed to development of resistance, and to the worrying possibility that the
only alternative drug to melarsoprol could be lost. NECT therapy has the added benefit that
it may reduce the chance that resistance to eflornithine develops.

New drugs against HAT are needed
The management of HAT patients is complicated by the fact that 4 of 5 key drugs are
administered parenetrally and significant issues of toxicity, difficulty treatment regimes or
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drug resistance are present. Beyond these issues the lack of a single agent that is effective
against both species and both stages leads to the requirement that speciation and staging
remain critical aspects of diagnosis, and this must be performed under the difficulty of rural
community hospitals that lack modern medical equipment. There is a clear and pressing
need for the development of safer more effective drugs for the treatment of HAT. T. brucei
has a number of novel metabolic pathways and unusual biological features that are
understudy for their potential in drug discovery programs. Below we summarize progress
towards the identification of new-antitrypanosomal agents by exploring the biochemical
pathways and systems that have been identified as potential drug targets through a review of
both genetic and chemical data (Table 2).

The genomes of the kinetoplastid protozoal pathogens (T. brucei, T. cruzi and Leishmania)
are complete and a number of genetic tools are available to evaluate gene function and
essentiality[3]. The trypanosomatids are diploids and knockouts of non-essential genes can
be readily generated by homologous recombination. Regulated conditional knockout of
essential genes in T. brucei is also feasible and is achieved by integration of a gene copy
under the control of the tetracycline-inducible system prior to knockout of the endogenous
alleles. RNAi is functional in T. brucei, but not in T. cruzi and most Leishmania species,
making T. brucei the kinetoplastid of choice for genetic validation studies [28].

Polyamine and trpanothione biosynthesis
Polyamines are small carbon-based cations that are essential for cell growth in most
organisms [23, 24]. They most likely mediate their cellular effects at the transcriptional and
translational levels by interacting with nucleic acids. Further, spermidine is a required
precursor for the essential covalent modification (hypusine modification) of eukaryotic
initiation factor 5A. Polyamines are synthesized from the precursors L-ornithine and S-
adenosylmethioine (AdoMet), with the first committed steps in the pathway catalyzed by
ODC and S-adenosylmethioine decarbolyase (AdoMetDC) (Figure 2). These steps represent
the main regulatory control points, and in mammalian cells the levels and activity of these
enzymes are controlled at the transcriptional, translational and posttranslational level. The
association of polyamines with cell growth and transformation led to significant interest in
the pathway for the discovery of anit-prolifertaive agents. Significantly, HAT remains the
only disease where targeting the polyamine pathway has led to a clinically useful drug. The
success of eflornithine suggests that the polyamine pathway is a strong potential source for
additional chemical species to treat HAT.

The polyamine biosynthetic pathway in trypanosomatids differs from the human host. First,
spermidine is conjugated to glutathione to form a novel cofactor trypanothione that
functions in place of glutathione in cellular redox reactions (Fig. 2) [29]. Much of the
enzymatic machinery involved in redox metabolism has evolved to utilize trypanothione
instead of glutathione. Trypanothione reductase (TrpRed) replaces glutathione reductase and
trypanothione is used to provide reducing equivalents to tryparedoxin, which in turn is
needed for detoxification of hydroperoxides and for the function of ribonucleotide reductase.
Secondly, trypanosomatids do not make spermine nor do they encode the catabolic enzymes
polyamine oxidase and spermidine/spermine N1-acetyltransferase, used by mammalian cells
to interconvert the longer chain polyamines. Finally, the pathway is regulated by a novel
mechanism. The active form of AdoMetDC is a heterodimer composed of the functional
subunit and an inactive paralog, termed prozyme, which is present only in the genomes of
the kinetoplastids, and functions as an allosteric activator of the functional subunit [30]. The
expression levels of prozyme protein are regulated in response to depletion of AdoMetDC
activity by RNAi-targeted gene silencing or chemical inhibition, providing a potential
mechanism to control pathway flux [31].

Jacobs et al. Page 5

Curr Top Med Chem. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gene knock out strategies or RNAi-mediated gene silencing have demonstrated that the
polyamine and trypanothione biosynthetic enzymes are essential. Of the enzymes in the
pathway, only glutathione synthetase remains to be characterized. Depletion of ODC leads
to loss of putrescine and trypanothione, correlating with cell growth arrest [32, 33]. The
ODC knockout cell line was used to confirm that the mechanism of action of eflornthine is
exclusively mediated through ODC. Knockdown of AdoMetDC, prozyme or spermidine
synthase in blood form parasites leads to spermidine auxotropy, though interestingly
spermidine levels are only partially reduced [31, 33, 34]. However knockdown of any of
these enzymes also leads to complete depletion of trypanothione, which correlates with cell
death. Finally genetic studies have also demonstrate that γ-glutamylcysteine syntehtase,
TrpRed and TrpSyn are all also essential [35– 37].

