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The various splice variants of the three SERCA- and the two SPCA-pump genes in higher ver-
tebrates encode P-type ATPases of the P2A group found respectively in the membranes of the
endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent
the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy termi-
nus imposing a higher affinity for cytosolic Ca2þ compared to the other SERCAs. This is medi-
ated by intramembrane and luminal interactions of this extension with the pump. Other
known affinity modulators like phospholamban and sarcolipin decrease the affinity for
Ca2þ. The number of proteins reported to interact with SERCA is rapidly growing. Here,
we limit the discussion to those for which the interaction site with the ATPase is specified:
HAX-1, calumenin, histidine-rich Ca2þ-binding protein, and indirectly calreticulin, cal-
nexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as
transporters of Ca2þ, but also of Mn2þ, is also addressed.

All cells invest a considerable part of their
total energy budget in active transport to

keep up transmembrane (TM) ion gradients
(Rolfe and Brown 1997). Prokaryotes already
evolved P-type ion-transport ATPases/ion
pumps to that aim (Axelsen and Palmgren
1998). The name P-type refers to the transient
transfer of the g-phosphate group of ATP to a
highly conserved aspartate group in the enzyme
forming a phospho-intermediate. This auto-
phosphorylation is an important step in the
pump’s catalytic cycle (Kuhlbrandt 2004).
Based on amino-acid sequence comparisons
and on the exon/intron layout of the corre-
sponding genes, three types of P-type Ca2þ

pumps can be discerned in Eumetazoa: the
SERCA-, the SPCA-, and thePMCA-type. Where-
as ancestral representatives of each type are
recognized in some Eubacteria and Archaea, it
is also remarkable that some Eukaryotes have
apparently lost either SERCA or SPCA pumps.
Yeast for instance lacks SERCA pumps whereas
plants thrive well without SPCAs (Mills et al.
2008). The SERCA pumps, which are found in
the endoplasmic reticulum (ER) or in the sar-
coplasmic reticulum (SR) of eukaryotic cells
and the evolutionary older secretory pathway
ATPases (SPCA) found in the Golgi apparatus,
are closely related to each other and together
belong to the P2A subfamily. They form the
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topic of this review. The plasma-membrane
Ca2þ-pumps (PMCA), on the other hand,
appear to be phylogenetically the oldest of the
three and form the P2B-subfamily branch.
PMCAs are addressed in an article by Brini
and Carafoli (2009). Some further information
on the evolution of the three types of ATPases
was recently reviewed by Palmgren and Axelsen
(1998) and Vangheluwe et al. (2009). Of the
three families, only SERCA pumps translocate
two Ca2þ ions and hydrolyze one ATP for each
catalytic turnover. They possess two Ca2þ-
transport sites: site I and site II; the numbers
specify the sequence of filling of the respective
sites. The single Ca2þ-binding site of the SPCA
and PMCA pumps structurally corresponds to
site II of SERCA (Toyoshima 2009).

THE UBIQUITOUS SERCA2 Ca2þ PUMP

SERCA2 Splicing Variants

Vertebrates generate multiple SERCA isoforms
as a result of alternative processing of the
transcripts of three paralogous SERCA genes
(ATP2A1-3) (Brini and Carafoli 2009). Inverte-
brates typically have only a single SERCA gene
that is orthologous to the vertebrate housekeep-
ing SERCA2. The two major vertebrate SERCA2
protein isoforms are the housekeeping SER-
CA2b and the more specialized SERCA2a
isoform. The latter is found in slow skeletal
muscle and cardiac muscle, but is also expressed
in lower amounts in smooth muscle and in
neuronal cells (Vandecaetsbeek et al. 2009a).
Recently novel SERCA2c (Dally et al. 2006)
and SERCA2d (Kimura et al. 2005) isoforms
were discovered in the heart, but are expressed
at low levels and their physiological meaning
remains to be further explored.

Physiological Role of SERCA2

The housekeeping SERCA2b Ca2þ pump serves
a dual role. By translocating Ca2þ from the
cytosol into the lumen of the ER, it restores
the cytosolic Ca2þ concentration to its low
resting level (circa 100 nM). At the same time,
SERCA2b maintains a sufficiently high (circa

500 mM) luminal ER Ca2þ concentration. The
ER not only serves as a useful Ca2þ store for
the release of Ca2þ that activates an impressive
number of cellular activities (e.g., contraction,
fertilization, insulin release, etc.) but it also
creates the luminal environment necessary for
almost all local enzyme activities (such as
protein folding and synthesis of lipids and ste-
roids) and that controls cell fate (proliferation,
apoptosis, growth, or differentiation) (Wuytack
et al. 2002).

The muscle variant SERCA2a removes the
Ca2þ stimulus for contraction by pumping
myoplasmic Ca2þ into the SR and thereby
determines the Ca2þ load of the SR, which in
turn determines the amount of Ca2þ that can
be released for the next contraction. Together,
SERCA2a is a major determinant of the speed
and force of cardiac contraction and relaxation
(Periasamy and Huke 2001). SERCA2 expres-
sion is reduced in end-stage heart failure,
contributing to an impaired contractility of
the heart (Hasenfuss et al. 1994).

Ablation in mice of the two Atp2a2 alleles is
incompatible with life (Periasamy et al. 1999).
But in light of the central role SERCA2a exerts
in the heart, it is quite surprising that in an
inducible cardiac-specific knock-out mouse
model at 4 weeks following Atp2a2 gene dele-
tion, cardiac function remained near normal
in spite of the drop of the myocardial SERCA2
levels below 5% of controls (Andersson et al.
2009). However, end-stage heart failure devel-
oped at 7 weeks. These results show the remark-
able power of a compensatory (albeit ultimately
failing) response to such a major acute re-
duction in SERCA2 function (Andersson et al.
2009). The effect of heterozygous knock-out
of Atp2a2 in mice is also paralleled by com-
pensatory responses, with only slight impact
on cardiac contractility and relaxation without
eliciting cardiac disease (Periasamy et al. 1999;
Ji et al. 2000). With age, these heterozygotes
are prone to develop squamous cell tumors,
which supports the notion that altered Ca2þ

homeostasis plays a significant role in cancer
(Liu et al. 2001; Prasad et al. 2005). Likewise,
humans lacking one functional ATP2A2 allele
do not develop cardiomyopathy (Tavadia et al.
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2001), but the effect of reduced Ca2þ uptake
activity is manifested in keratinocytes, where it
triggers the onset of the skin disorder of Darier
(Sakuntabhai et al. 1999).

Whereas previous studies suggest that
changes in SERCA2 expression levels are rea-
sonably well tolerated in the heart (Ji et al.
2000; Tavadia et al. 2001), other studies point
to a more critical regulation of the apparent
affinity of the Ca2þ pump for cytosolic Ca2þ

ions (MacLennan and Kranias 2003; Vande-
caetsbeek et al. 2009a; Sipido and Vangheluwe
2010). For normal cardiac function, the affinity
of SERCA2a in the cardiac SR needs to be con-
trolled within a tight window (Vangheluwe et al.
2005a; Vandecaetsbeek et al. 2009a). Genetic
manipulations in mouse that lead to the expres-
sion of the high Ca2þ-affinity variant SERCA2b
in the cardiomyocyte instead of the normal
SERCA2a, triggers cardiac hypertrophy and
heart failure (Ver Heyen et al. 2001; Vangheluwe
et al. 2006b). Likewise, in humans (Haghighi
et al. 2003), but not in mice (Luo et al. 1994),
the increased Ca2þ affinity resulting from the
absence of phospholamban (PLN, i.e., an affin-
ity modulator of the pump, discussed below)
triggers heart failure (Haghighi et al. 2003).
On the contrary, a chronic reduction in the
Ca2þ affinity triggered by a higher activity of
PLN is also associated with dilated cardiomyop-
athy in humans (Haghighi et al. 2001; Schmitt
et al. 2003; Haghighi et al. 2006).