In addition to the discovery of eflornithine, small molecule inhibitors of other enzyme in the
pathway with cell activity have also been reported. The most actively targeted enzymes after
ODC, are AdoMetDC, TrpRed and TrpSyn, with the data providing a strong case that both
AdoMetDC and TrpSyn are “druggable” targets with good potential as targets in drug
discovery programs.

AdoMetDC
Some of the most potent anti-trypanosomal agents that have been reported are inhibitors of
AdoMetDC. Several inhibitors (e.g. MDL 73811) that were developed in anti-cancer
programs are potent inhibitors of T. brucei growth and are also able to cure infections in
mice. However despite the good activity MDL 73811 lacked metabolic stability and had
poor brain penetration, thus it was not developed further for use in HAT. Recently, work to
identify a stable analog of MDL 73811 identified Genz-644131, a potent irreversible
inhibitor of the AdoMetDC/prozyme complex with excellent (EC50 = 0.1 nM) activity in
vitro and the ability to cure infections in mice after i.p. dosing with 2 − 50 mg/kg QD or
BID, depending on the parasite strain [38, 39](Figure 4). Genz-644131 has better metabolic
stability than MDL 73811 and shows improved brain penetration, however it does not
provide sterile cure against TREU 667, the CNS model strain of infection. Genz-644131 and
MDL 73811 show good selectivity against the parasite over the host at the cellular level yet
this difference is not explained by selectivity on the enzyme. T. brucei contains a novel
AdoMetDC transporter that is absent in mammalian cells suggesting differential uptake of
AdoMet analogs by the parasite may lead to selective toxicity [40]. The possibility that other
inhibitor classes that show selectivity at the enzyme level can be identified is suggested by
structural studies and kinetic analysis showing the active site of AdoMetDC is not conserved
between species [41].

TrpRed and TrpSyn
TrpRed and TrpSyn both have the advantage of being novel enzymes in the parasite and for
this reason extensive research efforts to identify inhibitors with anti-trypansomal activity
have been undertaken. For TrpRed, HTS campaigns and structure-based methods have been
employed to identify both reversible and mechanism-based inhibitors of the enzyme from an
array of structural classes, including tricyclics, quinazolines, benzimidazoles, nitrobenzens,
polyamine analogs and peptides ([42–47] and references therein). The common features of
the various inhibitor classes include the requirement for positive charge and for a
hydrophopic core. Despite these extensive efforts, inhibitors of TrpRed have not been
amenable to lead optimization and no preclinical candidates have been identified that target
the enzyme. Typically within a chemical series it has not been possible to demonstrate a
correlation between enzyme and parasite efficacy, suggesting that off target effects
contribute significantly to the observed anti-trypanosomal activity. TrpRed has a large active
site that makes identifying drug like molecules that bind and fill the pocket challenging. For
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many inhibitors multiple binding modes and a tendency to bind multiple ligands
simultaneously has been observed.

For TrpSyn, a recent HTS campaign identified a potent inhibitor of the enzyme (DDU
86439) that while only exhibiting micromolar activity against T. brucei, was demonstrated
by genetic and biochemical studies to target TrpSyn within the cell [37](Figure 4). These
studies provide strong validation of TrpSyn as a target.

Energy Metabolism
The T. brucei bloodstream form is solely dependent on glycolysis to provide ATP. As such,
enzymes in this pathway are attractive targets for trypanocidal drugs [48, 49]. All of the
enzymes in the glycolytic pathway have been described, isolated and purified, either through
classical or recombinant means, allowing a comprehensive understanding of the kinetics and
flux of the pathway to be developed (Figure 5). [50] As much of the detail around the
pathway has been reviewed [49] only significant changes to understanding or attractiveness
of the individual enzymes as drug targets will be covered here.

Hexokinase (TbHK1)
Hexokinase starts the glycolysis pathway, and transfers a phosphate from ATP to glucose.
The T. brucei genome contains two nearly identical hexokinases (TbHK1 and TbHK2) that
differ primarily in the C-terminus. This difference appears to be important in regulation of
hexokinase activity through heterooligomer formation between TbHK1 and TbHK2 [51].
Myristate further regulates activity, apparently through modulation of oligomer formation
[52]. Hexokinase was shown essential by RNAi [52] and an inhibitor of TbHK1,
Lonidamine (Figure 6) is trypanocidal [53].

Phosphoglucose isomerase (TbPGI) and Phosphofructokinase (TbPFK)
Both enzymes have been expressed and their X-ray structures have been determined [54–
56]. For TbPFK the crystal structures reveal unique features of the trypanosomal enzyme
relative to other protozoal, bacterial and mammalian orthologs, and provide opportunities for
design of species-specific inhibitors. The synthesis and evaluation of a series of 2,5-anydro-
D-mannitol derivatives has been described (Table 3) [57].

Fructose-1,6-Bisphosphate aldolase
The aldolase enzyme which effects reversible aldol cleavage of fructose 1,6-bisphosphate to
dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate has been the target of a
structure-based drug design program utilizing the crystal structure of the T. brucei enzyme
[58]. Inhibitors based on the 1,6-dihydroxy-2-naphthaldehyde and 2,5-
dihydroxybenzaldehyde scaffolds are selective for the T. brucei enzyme relative to the
orthologous enzyme from rabbit muscle [59]. These phosphyorylated inhibitors did not
exhibit activity against T. brucei, presumably due to poor membrane permeability. This
issue was addressed through preparation of phosphate ester prodrugs, and modest activity in
a whole cell assay has been observed (Figure 7)[60].

Phosphglycerate Kinase and Enolase
Phosphoglycerate kinase, which converts 1,3-bisphosphoglycerate to 3-phosphoglycerate, is
relatively less well characterized than other enzymes in the pathway. It has been reported,
however, that the adenosine analog tubercidin, which is trypanocidal, inhibits TbPGKB [61].
The penultimate enzyme in the glycolytic pathway, Enolase, has been shown to have a
flexible active site, based on the enzyme in complex with an inhibitor, 2-fluoro-2-
phosphonoacetohydroxamate, which may allow for design of larger inhibitors [62].
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Purine and Pyrimidine Metabolism
Purine metabolism

Like most obligate intracellular parasites, T. brucei has lost the capacity to synthesize
purines de novo and depends on salvage from the host. Bloodstream T. brucei can take up
different types of purines and interconvert them into essential cellular nucleotides. The
parasite has developed a unique set of salvage transporters and enzymes, however no single
protein is essential [63]. Programs to exploit parasite purine salvage rely on specific
transport or activation of subversive drug substrates through enzymes and transporters that
differ or are absent in the host [64]. For example, cordycepin, a 3'-deoxyadenosine targets T.
brucei through incorporation into RNA, resulting in termination of synthesis [64, 65]. This
antimetabolite pro-drug requires phosphorylation by adenosine kinase (AK) prior to
incorporation into RNA. AK is not essential under normal T. brucei growth conditions in
vitro, but down-regulation or inhibition leads to resistance [64, 66]. Cordycepin efficacy in
murine models of HAT requires co-administration with the AK inhibitor coformycin to
prevent deamination [65]. The combination demonstrates activity against a CNS infection in
mice, suggesting permeation of brain parenchyma by both compounds. The potential
toxicity of coformycin has led to suggestions of developing deamination resistant
cordycepin or adenosine analogues [67].

Another approach in targeting purine metabolism exploits transporters to accumulate toxic
analogues within the parasite [68–71]. In one such study, melamine linked nitroheterocycles
demonstrated good trypanocidal activity in vitro and in some cases in vivo [72]. The lack of
correlation between affinity for P2 transporter and parasite killing suggested the
involvement of other mechanisms or transporters such as HAPT1 and LAPT1 [73, 74]. In
other studies, attempted delivery of melamine-linked eflornithine or fluoroquinolones was
unsuccessful [75]. For Mannich bases, uptake into trypanosomes occurs efficiently in the
presence or absence of the melamine moiety [71]. Exploitation of purine transporters for
delivery of trypanocidal moieties requires further exploration.

Pyrimidine Metabolism
The pyrimidine metabolic pathway in T. brucei and other related parasites has received
much less attention in comparison to pathways involved in the uptake and interconversion of
purines. The presence of both the de novo biosynthetic and salvage pathways suggests
redundant mechanisms to acquire pyrimidines, reducing the potential of this pathway in drug
discovery. However, the suitability of dihydroorotate dehydrogenase (DHODH) and CTP
synthetase as drug targets has been experimentally tested [76, 77]. DHODH is the fourth
enzyme in the pyrimidine biosynthetic pathway. T. brucei has a cytoplasmic, fumarate-
dependent class 1 DHODH, which has been characterized by X-ray structure analysis and
RNAi knockdown, showing loss of this protein resulted in slowed growth but was not lethal
[76]. The addition of 5- fluorouracil, an inhibitor of pyrimidine uptake, potentiated the
effects of DHODH knockdown. Simultaneous inhibition of DHODH and pyrimidine uptake
would be required to generate complete anti-trypanocidal effects.

Cytidine triphosphate synthetase (CTPS) is a key enzyme in nucleic acid and phospholipid
biosynthesis and it is critical to T. brucei survival. Cultured T. brucei parasites have very
low intracellular pools of CTP, attributed to the slow synthetic activity of CTPS [77, 78].
Drugs targeting T. brucei CTPS should be effective because unlike mammalian cells, the
parasites can’t compensate for the loss of CTPS through salvage of cytidine. This idea has
led to the evaluation and demonstration of effective activity of CTPS inhibitors 6-diazo-5-
oxo-l-norleucine (DON) and alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid
(acivicin) against T. brucei in vitro and in vivo [77, 78]. Avicin crosses the blood brain
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barrier, a requirement for treatment of stage 2 HAT. The potential toxicity of DON and
avicin would require co-administered with purine bases to reduce such adverse reactions.
This is likely to complicate the treatment regimen and potential outcome, thus limiting
feasibility of this approach.