The Ca2þ-Pumping Mechanism

Ten years ago, the first high-resolution crystal
structure of the fast-twitch skeletal-muscle
isoform SERCA1a was published (Toyoshima
et al. 2000). Since then, we have been spoilt by
high-resolution crystal structures of SERCA1a
in nine different conformations, yielding de-
tailed molecular insights of the Ca2þ-pumping
process (reviewed in Moller et al. 2005; Toyosh-
ima 2008; Toyoshima 2009). In addition, struc-
tures of other archetypical P-type ATPases
(Naþ/Kþ-ATPase [Morth et al. 2007; Shinoda
et al. 2009] and Hþ-ATPase [Pedersen et al.
2007]) were reported. The basic structure of
these P-type ATPases is very well conserved,

even if the overall sequence similarity is low
(Fig. 1). Three cytosolic domains can be recog-
nized in the P-type ATPases: a nucleotide-
binding (N), phosphorylation (P), and actuator
(A) domain (Fig. 1). ATP binds on the N-
domain, whereas the P-domain drives ATP
hydrolysis leading to phosphorylation of a
highly conserved aspartate in the P-domain.
The A-domain then contains a conserved gluta-
mate that catalyzes the dephosphorylation of
the P-domain (Kuhlbrandt 2004; Vangheluwe
et al. 2009). The large headpiece is intimately
connected with and partially embedded in the
TM region that contains the ion-binding sites.
This connection assures tight coupling between
ATP hydrolysis in the cytosolic domains and ion
transport across the membrane. Surprisingly,
the overall structure of the TM region is also
highly conserved with only subtle differences
accounting for ion specificity (Gadsby 2007).
The accessibility of the TM Ca2þ-binding sites
in SERCA1a is controlled by both a cytosolic
and a luminal gate, which are under control of
the phosphorylation and dephosphorylation
events, respectively, in the headpiece (Moller
et al. 2005; Toyoshima 2008; Toyoshima 2009).
Moreover, a feedback mechanism associated
with ion binding guarantees that ATP hydrolysis
can only occur when ions are bound. This tight
coupling assures that first the cytosolic gate
closes and Ca2þ ions are occluded before ATP
hydrolysis and opening of the luminal gate
can occur (Moller et al. 2005; Toyoshima
2008; Toyoshima 2009). This allows Ca2þ ions
to be pumped against an almost 10000-fold
gradient across the ER/SR membrane (Toyosh-
ima 2009).

Structure of the Ubiquitous
SERCA2b Pump

Although the ubiquitous SERCA2b pump
shares an overall 85% sequence identity with
SERCA1a, which points to a common Ca2þ-
pumping mechanism (Toyoshima 2009), three
related properties discriminate the SERCA2b
isoform from SERCA1a or SERCA2a: the char-
acteristic two-fold higher affinity for cytosolic
Ca2þ ions, the lower maximal turnover rate
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and the presence of a unique carboxy-terminal
extension (2b-tail) comprising an additional
TM segment (TM11) and a luminal exten-
sion (LE) (Lytton et al. 1992; Verboomen et al.
1994; Dode et al. 2003; Vandecaetsbeek et al.
2009b). Functional measurements on SERCA2b
mutants and SERCA1a-2b chimeras revealed
that both of these regions contribute to the
functional effect of the 2b-tail (Verboomen
et al. 1994; Vandecaetsbeek et al. 2009b). Based
on the known SERCA1a crystal structures and
the solved NMR structure of TM11, a struc-
tural model for SERCA2b was proposed that is
backed up by extensive mutagenesis results
(see Fig. 1A in Vandecaetsbeek et al. 2009b). Ac-
cording to that model, TM11 is interacting with

TM7 and TM10 of the Ca2þ ATPase, a relatively
immobile part of the pump. A groove between
luminal loops L5-6 and L7-8 is opened at the
luminal side of TM11, for the descent of LE.
This displacement allows that the peptide con-
sisting of the last four, crucial amino-acids at
the pump’s carboxyl terminus (1039-MFWS)
reaches a luminal binding pocket that is formed
by the five luminal loops of the pump (Vande-
caetsbeek et al. 2009b). This intramolecular
interaction stabilizes the pump in the Ca2þ-
bound E1 conformation with high-affinity
binding sites facing the cytosol. Mathematical
modeling confirmed that this could explain
the increased apparent affinity for Ca2þ

(Vandecaetsbeek et al. 2009b). Moreover, the

Figure 1. Interesting structural similarities between SERCA2b and Naþ/Kþ-ATPase. (A) The PLN NMR struc-
ture (Seidel et al. 2008) and the carboxyl terminus of SERCA2b (Vandecaetsbeek et al. 2009b) modeled on the E2
crystal structure of rabbit SERCA1a (2AGV) (Obara et al. 2005). (B) Crystal structure of the pig renal Naþ/Kþ-
ATPase a-subunit (2ZXE) (Shinoda et al. 2009) in the E2 conformation, together with its regulatory b- and
g-subunits. Interesting similarities exist between the binding sites of the regulatory b- and g-subunits on the
Naþ/Kþ-ATPase and, respectively, the 2b-tail and PLN on the SERCA1a pump. Orange: A-domain; Blue: P-
domain; Green: N-domain; Gray: TM-domain. PLN, phospholamban; SLN, sarcolipin; 2b-tail, SERCA2b
carboxyl terminus.
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experimentally observed slower E1-P to E2-P
and E2-P to E2 transitions (Dode et al. 2003)
are tightly coupled to extensive rearrangements
of the proposed luminal docking site of the
2b-tail (Vandecaetsbeek et al. 2009b). How the
short TM11 a-helix alters the enzymatic prop-
erties at the distant and relatively immobile
TM helices TM7 and TM10, remains to be
clarified.

Regulators of the ER Ca2þ Pump

Given its central position in cellular Ca2þ

homeostasis, the activity of SERCA2 is prone
to tight regulation. At least a dozen of different
proteins were suggested to regulate SERCA2
activity (previously reviewed in Vangheluwe
et al. 2005a; Vandecaetsbeek et al. 2009a). This
suggests that as for the intracellular Ca2þ

channels inositol-1,4,5-trisphosphate receptor
(IP3R) or the ryanodine receptor (RyR) (Fos-
kett et al. 2007), SERCA2 might form a multi-
protein complex varying in composition in dif-
ferent cell types. However, because of its smaller
size and the requirement to undergo major
conformational changes during its enzymatic
cycle, formation of a macromolecular SERCA
complex is probably more restricted.

It is of some concern that studies on
the effect of putative SERCA modulators often
rely on overexpression, which on itself can
lead to ER stress via the unfolded protein
response (UPR) that includes up-regulation of
SERCA2b expression and activity (Caspersen
et al. 2000). In addition, the effect of these
modulators is almost never confined to SERCA
because they are nearly always part of the Ca2þ

signalome also affecting Ca2þ release channels.
Finally, direct interaction of these regulators
with the pump is often documented by im-
munoprecipitation, which for TM proteins
is technically very challenging. The thriving
literature of putative SERCA regulators should
therefore be viewed with caution as long as the
interaction site is not properly identified.
Here, we will only focus on those regulators
for which the binding site on the Ca2þ pump
is defined and well-documented (Fig. 2).