Pteridine Metabolism
Trypanosomatid protozoan parasites lack a de novo pathway for the synthesis of pteridines
(folate and pterins) and rely on salvage from the host [79]. Pteridine salvage depends on
transporters specific for folate and biopterin (FT1 and BT1, respectively) and at least two
pteridine reductases. Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS)
is specific for folate while pteridine reductase 1 (PTR1) reduces both folate and biopterin.
Unlike humans and most other organisms that have monofunctional proteins,
trypanosomatids express a bifunctional DHFR-TS in which a single polypeptide chain
contains both catalytic activities [80]. DHFR-TS and PTR1, have been proposed as key drug
targets in trypanosomatids because folates are essential for synthesis of thymidylate while
pterins are implicated in parasites growth and oxidant resistance [81, 82].

Dihydrofolate reductase-thymidylate synthase
Inhibitors of DHFR have been successfully exploited for therapy of bacterial infections and
other parasitic diseases such as malaria. However, classical inhibitors that target
monofunctional DHFR are ineffective against trypansomatids. In Leishmania, this is due to
drug resistance mechanisms, the most prominent of which is amplification of PTR1, which
allows bypass of the DHFR block [83, 84]. Although this mechanism has not been
demonstrated in T. brucei, the ability of PTR1 to catalyze the DHFR mediated reactions,
suggests that a dual inhibitor or a combination of compounds targeting the two enzymes
separately may be required to effectively exploit pteridine metabolism.

In T. brucei null mutants lacking DHFR-TS are resistant to antifolates and require thymidine
supplemented media [85]. DHFR-TS knockouts of T. brucei could not be rescued with an
enzymatically active TS on a plasmid, suggesting that both DHFR and TS are essential for
thymidylate synthesis. Furthermore, DHFR-TS knockout T. brucei parasites cannot establish
infection in mice, suggesting that thymidine concentrations in mouse blood are limiting.
Although T. brucei DHFR studies have not identified a clear chemical scaffold for a focused
lead discovery effort, validation data is sufficiently compelling to warrant efforts to exploit
this target.

Pteridine reducatse-1
PTR1 and DHFR catalyze the same reactions, but utilize different catalytic mechanisms
such that, if necessary to avoid PTR1 mediated bypass of DHFR, finding a common
inhibitor could be challenging. However in T. brucei, PTR1 null mutants are not viable
suggesting it maybe a target on its own [85]. The active site of T. brucei PTR1 is sufficiently
distinct from that of DHFR to warrant a separate program to identify specific inhibitors. One
such effort identified aminothiazole and aminobenzimidazole inhibitors from a fragment-
based virtual screen. Structural determination of PTR1 bound to these inhibitors was used to
inform a hit-expansion program to identify selective and potent inhibitors of the T. brucei
enzyme [86]. Compounds from this effort were selective for T. brucei PTR1 over DHFR
from the parasite or human, but a representative aminobenzimidazole with good potency for
PTR1 (Kiapp = 7 nM) and favorable physicochemical properties for cellular permeation,
showed limited ability to inhibit T. brucei growth in vitro. Apparently other chemical
scaffolds have also failed to translate from potent PTR1 inhibition to tryapnocidal activity in
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culture [86]. Discovery of the basis for this limitation will be essential to any future efforts
to progress inhibitors of PTR1 for HAT therapy.

DNA Topoisomerases
DNA topoisomerases catalyze the conversion of topological isomers of DNA and are
essential for nucleic acid metabolism replication and transcription. Type I enzymes catalyze
single strand breaks and type II make double stranded breaks on DNA [87]. Type I enzymes
are further classified as IA or IB and the latter are key targets for the camptothecin class of
anti-cancer compounds. Camptothecins act by trapping the enzyme in the complex with
DNA substrate i.e. the cleavable complex. Trypanosomatids, have type IB topoisomerase
that is sensitive to camptothecin [88, 89]. Unlike mammalian enzyme which is a single
polypeptide, T. brucei topoisomerase is hetero-multimeric consisting of two separately
encoded proteins. Both 90 kDa DNA binding and the 35 kDa catalytic subunits are essential
in T. brucei [90]. A knockdown of one subunit results in decreased levels of protein from the
second subunit and a concomitant reduction in synthesis of RNA and DNA, an expected
consequence of interference with topoisomerases.

The potential of topoisomerase inhibitors as trypanocidal agents [91] has been demonstrated.
Classical antibacterial fluoroquinolones such as KB5426, ofloxacin, and ciprofloxacin and
camptothecin and non-camptothecin classes of topoisomerase inhibitors have shown activity
against T. brucei [92, 93]. Recently, a series of indenoisoquinolines were shown to have
trypanocidal activity in vitro and in vivo as shown by increased survival of mice challenged
with a lethal infection [94]. Unfortunately none of the published topoisomerase inhibitors
show a sufficient parasite versus host cell selectivity for development as safe and effective
trypanocidal compounds. Future strategies for effective targeting of parasite topoisomerases
should focus on defining structural differences between mammalian and T. brucei enzymes
e.g. the unusual bi-subunit structure and association with both genomic and mitochondrial
DNA.