Phospholamban and Sarcolipin

The related small TM proteins PLN and sarcoli-
pin (SLN) are the best-studied regulators of the
SERCA pump (reviewed in MacLennan and
Kranias 2003; Vangheluwe et al. 2006a; Bhu-
pathy et al. 2007; Periasamy et al. 2008). In
contrast to the 2b-tail, these proteins interact
with the pump to reduce the apparent affinity
for cytosolic Ca2þ ions, which inhibits overall
Ca2þ transport (Lee 2003; MacLennan and Kra-
nias 2003). In vivo, PLN is mainly coexpressed
with SERCA2a in the heart, smooth muscle,
and slow-twitch skeletal-muscle fibers. During
the b-adrenergic response in cardiac muscle,
phosphorylation of PLN by protein kinase A
and/or Ca2þ-calmodulin kinase II (CaMKII)
promotes dissociation of the complex, which
reverses the inhibition of SERCA2a (reviewed
in MacLennan and Kranias 2003). Dissociated
PLN also exists in a stable but inactive, pen-
tameric state, which is promoted by phosphor-
ylation (Kimura et al. 1997). PLN-SERCA2a
dissociation causes a dramatic increase in SR
Ca2þ transport leading to improved cardiac
contraction and relaxation (Luo et al. 1994).
Studies in numerous PLN animal models fur-
ther showed its central role in cardiac contractil-
ity (reviewed in MacLennan and Kranias 2003).
Moreover, human PLN mutations leading to
either a chronic increase like L39stop (Haghighi
et al. 2003) or decrease like R14del (Haghighi
et al. 2006) or R9C (Schmitt et al. 2003) of
the apparent Ca2þ affinity of the pump trigger
the onset of dilated cardiomyopathy and heart
failure at a young age. In line with the effect of
the SERCA2a!b isoform switch (Vangheluwe
et al. 2006b), these studies further indicate
that regulating the Ca2þ affinity of the pump
is of vital importance to maintain normal car-
diac function and development (Vangheluwe
et al. 2006a). This appears to be more important
in humans than in mice (Haghighi et al. 2003;
MacLennan et al. 2003; Zhao et al. 2006).
More recent studies suggest that the regulation
of the pump by PLN phosphorylation is crucial
for maintaining some cardiac reserve to prevent
heart failure (Schmitt et al. 2009). This is in line
with an increased morbidity and mortality in
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heart failure patients with a lower response to
b-agonists (Wu et al. 2004; Kobayashi et al.
2008).

PLN inhibits the SERCA2a and SERCA2b
isoforms to the same extent (Verboomen et al.
1992), thus occupying a different affinity-regu-
lating site on the Ca2þ pump than the 2b-tail
(see Fig. 1A in Vandecaetsbeek et al. 2009b).
In fact, extensive crosslinking, site-directed mu-
tagenesis and structural modeling studies have
shown that residues in both the cytoplas-
mic and the TM portions of PLN are involved
in direct interaction with SERCA2a (Fig. 2B)
(James et al. 1989; Kimura et al. 1996; Asahi
et al. 1999; Asahi et al. 2001; Toyoshima et al.
2003). First proof of the direct interaction be-
tween SERCA and PLN came from a homo-
bifunctional crosslink between a lysine in the

N-domain of SERCA2a (in the region 397-
401) and a lysine in the cytosolic region of
PLN (K3) (James et al. 1989). To date, evidence
for at least three sites of close association
between SERCA1a and PLN was provided by
robust homobifunctional crosslinking: between
V89C positioned on TM2 of SERCA1a with
V49C (Toyoshima et al. 2003), between L321C
at the cytosol-membrane boundary of SER-
CA1a TM4 with N27C (Toyoshima et al.
2003), and between K328C in the cytosolic
domain with Q23C (Morita et al. 2008). Addi-
tional heterobifunctional crosslinks were ob-
served between the SERCA2a isoform and
PLN, but unexpectedly and in apparent contrast
with earlier studies, no such crosslinks were
observed involving K3 of PLN (Chen et al.
2003). Phosphorylation of PLN or high Ca2þ
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Figure 2. Interaction sites of different SERCA regulators. Different interaction sites are depicted on the crys-
tal structure of rSERCA1a in the E1 conformation (1SU4) (Toyoshima et al. 2000) (A) and in E2 (2AGV) (Obara
et al. 2005) (B). Note that PLN and SLN only interact in E2, and the 2b-tail predominantly in E1, and therefore
are only depicted in the respective conformations. CALU, Calumenin; PLN, phospholamban; SLN, sar-
colipin; HAX-1, HS1-associated protein; CRT, calreticulin; CLNX, calnexin; ERp57, endoplasmic reticulum
thiol-disulfide oxidoreductase; HRC, histidine-rich Ca2þ-binding protein; 2b-tail, SERCA2b carboxyl
terminus.
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concentrations lead to the (partial) dissocia-
tion of the PLN-SERCA2a complex preventing
crosslinking (Chen et al. 2007; Morita et al.
2008). Together, these studies showed that the
interaction of the PLN TM region occurs in a
hydrophobic cleft only present in the Ca2þ-free
E2 conformation that is formed by TM2,4,6,9
(Toyoshima et al. 2003). This interaction occurs
at the border between the highly mobile
(TM1-6) and the immobile (TM7-10) parts of
the pump and inhibits the closing of the cleft
during the transition from E2 to E1. The pro-
found effect of PLN phosphorylation on the
functional and physical interaction with the
Ca2þ pump already indicates that the cytosolic
interaction with the N-domain could be equally
important. This is further corroborated by the
functional effect of mutating the cytosolic
domain of PLN (reviewed in MacLennan et al.
2003). Phosphorylation would partially un-
wind the cytosolic region, indicating an order-
to-disorder transition (Metcalfe et al. 2005;
Karim et al. 2006), which would prevent more
distant interactions such as a crucial H-bridge
between R324 and Q26 (Traaseth et al. 2006;
Traaseth et al. 2008). Together this would loosen
the interaction or even cause a complete dis-
sociation of the PLN-SERCA2a complex.

Although several lines of evidence indicate
that monomeric PLN is the active species
(Kimura et al. 1997), recent structural observa-
tions indicate that PLN pentamers might also
interact with the pump, although at a different
site (close to TM3) than the monomer. It re-
mains unknown whether this serves a physio-
logical function (Stokes et al. 2006).

SLN appeared to act as the functional coun-
terpart of PLN in fast-twitch skeletal-muscle.
But SLN is also found together with PLN in
the atria of the heart (Minamisawa et al. 2003;
Vangheluwe et al. 2005b; Babu et al. 2007a),
where it modulates the activity of the SERCA2a
pump and is under control of b-adrenergic
stimulation (Babu et al. 2007b), presumably
via CaMKII-dependent phosphorylation of T5
(Bhupathy et al. 2009). By analogy, the conser-
vation in sequence, structure and dynamics
between SLN and PLN suggest that SLN would
fit into the same hydrophobic groove as PLN

having similar regulatory properties (Traaseth
et al. 2008). The aromatic residues of the highly
conserved luminal extension RSYQYof SLN are
functionally relevant (Odermatt et al. 1998) and
would interact with aromatic residues on the
face of luminal loop L1-2 of SERCA (possibly
with the side chains of F73, W77, F88 or F92),
opposite to that which constitutes the luminal
interaction site of the 2b-tail (Fig. 2) (Hughes
et al. 2007). TM1 undergoes a strong upward
movement during the enzymatic cycle, which
might be affected by this interaction. Notably,
this SLN luminal tail is also crucial for proper
integration of SLN in the membrane (Gramo-
lini et al. 2004).