Fatty Acid Biosynthesis
Like many eurokaryotes, biosynthesis of fatty acids is critical for the life cycle of T. brucei,
yet the details of the biosynthetic pathways have only recently been elucidated [95, 96]. The
uniqueness of these pathways provides the potential for selective intervention, with several
candidate proteins now validated as targets. Particularly important to the parasite is
generation of myristate, a key component in the glycosyl phosphatidylinositol (GPI) anchor
of the variable surface glycoprotein (VSG) coat of the bloodstream form parasite. Though
originally thought not to synthesize myristate, recent work has demonstrated that T. brucei
uses a unique set of enzymes, elongases, to synthesize this important fatty acid. The
essentiality of these enzymes has been validated using RNAi approaches[97]. This
microsomal elongase system is responsible for synthesis of nearly all fatty acids in T. brucei,
and uses butyryl-CoA as primer instead of acetyl-CoA as in other eukaryotes. Further
exploration of fatty acid biosynthesis in the mitochondrion revealed a more classical type II
fatty acid synthase and attendant carrier proteins, several of which were determined to be
essential by RNAi [98–100].

A number of natural products (Figure 8) that inhibit fatty acid biosynthesis targets in other
parasites (e.g. P. falciparum) have been shown to kill T. brucei in vitro [101–104].

Fatty acid utilization
The enzyme responsible for attachment of myristate to the GPI anchor protein, N-
myristoyltransferase (NMT), is essential for parasite viability based on RNAi [105]. Several
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inhibitors of fungal NMTs (Figure 9) inhibit the trypanosomal enzyme, and growth of T.
brucei in vitro [106, 107]. Though these molecules are not drug-like, they have been
employed for homology modeling using crystallographic information from fungal NMTs to
suggest opportunities for rational design of new T. brucei selective inhibitors [108].

Sphingolipid biosynthesis
Connected to the fatty acid biosynthesis pathway, and critically important to viability of the
trypanosome, is sphingolipid biosynthesis. The key enzyme in this pathway, sphingolipid
synthase, has recently been identified and shown to be essential for T. brucei survival by
RNAi and by chemical inhibition using aureobasidin A [109, 110].

Protein prenylation
Attachment of isoprenoids groups (e.g. farnesyl) to proteins is an important regulatory
mechanism for signal transduction in trypanosomes. The enzyme responsible for this
process, protein farnesyltransferase (PFT) has been targeted for screening efforts to identify
leads for medicinal chemistry including a series of tetrahydroquinolines (Figure 10) active
against both P. falciparum [111, 112] and T. brucei [113]. Notably, analogs of tipifarnib, an
inhibitor of human PFT, with excellent activity against the related T. cruzi have also been
described [114].

Signal Transduction Pathways
Cell Cycle Kinases

The cell cycle of T. brucei is unusual in several regards, and as such may offer an effective
approach to kill the parasite [115]. In particular, protein kinases involved in progression of
trypanosomes through a number of cell cycle checkpoints have been suggested to be a
attractive targets for drug discovery [116, 117]. This interest is based on several factors,
including the growing understanding of the trypanosomatid cell cycle and availability of
chemical starting points from orthologous mammalian targets [118, 119]. Genetic validation
of numerous trypanosomal kinase targets through RNAi methods has been demonstrated,
but very few have been validated chemically. Several groups, most notably the Drug
Discovery Unit at Dundee University have initiated or planned HTS campaigns, with the
hope of identifying leads to exploit the kinase targets [120].

One kinase target that has been chemically validated is TbGSK3. In mammalian cells,
GSK3b has been shown to play a key role in multiple cellular processes including cell
survival and death signaling, and can be inhibited by a multitude of ATP-site directed small
molecules [121]. The T. brucei homolog (TbGSK3) can be inhibited by several commercial
kinase inhibitors and these were shown to have anti-trypanosomal activity [122].
Additionally, a series of human GSK-3b inhibitors were evaluated in both assays, where
good correlation between TbGSK3 inhibition and cell growth inhibition was reported (Table
4). A HTS campaign for inhibitors of TbGSK3 is planned, and may provide starting points
for medicinal chemistry optimization of novel compounds. Critical to success of this effort,
and generally for cell cycle kinases with mammalian homologs, will be identification of
compounds that selectively inhibit the parasite enzyme.

A second recently chemically validated target is TbAUK1, which is inhibited by hesperadin
(Figure 11) in both biochemical phosphorylation and cell growth assays [123].
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Proteases
Proteases have been extensively targeted for the development of chemotherapy for a number
of proliferative diseases including cancer, viral pathogens and parasites. Proteases play a
number of roles in disease progression and pathogenesis in both protozoal and worm
pathogens [124]. In T. cruzi, a cysteine protease, cruzipain is involved in host cell invasion
and inhibitors of this enzyme have reached late preclinical trials for Chagas’ disease [125].
The roles of proteases in T. brucei have been less well defined, however a number of recent
studies have begun to explore the biology of proteases in T. brucei, and protease inhibitors
with anti-trypanosomal activity have been reported.

The most active efforts to identify protease inhibitors with activity against T. brucei have
focused on the cysteine proteases. T. brucei contains two Clan CA cysteine proteases, a
cathepsin L-like protease, brucipain, and a cathepsin B protease, TbCatB, the latter of which
is upregulated in bloodstream parasites. In vitro and in vivo RNAi studies have shown that
TbCatB is essential for the growth, while brucipain is not [126, 127]. Data suggests that
TbCatB plays a role in degradation of host transferrin for iron acquisition [126]. Purine-
derived nitrile inhibitors of TbcatB with low micromolar inhibition against the enzyme show
anti-trypanosomal activity, though no clear correlation between enzyme and cell-based
activity emerged in these studies [128]. Thiosemicarbazone inhibitors of both rhodesain and
TbcatB have also been reported, though these compounds are more potent on rhodesain and
again no correlation between enzyme inhibition and cell-based activity was observed [129].

The roles of several other protease classes in the biology of the parasite have recently been
described. A bacterial-like HsIVU protease that has ATP-dependent protease activity is
localized to the mictochondria and is involved in replication of the kinetoplstid DNA,
playing a role that is novel to the parasite [130]. Knockdown of this gene caused a
significant growth defect. A family of surface metalloproteases have been identified with a
role in cleavage of VSG from the parasite surface during transformation from blood form to
procyclic form, though none appear essential on their own [131], and a family of
metacaspases was identified to associate with RAB11-endosomes, though they have no role
in programmed cell death and individually are not essential [132].

Tubulin
Disruption of microtubule assembly in T. brucei through interference with tubulin
polymerization by benzimidazoles and dinitroaniline herbicides has been shown to inhibit
parasite growth [133]. Due to the ubiquitous nature of tubulin in both the parasite and the
mammalian host, selectivity for inhibition of parasite microtubule assembly is key to
successful progression of compounds working by this mechanism. One class of molecules
that has been extensively explored and appears to meet this requirement is the 3,5-
dinitrosulfanilamides. Starting with the known herbicides trifluralin and oryzalin, Werbovetz
and co-workers developed a series of dinitrosulfanilimides that demonstrated high potency
versus T. brucei and low cytotoxicity (Table 5) [134, 135, 136]. As expected from their
mode of action, these compounds demonstrated antimitotic effects on cultured T. brucei as
assessed by flow cytometry, but the most potent compounds were not active in a HAT
murine model.

Metabolic instability was hypothesized as a reason for the lack of in vivo activity [137], and
more recent efforts are directed at finding metabolically stable analogs, with only limited
success [138]. A second area of concern, the potential mutagenicity of dinitro aromatics, has
also been addressed, with preliminary results suggesting that the two nitro groups can be
replaced by cyano with retention of anti-trypanosomal activity [139]. Finally, a related, but
independently discovered series of 2,4-dinitro-6-trifluoromethyl aniline derivatives has been
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described which exhibit selective binding to trypanosomal α-tubulin relative to the
mammalian protein [140].

Identification of Trypanocidal Compounds Through Whole Cell Assays
A complimentary and useful approach to the discovery of effective trypanocidal compounds
that does not depend upon knowledge of the biochemical target has been evaluation of
compounds by whole cell growth inhibition assay. The most commonly employed variant of
this assay uses the fluorescent oxidation-reduction reagent Alamar Blue as an indicator of
trypanosome viability [141]. Alternatively, an ATP-bioluminescence approach which
correlates ATP release from trypanosomes with parasite viability has been reported [142].
Recent advances in liquid handling robotics have facilitated development of high-throughput
assays in 96, 384 and 1536-well plate formats in both modes, which has enabled screening
of large compounds libraries for starting points for chemical optimization.

Diamidines
Aromatic diamidines related to the clinically important drug for Stage 1 HAT, pentamidine,
have been extensively explored for potential new compounds that might exhibit superior
potency and lowered toxicity, and SAR for members of this series has been reviewed [16,
143]. Emerging from these efforts was the candidate drug DB289, which was progressed to
clinical trials based on efficacy in both murine and non-human models of HAT [15, 144].
Unfortunately, clinical development of DB289 was terminated in 2008 due to safety
concerns.

Numerous variants of the core region in the diamidine series have been reported in the past
several years that seek to reduce the cytotoxicity observed in earlier candidates including
phenoxymethylaromatic [145], 2-phenylbenzofuran [146], triaryl [147], imidazopyridine
[148], thiophene [149], bis-benzofuran [150]and 3,5-diphenyloxazole [151] analogs. One
strategy that was somewhat effective in this regard was the introduction of an N-isopropyl
amidine, which although it reduced potency against T. brucei, reduced cytotoxicity to a
greater extent (Figure 12A). A second area of focus in the diamidine series has been on
preparation of analogs and potential pro-drugs that could provide orally active compounds.
This work has continued to focus on utilization of O-methylamidoximes (Figure 12B) [148,
152].