PLN and SLN would fit together side-by-
side into the same TM cleft TM2,4,6,9, leading
to a tighter functional interaction (Fig. 2B)
(Asahi et al. 2003). This would explain the
super-inhibitory properties of the PLN-SLN
heterodimers observed in vitro (Asahi et al.
2002). Given the functional importance of the
cytosolic domain of PLN and luminal extension
of SLN, an additional stabilization of the com-
plex might arise from their combined inter-
action with the pump (Hughes et al. 2007). So
far, there is no clear evidence for this super-
inhibition under physiological circumstances
in the atria of the heart where both SERCA
regulators are found (Bhupathy et al. 2007; Peri-
asamy et al. 2008; Vandecaetsbeek et al. 2009a).

Surprisingly, the proposed positions of the
2b-tail and PLN/SLN on the Ca2þ pump strik-
ingly mirrors the observed interaction site of
the Naþ/Kþ-ATPase b- and g-subunits (Fig.
1) (Toyoshima et al. 2003; Morth et al. 2007;
Vandecaetsbeek et al. 2009b). Although these
modulators evolved independently from each
other, they seem to occupy similar binding sites
on the corresponding pump sharing similar
molecular mechanisms. In all cases, the func-
tional effect is related to a combined interaction
of a TM region and luminal or cytosolic exten-
sions with the pump, which might stabilize one
of the conformational intermediates of the
enzyme (Vandecaetsbeek et al. 2009b). Notably,
the site of interaction of the g-subunit was
determined from the E2 Naþ/Kþ-ATPase crys-
tal structure (Morth et al. 2007; Shinoda et al.
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2009), but in contrast to earlier modeling of
PLN on SERCA1a (Toyoshima et al. 2003) and
the g-subunit on Naþ/Kþ-ATPase (Li et al.
2004), the binding occurs on TM9, at the out-
side of the proposed cleft.

Antiapoptotic Proteins HAX-1 and Bcl-2

The HS1-associated protein HAX-1 (35 kDa) is
an integral membrane protein normally resid-
ing in the outer mitochondrial membrane
(Suzuki et al. 1997; Vafiadaki et al. 2009b). It
interacts with a multitude of proteins. It was
proposed that depending on the available in-
teraction partners, the subcellular localization
and functional properties of HAX-1 might
vary among different tissues (Vafiadaki et al.
2009b). Recently, PLN was identified via yeast
two-hybrid screen and GST-pull-down experi-
ments as a novel interaction partner of HAX-1
(Vafiadaki et al. 2007). The site of the HAX-1
and PLN interaction is well documented and
is confined to the regions 203-245 of HAX-1
and 16-22 of PLN, overlapping with the PLN
phosphorylation sites (Vafiadaki et al. 2007).
The direct association between HAX-1 and
PLN was further established in vivo (Zhao
et al. 2009). HAX-1 serves an inhibitory role
on basal contractility of the heart by stabilizing
the PLN monomers and lowering the apparent
Ca2þ affinity of SERCA2a. Notably, this effect
is reversed during b-adrenergic stimulation
(Zhao et al. 2009).

The HAX-1 GST-pull-down experiments
also detected SERCA2a, which implies that
PLN can interact simultaneously with HAX-1
and SERCA2a, notably with similar binding
affinities (KD of 0.70mM and 1mM, respectively
(Kimura and Inui 2002; Vafiadaki et al. 2007).
The HAX-1 interaction is confined to residues
575-594 in the SERCA2 N-domain, enclosing
an accessible and highly conserved loop, on the
opposite site of the proposed cytosolic PLN
interaction region 397-401 (Fig. 2) (Vafiadaki
et al. 2009a). Whether this interaction also
occurs in the physiological setting of the heart
remains to be investigated.

The preferential mitochondrial localization
of HAX-1 in HEK-293 cells can be changed to

an ER distribution on cotransfection with
PLN (Vafiadaki et al. 2007), but not on cotrans-
fection with SERCA1a or SERCA2 (Vafiadaki
et al. 2009a). Interaction of HAX-1 in the outer
membrane of the mitochondria and with
the ER-based SERCA could be possible at the
ER-mitochondrial nexus sites, which are con-
sidered crucial for eliciting apoptosis. HAX-1
overexpression in HEK-293 cells results in a
posttranscriptional downregulation of SERCA2
protein levels. The resulting lower ER Ca2þ con-
tent could explain the antiapoptotic role of
HAX-1 (Vafiadaki et al. 2009a). In addition,
because of its association with PLN and
SERCA2 on one hand, and interaction with
caspase-9 on the other hand, HAX-1 might
link two Ca2þ-regulated processes in the heart:
contractility and cell survival (Han et al. 2006).

These observations on HAX-1 are remark-
ably parallel to the effects of Bcl-2, another
antiapoptotic protein (reviewed in Vafiadaki
et al. 2009b; Vandecaetsbeek et al. 2009a).
Bcl-2 is also located in the mitochondria and
can be found in the ER, where it is able to in-
teract with SERCA2. However, the putative
interaction site of Bcl-2 on the pump remains
to be defined, and how Bcl-2 affects ER Ca2þ

reuptake remains somewhat controversial. Ex-
perimental evidence supports different alter-
natives: a) the interaction between SERCA
and Bcl-2 inactivates the pump, presumably
by destabilizing the protein (Dremina et al.
2004), b) Bcl-2 would regulate the SERCA
expression levels (Kuo et al. 1998; Vanden
Abeele et al. 2002), and c) Bcl-2 could inactivate
SERCA by extraction of the ATPase from
caveolae-related domains in the SR (Dremina
et al. 2006).

SERCA Complexes Involving Luminal Proteins
Calreticulin, Calnexin, and ERp57

Two of the earliest proposed SERCA2b interac-
tors are the lectin molecular chaperones: the
46-kDa ER luminal Ca2þ-binding calreticulin
(CRT) and its 90-kDa homolog the type-I ER
integral protein calnexin (CLNX). Both pro-
teins contain a globular N-domain involved
in glucose or oligo-saccharide binding, an
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extended P-domain mediating ERp57 binding
and an acidic Ca2þ-binding C-domain (Micha-
lak et al. 2009). The C-domain of CRT can bind
25 mol of Ca2þ with low (2 mM) affinity
(Baksh and Michalak 1991) and thus CRT com-
plexes over half of all ER luminal Ca2þ. Luminal
Ca2þ buffering by CLNX is much less pro-
nounced because it contains much less Ca2þ-
binding sites and its acidic carboxyl terminus
protrudes into the cytosol. The direct interac-
tion between these luminal ER Ca2þ buffers
and the Ca2þ pump and release channels might
represent an elegant feed-back system that con-
trols ER Ca2þ filling (John et al. 1998; Roderick
et al. 2000).

According to some early reports Ca2þ-
loaded CRT or CLNX would interact with the
N-linked carbohydrates inserted on residues
1035-NFS in the isoform-specific luminal
extension of SERCA2b (Fig. 2A) (John et al.
1998). Although this is a consensus N-glycosy-
lation site (N1035), glycosylation was never
experimentally observed (John et al. 1998;
Roderick et al. 2000; Vandecaetsbeek et al.
2009b). The lack of glycosylation does however
not a priori exclude CLNX or CRT binding
to SERCA because these ER chaperones can
occasionally also bind nonglycosylated targets
(Roderick et al. 2000; Ireland et al. 2008). The
interaction with CRT or CLNX would exert an
inhibitory effect on the Ca2þ-wave propagation
in Xenopus oocytes (John et al. 1998; Roderick
et al. 2000). However, mutants in this site retain
normal Ca2þ-dependent ATPase-activity when
overexpressed in COS cells (Vandecaetsbeek
et al. 2009b). According to the SERCA2b molec-
ular model, the 2b-tail is buried in luminal
loops of the pump making its interaction with
other proteins less likely (Vandecaetsbeek et al.
2009b).