Lipophilic Amines
Several chemotypes have been identified, and SAR developed based on whole cell assays,
for polycyclic amine scaffolds (Figure 13A)[153–157]. The aminoadamantane derivatives
originated from the observation that rimantidine exhibited activity against bloodstream form
of T. brucei in vitro. Early SAR studies in this series demonstrated some improvements in
activity in vitro, but compounds evaluated in vivo were able only to suppress the rate of T.
brucei infection and did not cure. More recently, analogs which sought to capitalize on the
relationship between lipophilicity and potency have been described [156, 158].

The 4-aminobicyclo[2.2.2]octan-2-one and 4-aminobicyclo[2.2.2]octan-2-ol derivatives
were synthesized, evaluated against a range of parasites (L. donovani, P. falciparum, T. cruzi
and T. brucei) and were found to be active against the T. b. rhodesiense STIB 900 strain
[159]. Subsequent publications have explored the SAR of the series, particularly ester and
ether analogs of the bicyclo[2.2.2]octanols [160, 161]. A general dependence of activity on
lipophilicity was noted, but this improvement in potency was accompanied by a loss of
selectivity. Additionally, dialkylamino-substituted esters of the bicyclo[2.2.2]octanols have
demonstrated good in vitro potency and low cytotoxicity [153, 162]. (Table 6)
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A variety of semithiocarbazone [160], oxime [163] and amino derivatives[164] at the 2-
position of the bicyclo[2.2.2]octanones have also been evaluated. Most interesting amongst
these are the 2-amino analogs, which exhibit good potency (IC50 < 1 µM) and selectivity
(S.I.> 100). The third related class of polycyclic amines are the 2-azabicyclo[3.2.2]nonanes
(Figure 13B). This ring-expanded variant of the bicyclo[2.2.2] octanes was synthesized by
Beckmann rearrangement of the oxime derivatives described earlier. While the lactam
derivatives obtained from this rearrangement were only weakly active, reduction to the
diamines afforded compounds with improved potency and selectivity [165]. Substitution on
the 2-aza nitrogen in the bicyclo[3.2.2]nonane generally resulted in loss of potency, which
prompted exploration of substituted aryl rings as a means to further improve potency (Table
7)[154]. These efforts have culminated in the identification of several 4-substituted
derivatives with excellent in vitro potency and selectivity. Representative compounds from
the 4-aminobicyclo[2.2.2]octan-2-ol, 4-aminobicyclo[2.2.2]oct-2-ylamines and 2-
azabicyclo[3.2.2]nonanes have been evaluated in mice, where they demonstrated
prolongation of survival, but have not cure of T. brucei infection [157].

Miscellaneous Natural and Synthetic Compounds
Using whole cell screening approaches, a number of natural products and synthetic
compounds have been identified in the past several years as potential starting points for
discovery of anti-trypanosomal agents. For example, synthesis of a library of 2-aryloxy
anthra- and naphtha-quinones designed to incorporate features of the natural product
lapachol and biocide triclosan [166] afforded a number of analogs with high potency and
modest selectivity (Table 8) [167]. From the same laboratory, a series of 3,5-
disubstituted-2H–pyrazoles and isoxazoles were synthesized and found to be active vs. T. b.
rhodesiense (Table 9) [168].
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Figure 1.
Current clinically used drugs for the treatment of HAT.
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Figure 2.
Polyamine biosynthetic pathway in T. brucei.
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Figure 3.
Active site of ODC bound to eflornithine. Select residues within 4Å of eflornithine-PLP are
displayed. Eflornithine binds in the dimer interface; subunit A (green), subunit B (pink),
eflornithine (magenta) and the cofactor pyridoxal 5’-phosphate (yellow). Nitrogen atoms are
blue, oxygen red, sulfur yellow and phosphate orange. The figure was generated in PyMol
[170] using the pdb coordinate file 2TOD.
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Figure 4.
Identified lead inhibitor series for AdoMetDC and TrpSyn
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Figure 5.
Glycolysis pathway of T. brucei.
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Figure 6.
Lonidamine, an inhibitor of TbHK1.
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Figure 7.
Inhibitors of T. brucei fructose-1,6-bisphosphate aldolase.
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Figure 8.
Natural product fatty acid biosynthesis inhibitors.
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Figure 9.
Inhibitors of trypanosomal N-myristoyltransferase.
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Figure 10.
Tetrahydroquinoline protein farnesyltransferase inhibitors.
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Figure 11.
Hesperadin
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Figure 12.
A. Effect of N-isopropyl amidines on Selectivity Index. B. O-Methylamidoxime prodrugs of
Diamidines.
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Figure 13.
A. Trypanocidal polycyclic amines. B. Trypanocidal bicyclo[3.2.2] nonanes.
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Table 1

Current Drugs for the treatment of HAT

Drug Use Limitations Mechanism of
action

Dosing

Suramin T. b. rhodesiense
early stage only

Does not cross
the blood brain
barrier; toxicity

unknown IV injection 100- 200
mg test dose then 1 g
given on days 1, 3, 7,
14 and 21

Pentamidine T. b. gambiense, early
stage only

Does not cross
the blood brain
barrier

unknown IM injection in single
doses of 4.0 mg/kg per
day for 7 days

Melarsoprol Late Stage T. b
rhodesiense; Late
stage T. b. gambiense
if eflornithine is
unavailable