ERp57, a member of the PDI family with
thio-oxidoreductase activity catalyzing disul-
fide-bond formation of glycoproteins (Ni and
Lee 2007) is recruited into the SERCA2b-
chaperone complex and establishes a disulfide
bridge between C875 and C887 in L7-8 of
SERCA2 (Fig. 2) (Li and Camacho 2004).
According to the proposed model, SERCA2
with an oxidized loop (S-S bridge is present)

would be inhibited and remain so as long as
ERp57 is bound (Li and Camacho 2004). The
conclusion that reduced C875 and C887 in
L7-8 are required for full SERCA2 activity is dif-
ficult to reconcile with the observation that
mutations of either or both of the cysteine resi-
dues resulted in a loss of transport without loss
of Ca2þ-dependent ATPase activity in SERCA1
(Daiho et al. 2001). Note that these cysteine res-
idues are conserved in SERCA1-3, and that
the C875G mutation is a known Darier mutant
(Ruiz-Perez et al. 1999). Finally, we want to
remark that ERp57 does not require interac-
tions with CLNX and CRT to recognize its sub-
strate (Zhang et al. 2009) and that CRT binds to
SERCA2a oxidatively damaged by H2O2 treat-
ment, which leads to SERCA degradation via a
proteasome-dependent pathway (Ihara et al.
2005).

SERCA-Calumenin Interaction

Calumenin (CALU; 50 kDa) is a ubiquitously
expressed protein, conserved from invertebrates
to vertebrates, which is found in the lumen of
the ER and SR (Sahoo et al. 2009). Because of
its nonconsensus ER-retention signal, the pro-
tein can escape from the ER and even be
secreted (Vorum et al. 1999). CALU belongs to
the CREC family, which members share multi-
ple EF-hand Ca2þ-binding motifs (Honore
2009). CALU binds in its Ca2þ-loaded form to
the luminal domain of SERCA2 and presum-
ably also the other SERCAs. GST-pull-down
experiments with the different luminal loops
of the pump showed that CALU interacts
with L7-8 of the ATPase (presumably region
853-892, Fig. 2), i.e., close to or overlapping
with the ERp57 interaction area, but apparently
on the other side of the 2b-tail interaction site.
CALU prefers the Ca2þ-bound E1 conforma-
tion of SERCA, and when bound decreases
the apparent Ca2þ affinity of the ATPase (Sahoo
et al. 2009). Overexpression of CALU in rat neo-
natal cardiomyocytes reduced SR Ca2þ uptake
and decreased fractional release. Thus, inter-
action with the ryanodine receptor RyR2 is
also suggested from these experiments. CALU
would be essential during the early stages of
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development, similar to other Ca2þ-binding ER
chaperone proteins like CRT, and ERp57. Much
lower levels of CALU than calsequestrin are
present in the adult heart.

Of note, the longest luminal loop L7-8 of
SERCA2 apparently is the interaction site of sev-
eral regulators (Fig. 2): the 2b-tail (Vandecaets-
beek et al. 2009b), ERp57 (Li and Camacho
2004) and CALU (Sahoo et al. 2009). Also, the
extracellular loop L7-8 of the Naþ/Kþ-ATPase
a-subunit is functionally interacting with the
extracellular region of the b-subunit (Morth
et al. 2007). The long L7-8 would predominantly
serve a regulatory function, because Ca2þ trans-
port is supported with a much shorter L7-8,
as in the closely related SPCA Ca2þ pump
(Vangheluwe et al. 2009). This loop may regulate
the Ca2þ-binding affinity of SERCA2 through
modulation of the Ca2þ-binding pocket in
TM8 (a true Ca2þ-affinity effect) or via stabili-
zation of an intermediate of the pump exerting
a kinetic effect on the apparent Ca2þ affinity
(Vandecaetsbeek et al. 2009b).

Histidine-Rich Ca21-Binding Protein

Another luminal Ca2þ-binding protein that
interacts with SERCA2 is the histidine-rich
Ca2þ-binding protein (HRC; 170 kDa), which
shows an inhibitory interaction with the lumi-
nal domain of SERCA2 where it binds to L1-2
(region 74-90, Fig. 2) (Arvanitis et al. 2007).
Note that this site potentially overlaps with the
binding site of SLN or the luminal extension
of the 2b-tail (Hughes et al. 2007). HRC binds
Ca2þ with high capacity, but low affinity (Hof-
mann et al. 1989; Picello et al. 1992). HRC
shares similarities with calsequestrin, the major
SR Ca2þ buffer protein, but is much less abun-
dant (1% of skeletal muscle SR) (Damiani et al.
1997; Pritchard and Kranias 2009). Using dif-
ferent regions HRC binds in a Ca2þ-dependent
manner with the SERCA pump and with tria-
din, which is part of the RyR Ca2þ-release com-
plex (Pritchard and Kranias 2009). If the Ca2þ

load in the SR is low, HRC would interact
with SERCA. If HRC becomes saturated with
Ca2þ, it dissociates from SERCA and inter-
acts with triadin to modulate Ca2þ release

(Arvanitis et al. 2007). This dual interaction
would ensure a cross-talk between SR Ca2þ

uptake and release in the heart (Pritchard and
Kranias 2009). However, the functional effect
of HRC on SERCA2a is less clear. Overexpres-
sion of HRC in mouse results in depressed car-
diomyocyte Ca2þ uptake (Gregory et al. 2006),
indicating that HRC would inhibit SERCA2
activity. The fact that such inhibition would
occur at low SR Ca2þ, when high activity should
be more appropriate to refill the SR, is some-
what counter-intuitive. Direct measurements
of SERCA activity and cardiomyocyte SR Ca2þ

handling in the presence and absence of HRC
are needed to clarify this further.

Other SERCA Isoforms

SERCA1

SERCA1 represents a highly specialized pump
isoform which, with the notable exception of
brown adipose tissue (de Meis 2003), that is, a
cell type embryologically closely related to
muscle (Enerback 2009), appears to be almost
exclusively expressed in fast skeletal muscle
fibers of all vertebrates from fish to mammals.
Expression of SERCA1 is spatially controlled
by the type of innervation the muscle fiber
receives (Hamalainen and Pette 1997). Humans
and some large animals tolerate the absence
of SERCA1 reasonably well as is seen in some
forms of human Brody myopathy (Odermatt
et al. 1996) and in congenital pseudomyotonia
in Chianina cattle (Drogemuller et al. 2008),
but the lack of SERCA1 is lethal in mice (Pan
et al. 2003) and zebra fish (Hirata et al. 2004).

The transcript of the ATP2A1 gene can be
processed into two different SERCA1 mRNAs
coding for an adult SERCA1a and for SERCA1b,
a form found only in neonatal or regenerating
muscle (Zador et al. 2007). In SERCA1b, a
highly-conserved octapeptide (-DPEDERRK)
replaces the carboxy-terminal Gly residue of
SERCA1a. The physiological and functional
relevance of this extension remains unknown
(Maruyama and MacLennan 1988; Zador et al.
2007). Insertion of the aberrant isoform into
the ER reduces the ER Ca2þ concentration and
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induces apoptosis (Chami et al. 2000; Chami
et al. 2001).

SERCA3

SERCA3 represents the last described and most
enigmatic member of the SERCA family. It
shows a limited cell-specific and differentia-
tion-stage dependent expression pattern and a
bewildering number of splice variants. At least
six different variants in human (SERCA3a-f )
are known, three in mice (SERCA3a-c) and
two in rats (SERCA3a,b/c) (Dally et al. 2009).
High expression of SERCA3 is found in various
types of blood cells including lymphocytes,
platelets, and mast cells, in endothelial cells, in
epithelia of the intestinal or respiratory tract
and in cerebellar Purkinje neurons (Wuytack
et al. 1994; Baba-Aissa et al. 1996a). It should
be mentioned, however, that in these cells
SERCA3 is always coexpressed with the house-
keeping SERCA2b isoform (Papp et al. 1991;
Wootton and Michelangeli 2006).