Severe toxicity
– causes
reactive
enceplapthy
resulting in
death in up to
6% of patients

unknown T.b. rhodesiense, 3
series of 3 daily doses
IV with a 7 day rest
period in between: 1.8,
2.7 and 3.6 mg/kg on
days 1, 2, and 3
respectively with
subsequent series at 3.6
mg/kg daily; T. b.
gambiense, 2.2
mg/kg/day IV for 10
days

Eflornithine Late state T. b
gambiense

Not effective
against T. b
rhodesiense;
difficult dosing
regime
requiring
prolong i.v.
administration

Mechanism
based inhibitor
of ornithine
decarboxylase

400 mg/kg/day in
divided doses IV every
6 h for 14 days

Nifurtimox/
Eflornithine
(NECT)

Late stage T. b
gambiense

Not effective
against T. b
rhodesiense

MOA of
nifurtimox –
activated by a
NADH-
dependent
mitochondrial
nitroreductase
leading to the
generation of
intracellular
free
radicals[169]

eflornithine 400 mg/kg/
day IV in divided doses
every 12 h for 7 days
and nifurtimox 15
mg/kg/day orally every
8 h for 10 days
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Table 2

Targets for the development of new drugs for HAT

Pathway Enzymes Validation Status

Polyamine
biosynthesis

ODC, AdoMetDC Genetic and
chemical

AdoMetDC – Lead
optimization

Trypanothione
biosynthesis

TryRed, TSHSyn Genetic and
chemical

Hit to Lead

Energy
Metabolism/glycolytic
enzymes

Hexokinase,
Phosphoglucose
isomerase,
phosphofructokinase,
fructose-1,6-
bisphoshate aldolase;
phosphoclycerate
kinase; enolase

Genetic and
chemical

PFK – Hit to Lead
Aldolase – Hit
identification

Purine and Pyrimidine
metabolism

DHFR-TS, pteridine
reductase, cytidine
triphosphate
synthetase

Genetic and
chemical

DHFR-TS – Hit to
Lead

DNA modification DNA topoisomerases Genetic and
chemical

Topo – Hit
identification

Fatty acid
biosynthesis/utilization

Elongases, N-
myristoyltransferase

Genetic and
chemical

NMT – Hit to Lead

Sphingolipid
biosynthesis

Sphingolipid
synthase

Genetic

Protein modification Prenylation Genetic and
chemical

PFT – Lead
optimization

Protein modification Kinases Genetic and
chemical

GSK3 – Hit to Lead

Protein modification Proteases (TbCatB) Genetic and
chemical

Hit identification
and validation

tubulin Tubulin assembly Genetic and
chemical

Hit identification
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Table 3

2,5-anydro-D-mannitol Derivatives as TbPFK inhibitors.

R1 R2 TbPFK
IC50 (µM)

T. brucei S427
IC50 (µM)

-CH2OH 3,4-dichlorobenzyl 410 130

-CH2OH tetrahydronaphth-1-yl >5000 830

-CONH(3,4-
dichlorobenzyl)

3,4-dichlorobenzyl 23 30

CONH(cycloheptyl) 3,4-dichlorobenzyl 80 35
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Table 4

Activity of GSK-3 focused inhibitors on TbGSK3 and T. brucei

R1 TbGSK3 IC50
(nM)

T.brucei EC50
(nM)

4 50

30 65

46 200

22 410

30 460
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R1 TbGSK3 IC50
(nM)

T.brucei EC50
(nM)

170 710
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Table 6

Bicyclo[2.2.2]octanol derivatives.

R1 NR2R3 T. b. rhod.
EC50 (µM)

L6 cytotox
EC50 (µM)

Selectivity
Index

H NMe2 3.0 130 45

MeCO- NMe2 4.75 NT NC

tBuCO- NMe2 0.62 5.1 8.1

4-MeOC6H4CO- NMe2 1.5 7.3 4.8

C6H5CH2- pyrrolidinyl 1.3 7.1 5.4

Et2NCH2CO- NMe2 0.61 30 49

2-pyrrolidinylacetyl- NMe2 0.21 33 160

2-pyrrolidinylacetyl- pyrrolidinyl 0.23 43 190

2-(4-
piperazinyl)acetyl- NMe2 0.13 40 310

3-
pyrrolidinylpropionyl- NMe2 0.076 26 340

3-
pyrrolidinylpropionyl- pyrrolidinyl 0.12 22 180
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Table 8

Anti-trypanosomal 2-aryloxy-1,4-anthraquinones and 1,4-napthoquinones.

Template R T. b. rhod.
EC50 (µM)

L6 Cytotox
EC50 (µM)

Selectivity
Index

A 2,4-Cl2 0.065 0.49 31

A 2-Br, 4-F 0.08 1.1 14

A H 0.05 1.0 20

B 2,4-Cl2 0.29 5.2 18

B 2,4-
(CH3)2 0.22 5.3 24

B 2,4-Br2 0.51 29 74
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