All six SERCA3 splice variants present a 5-
to 10-fold lower apparent affinity for cytosolic
Ca2þ than SERCA2b (Chandrasekera et al.
2009). The obvious question that then arises is
what the meaning is of the coexpression in a
cell of the high-affinity SERCA2b with a low-
affinity SERCA3. Especially, SERCA3 knock-
out mice do not display any overt phenotype,
further questioning the physiological impor-
tance of SERCA3.

Cells belonging to the hematopoietic line-
age and epithelial or endocrine secretory cells
are endowed with a complex Ca2þ-signaling
network (Guse et al. 1993). SERCA3 would
here help to shape spatiotemporal cytosolic
Ca2þ oscillation patterns (Arredouani et al.
2002). A differential subcellular localization of
SERCA3 versus SERCA2, whereby SERCA3
would then most likely face an environment
with locally higher Ca2þ concentration would
also help in this respect. In epithelial cells,
SERCA3 resides in a distinct subcellular local-
ization positioned more at the basal region of
the cell (Lee et al. 1997; Petersen 2003). A com-
plex subcellular distribution of various SERCA3
splice variants was also described in human

cardiomyocytes, although the expression levels
of the various splice variants must be rather
low (Dally et al. 2009). Of these, SERCA3f was
found close to the plasma membrane and to
be up-regulated in human failing heart (Dally
et al. 2009).

In human platelets, SERCA3 is thought to
reside in membranes of an acidic lysosome-
related Ca2þ store, from which it can possibly
be released via NAADP-gated two-pore channels
(Calcraft et al. 2009; Brailoiu et al. 2010) whereas
SERCA2b is confined to the so-called dense
tubular system. The latter store is derived from
the ER and its Ca2þ can be discharged by IP3R-
mediated Ca2þ-release (Juska et al. 2008). On
Ca2þ depletion, each of both types of stores acti-
vates its own store-operated Ca2þ-entry mecha-
nism (SOCE) (Redondo et al. 2008b), although
in the case of the acidic store SOCE appears to be
more pronounced (Rosado et al. 2004). SOCE
thereby relies on the formation of macromolec-
ular complexes involving the respective SERCA
isoforms. Complexes of SERCA3 and IP3R-2
in the acidic store and of a transient receptor
potential channel TRPC1–TRPC6 heterodimer
in the adjacent plasma membrane have been
shown (Redondo et al. 2008a). On depletion of
the acidic Ca2þ stores in platelets with thrombin
or with a combination of thapsigargin and ion-
omycin, SERCA3 also forms complexes with
STIM1 and Orai1 (Lopez et al. 2008).

Yet another indication for a specific role of
SERCA3 in cellular Ca2þ signaling is found in
its specific up-regulation during cell differentia-
tion. Differentiation of vascular endothelium
(Mountian et al. 1999), myeloid cells (Launay
et al. 1999) or colon epithelial cells (Gelebart
et al. 2002) is accompanied by an up-regulation
of SERCA3 rather than of SERCA2b. Con-
versely, on malignant transformation colon cells
loose their SERCA3 expression (Brouland et al.
2005) and both Epstein-Barr virus-mediated
immortalization of B-lymphocytes with its
accompanying lymphomagenesis and normal
B-lymphocyte activation in lymph nodes are
also paralleled by SERCA3 down-regulation
(Dellis et al. 2009).

A number of reported germ-line mutations
in the ATP2A3 gene may predispose to cancer
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development (Korosec et al. 2008; Korosec et al.
2009). Presumably, haploinsufficiency of this
gene underlies this predisposition. Remarkably,
one of these mutants is also more frequently
found in type II diabetic patients (Varadi et al.
1999).

Normal SERCA3 activity in vascular endo-
thelium (Liu et al. 1997) and in respiratory epi-
thelium (Kao et al. 1999) is important for
relaxation of the adjacent smooth muscle as
shown by defects in the relaxation in SERCA3
KO mice. The reported higher resistance of
SERCA3 versus SERCA2b to oxidative damage
might be considered as a meaningful adaptation
in these local environments (Grover et al. 2003).

SPCAs

The SPCAs, together with the SERCAs, are
responsible for loading the Golgi complex and
the secretory compartment with Ca2þ. In con-
trast to SERCAs, SPCAs are also equipped to
transport Mn2þ and thus supply this essential
trace metal to the Golgi lumen. A number of
comprehensive reviews have been published
recently by our group (Vanoevelen et al. 2007;
Vangheluwe et al. 2009) and by others (Dhitavat
et al. 2004; Foggia and Hovnanian 2004; Brini
and Carafoli 2009).

Short History

The archetypal member of the SPCA family was
independently discovered in yeast (Saccharomy-
ces cerevisiae) by two laboratories and named
Plasma membrane ATPase-related, or Pmr1.
Smith et al. (Smith et al. 1985) cloned PMR1
by complementation of “super-secreting” yeast
mutants (ssc) while Serrano et al. (Serrano
et al. 1986) identified the same gene by hybrid-
ization with a PMA1 (plasma-membrane Hþ-
ATPase) probe. Later on, homologs were studied
in many animal species and in other fungi
because of its value for biotechnology (efficient
secretion of heterologously expressed proteins).

In humans, the ATP2C1 gene-encoding
SPCA1 was mapped to chromosome 3 and
gained interest when it proved to be the
gene that causes Hailey-Hailey disease (OMIM

169600), an acantholytic skin disease (Hu et al.
2000; Sudbrak et al. 2000).

A novel paralogue, ATP2C2, was found in
the genome of higher vertebrates. Its protein
product SPCA2 was characterized independ-
ently by two groups (Vanoevelen et al. 2005;
Xiang et al. 2005). Its expression pattern sug-
gests a more specific cellular role.

Structural Aspects of SPCAs

SPCAs differ from SERCAs mainly by the pres-
ence of only one ion-binding site (correspond-
ing to site II in SERCA1). The structure of this
site and its access pathway is probably affected
by more distant residues and the packing of
the TM helices allowing also for the transport
of Mn2þ with high affinity (Wei et al. 1999;
Wei et al. 2000; Van Baelen et al. 2001; Vanghe-
luwe et al. 2009). In SPCAs, the E1 conforma-
tion is stabilized with respect to E2, explaining
the observation that SPCAs have much higher
apparent affinity for the transported ions than
SERCAs (Dode et al. 2006). Compared to
SERCA1a, structures of the two SPCA isoforms
are more compact as shown by the shorter lumi-
nal and cytosolic loops (Fig. 3) (Vangheluwe
et al. 2009). As indicated above, at least some
of these longer loops of the SERCA pump repre-
sent specific binding sites for regulatory pro-
teins. The homology models of SPCA1 and
SPCA2 look almost identical (Fig. 3). Only
minor differences are apparent, especially in
the amino terminus and carboxyl terminus. In
Pmr1, the amino terminus contains an EF-
hand-like motif that binds Ca2þ and is crucial
for Ca2þ transport (Wei et al. 1999). Although
the EF-hand like motif in hSPCA1 is even
more degenerate compared to PMR1, 45Ca2þ-
overlay experiments on the GST-purified amino
terminus of hSPCA1 also indicated the binding
of Ca2þ (Vanoevelen, unpublished).

Expression Pattern

SPCA1

SPCA1 is the housekeeping Ca2þ and Mn2þ

pump of the secretory pathway because it is
expressed in all cell types studied. However,
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different laboratories described different rela-
tive expression levels in various tissues. Woot-
ton et al. (Wootton et al. 2004) observed
much higher mRNA and protein expression in
rat brain and testis than in other tissues whereas
this difference was not observed in the corre-
sponding tissues of humans (Hu et al. 2000;
Vanoevelen et al. 2005).

The human ATP2C1 gene transcript is al-
ternatively spliced, giving rise to different pro-
tein products. Although there has been some
confusion about the various splice variants,
Fairclough et al. presented a unifying study
describing four isoforms (Fairclough et al.
2003). The corresponding proteins are termed
SPCA1a-d and only differ in their carboxyl
termini. Three splice variants SPCA1a, b, and
d are functional whereas SPCA1c, which is
truncated within the last TM segment, is non-
functional and rapidly degraded (Dode et al.
2006). Exploring the ATP2C1 gene structure in
the database points to the interesting peculiarity

that the terminal exon of SPCA1b overlaps with
the coding region of the neighboring gene Aste-
roid 1 whose open reading frame is oriented in
the opposite direction with respect to that of
ATP2C1.

The yeast Pmr1 is localized in the Golgi
apparatus possibly restricted to some of its
subcompartments (Antebi and Fink 1992).
SPCA from Caenorhabditis elegans heterolo-
gously expressed in COS-1 cells (Van Baelen
et al. 2001) and the human SPCA1 expressed
in CHO cells (Ton et al. 2002) showed a local-
ization largely coinciding with Golgi markers.
It is now well established that both overex-
pressed SPCA and the endogenous SPCAs in
a whole range of cell types are present in the
Golgi compartment (reviewed in Missiaen et al.
2007).

In human spermatozoa, SPCA1 displays an
unusual subcellular distribution: it is found in
the area behind the nucleus extending into the
midpiece. SPCA1 is believed to be the only

Figure 3. Comparison between the rSERCA1a, hSPCA1, and hSPCA2 structures. Homology models of hSPCA1
(B) and hSPCA2 (C) based on the E2 rSERCA1a structure (A) (1WPG) (Toyoshima et al. 2004). Homology
models were obtained from the SWISS-MODEL repository (Kiefer et al. 2009). SPCA1 and SPCA2 are very
similar, but in general more compact than SERCA1a. The longer loops in SERCA are indicated in red and are
predominantly found in the N-domain and in the luminal loops.
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intracellular Ca2þ pump in these cells because
both functional and immunocytochemical tests
failed to show the presence of SERCAs (Harper
et al. 2005). A similar picture arises from
sea-urchin sperm cells, which lack SERCAs.
Their SPCAs are located in the zone occupied
by the single giant mitochondrion where also
the main ATPases involved in Ca2þ-store filling
are situated (Gunaratne and Vacquier 2006,
2007).

In the fly (Drosophila melanogaster), three
SPCA splice-variants (SPoCk-A; SPoCk-B;
SPoCk-C) are expressed. Of these isoforms,
only SPoCk-A is targeted to the Golgi appara-
tus. The subcellular localization of SPoCk-B
and SPoCk-C is less clear and unexpected tar-
geting to, respectively, the ER and the peroxi-
somes was reported (Southall et al. 2006).
Furthermore, expression of the SPoCk-C variant
was shown to be sexually dimorphic (South-
all et al. 2006).

Expression analysis in developing mouse
brain showed that SPCA1 expression is promi-
nent and at constant levels during the entire
development of brain cortex, hippocampus,
and cerebellum. In spite of the apparently
unchanged expression levels, SPCA-associated
Ca2þ-ATPase activity increased with the stage
of development (Sepulveda et al. 2008).
SPCA1 was localized in Golgi stacks of the
soma and the initial part of the primary
dendritic trunk in main cortical, hippocampal
and cerebellar neurons, and is present from
the earliest postnatal stages onward. Although
SPCA1 expression has been reported in dif-
ferent glial cultures (Murin et al. 2006), other
efforts to show SPCA- or SERCA-pump expres-
sion in glial cells in nervous tissue were unsuc-
cessful (Baba-Aissa et al. 1996b; Sepulveda
et al. 2007; Sepulveda et al. 2008). Because glial
cells express high levels of the Mn2þ-dependent
glutamine synthetase (Wedler and Denman
1984), the low levels of SPCAs argues against a
role of SPCAs in Mn2þ uptake. However, in
rat brain SPCA1 is upregulated following
Mn2þ exposure (Zhang et al. 2005), which
would be compatible with a role in Mn2þ detox-
ification, as also observed in yeast (Lapinskas
et al. 1995).

SPCA2

Screening of the genome databases shows that
besides the ancestral housekeeping ATP2C1
gene, a second paralogue, ATP2C2, emerged
in the genomes of vertebrates higher than
fish. The corresponding gene is also lacking in
invertebrates.

In human tissues, SPCA2 expression is more
restricted than that of SPCA1, suggesting a more
specialized physiological function of the for-
mer. Its mRNA is most abundant throughout
the gastrointestinal tract, in trachea, thyroid,
salivary gland, mammary gland and in prostate
(Vanoevelen et al. 2005). It is striking that
SPCA2 is most abundantly expressed in cells
possessing a highly active secretion system like
the mammary gland cells during lactation
(Faddy et al. 2008) and the mucin-secreting
goblet cells in human colon (Dmitriev et al.
2005; Vanoevelen et al. 2005). This indicates
an important role for SPCA2 in protein secre-
tion. However, reported SPCA2 expression in
keratinocytes and hippocampal neurons does
not fit this picture. These data on mRNA ex-
pression should however be confirmed at the
protein level. So far, the presently available
antibodies could only show SPCA2 expression
in cultured hippocampal neurons (Mattiazzi
et al. 2005), in the colon (Vanoevelen et al.
2005), in the secretory acini of the mouse mam-
mary gland (Faddy et al. 2008) and in neutro-
phil granulocytes (Baron et al. 2009).

The precise subcellular localization of
SPCA2 is not completely unambiguous. In
human goblet cells, both SPCA2 and SPCA1
colocalized with Golgi markers in a compact
structure near the apical pole of the nucleus
(Vanoevelen et al. 2005). In addition, on he-
terologous expression in COS-1 cells, SPCA2
appeared predominantly in the Golgi area
(Missiaen et al. 2007). In cultured mouse hip-
pocampal neurons, however, SPCA2 staining
showed a punctate distribution in the cell body
and in the dendrites (Xiang et al. 2005). Al-
though in neurons the Golgi apparatus does in
general appear as a more fragmented structure,
SPCA2 only partially colocalized with the trans-
Golgi marker TGN38. It was therefore argued
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that in hippocampal neurons SPCA2 is, at least
partially localized in downstream, post-Golgi
segments of the secretory pathway (Xiang
et al. 2005). Taken together, the available data
indicate that SPCA2 can be found in the Golgi
complex and in more downstream compart-
ments of the secretory pathway.

Role of SPCAs in Cellular Physiology

Insights from PMR1 Mutants in Yeast

Although homozygous null mutations in the
ATP2C1 gene encoding SPCA1 seem to be lethal
in mammals (Okunade et al. 2007), they are tol-
erated in lower eukaryotes, including fungi and
C. elegans (Rudolph et al. 1989; Cho et al. 2005),
where compensatory mechanisms presumably
suffice to allow viability. An attractive model
for understanding such mechanisms is the yeast
orthologue Pmr1. PMR1 mutants in yeast dis-
play pleiotropic changes in Ca2þ-dependent
growth (Antebi and Fink 1992), secretion of
unprocessed proteins (Antebi and Fink 1992),
outer-chain glycosylation (Rudolph et al.
1989), Mn2þ tolerance (Lapinskas et al. 1995),
salt tolerance (Park et al. 2001), cell shape
(Cortes et al. 2004), virulence (Bates et al.
2005) and viability (Agaphonov et al. 2007).
The characterization of the diverse PMR1-
mutant phenotypes in yeast has been invalu-
able in providing the basis for studies on the
role of metazoan SPCA orthologues. Some of
these studies will be discussed in the following
parts.

Studies in Cell Systems

Van Baelen et al. used RNA interference to
understand the role of SPCA1 in HeLa cells
(Van Baelen et al. 2003). Luminal [Ca2þ] mea-
surements using Golgi-targeted aequorin
showed that endogenous SPCA1 was responsi-
ble for Ca2þ uptake in a subcompartment of
the Golgi. On knock-down, the frequency of
histamine- induced baseline Ca2þ-oscillations
was reduced, indicating that in these cells a
SPCA1-related Ca2þ-store may affect cytosolic
Ca2þ signals.

SPCA1 also seems to be an important com-
ponent of Ca2þ signaling in insulin-secreting
cells (Mitchell et al. 2004). Knock-down of
SPCA1 diminished Ca2þ uptake into the ER
and in dense-core secretory vesicles, increased
Ca2þ influx through L-type Ca2þ channels
and increased the response to glucose. The
time course of glucose-induced Ca2þ oscilla-
tions was also modified (Mitchell et al. 2004).

The same approach in cell lines expressing
misfolded proteins revealed defects in protein
processing and degradation (Ramos-Castaneda
et al. 2005). Furthermore, SPCA1 deficiency
rendered cells hypersensitive to ER stress.

Down-regulating SPCA1 in neurons com-
promises differentiation. The affected neurons
displayed increased numbers of neurites of re-
duced length as compared to control cells.
Additionally, Golgi Ca2þ-signalling was dis-
turbed and trafficking of proteins through the
Golgi was also hampered (Sepulveda et al.
2009). It is also known that both expression
and activity of SPCA1 changes on ischemic
events in the brain (Pavlikova et al. 2009).

Studies in Other Model Organisms

Knockdown of SPCA1 in C. elegans rendered the
worms highly sensitive to Ca2þ-deficient and
Mn2þ-enriched conditions and made them
more resistant to oxidative stress (Cho et al.
2005). These defects are reminiscent of the mu-
tant phenotype observed in yeast, as discussed
earlier.

Using a genetically transmissible RNA-
interference strategy in Drosophila, Southall
et al. also showed aberrant Ca2þ signaling com-
bined with defective neuropeptide-stimulated
diuresis in the Malpighian tubes of transgenic
flies (Southall et al. 2006).

Expression levels and activity of SPCAs
change in response to altered physiological
needs. In response to changes in glucose concen-
tration, SPCA1 expression levels significantly
increased in smooth muscle cells cultured in
high-glucose medium versus normal medium.
Functional consequences consisted of increased
ATPase activity and altered thapsigargin-in-
sensitive AVP (arginine-vasopressin)-induced
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cytosolic Ca2þ transients. These results indicate
that SPCA can play a role in Ca2þ uptake within
smooth muscle cells (Lai and Michelangeli
2009).

Expression of SPCA1 and especially SPCA2
rapidly adapts to lactation. SPCA2 is up-regu-
lated 35-fold whereas SPCA1 expression only
rises two-fold. These results clearly suggest an
important role for SPCA2 specifically (in addi-
tion to PMCA2) in the transport of high
amounts of proteins and Ca2þ into milk (Faddy
et al. 2008). Conversely, on mammary gland
involution the expression level of both pumps
is reduced 80–95% in an early phase and subse-
quently up-regulated again to meet normal
physiological needs (Reinhardt and Lippolis
2008).

The description of the phenotype of
SPCA12/2 mice has shown the important
housekeeping function of SPCA (Okunade
et al. 2007). Homozygous mutant mice died
in utero before gestation day 10.5. The animals
showed growth retardation and had an open
rostral neural tube. At the subcellular level,
the Golgi membranes were dilated, expanded
in amount and with fewer stacked leaflets.
In addition, the number of Golgi-associated
vesicles was increased although processing
and trafficking of proteins in the secretory
pathway was apparently normal. Apoptosis
was increased and a large increase of cytoplas-
mic lipids was observed, consistent with
impaired handling of lipids by the Golgi com-
plex. The authors introduced the concept of
Golgi stress to summarize these defects (Oku-
nade et al. 2007). Adult SPCA1 heterozygous
mice were found to have an increased incidence
of squamous cell tumors of epithelial cells in
the skin and esophagus (Okunade et al. 2007).
In addition, SERCA2 heterozygous mice
developed such tumors (Graef et al. 2001).
The development of squamous cell tumors
in aged ATP2A2þ/2 and ATP2C1þ/2 mice
indicates that SERCA2 and SPCA1 haploinsuffi-
ciency predisposes murine keratinocytes to
neoplasia. The possible links between Ca2þ-
transporting proteins and cancer have been
reviewed in detail by Monteith et al. (Monteith
et al. 2007).

SPCAs and Human Disease

Hailey-Hailey disease (OMIM 169600) is an
autosomal-dominant skin disease caused by
the loss of one functional copy of the ATP2C1
gene encoding SPCA1 (Hu et al. 2000; Sudbrak
et al. 2000). It is characterized by an increased
propensity for the formation of erosive and
oozing skin lesions in the flexural areas (Hailey
and Hailey 1939) from the second decade of life
on. In recent years, a large number of causative
mutations have been described (Cialfi et al.
2009). One cannot miss the remarkable parallels
between the inactivation of one allele of the
ATP2A2 or ATP2C1 genes causing very similar
dermatological problems, respectively, Darier
and Hailey-Hailey disease (Dhitavat et al.
2004). However, in contrast to keratinocytes of
Darier patients, keratinocytes of Hailey-Hailey
patients show an abnormal response to extra-
cellular Ca2þ. Apparently, Darier keratinocytes
behave normally in this respect because
SPCA1 is up-regulated and can compensate
for the partial loss of SERCA2 function (Foggia
et al. 2006).

Very recently, ATP2C2 in addition to the
CMIP (c-maf inducing protein) gene has ge-
netically been linked to both a human devel-
opmental disorder termed specific language
impairment (SLI) and to phonological short-
term memory. Detailed analysis indicates that
both genes are independenly involved. This
study provides molecular evidence for a role of
phonological short-term memory in language
acquisition (Newbury et al. 2009).

CONCLUSIONS

SERCA and SPCA pumps help to establish and
maintain low cytosolic and high luminal free
Ca2þ concentration in respectively the ER and
the organelles of the secretory pathway. Fail-
ure to keep this vital Ca2þ gradient results in
ER stress, Golgi stress and cell death. It is thus
physiologically important to maintain the
activity of the pump, which is mainly accom-
plished by meticulously controlling the affinity
of the pump for Ca2þ. To that extent, the cell
has at its disposal several SERCA isoforms
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displaying differences in Ca2þ affinity and of
affinity modulators of the pump, such as phos-
pholamban and sarcolipin. Furthermore, mul-
titudes of additional SERCA2 modulators
were recently identified, although more work
is needed to clarify their functional and physio-
logical roles.

The role of the SPCA pumps in the secretory
pathway is less well understood, but a remark-
able property of SPCA is its ability to transport
Mn2þ. Transport of Mn2þ from the cytosol to
the lumen of the secretory pathway organelles
provides these with a necessary cofactor for sev-
eral of the resident enzymes and may be impor-
tant for Mn2þ detoxification of the cells.
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