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Cell adhesions mediate important bidirectional interactions between cells and the extra-
cellular matrix. They provide an interactive interface between the extracellular chemical
and physical environment and the cellular scaffolding and signaling machinery. This
dynamic, reciprocal regulation of intracellular processes and the matrix is mediated by
membrane receptors such as the integrins, as well as many other components that comprise
the adhesome. Adhesome constituents assemble themselves into different types of cell
adhesion structures that vary in molecular complexity and change over time. These cell adhe-
sions play crucial roles in cell migration, proliferation, and determination of cell fate.

ith the emergence of metazoan life
Wapproximately 600 million years ago,
new biological mechanisms arose during the
evolution of multicellular organisms with a
defined body plan. These mechanisms of cell
adhesion are a fundamental feature of all meta-
zoans, from sponges to humans; they enable
cells to attach to each other or to an extracellular
matrix (ECM), cementing them together and
organizing them into a coherent whole. The
formation of adhesions and the regulation of
their dynamics are crucial for embryogenesis,
immune cell function, and wound repair, but
they also contribute to disease, including cancer
invasion and metastasis, or immune disorders
(Hay 1991; Hynes 2002; Berrier and Yamada
2007; Alberts et al. 2008; Mory et al. 2008;
Dubash et al. 2009; Manevich-Mendelson

et al. 2009; Svensson et al. 2009; Wolfenson
et al. 2009a). Adhesive interactions can occur
with remarkable temporal and spatial precision.
As illustrated in Figure 1, they not only link cells
together into functional tissues and organs,
but they also convey to the adhering cells
accurate positional information concerning
their cellular and extracellular environment.
This information can, in turn, affect all facets
of the cell’s life—its proliferation, differentia-
tion, and fate. In addition to responding to
the matrix, cell adhesions can actively remodel
and restructure the ECM, driving a reciprocal,
bidirectional interaction between the cell and
its surrounding matrix. These two fundamental
aspects of cell-ECM adhesion—pbhysical/
structural roles and environmental sensing/
signaling, as well as the dynamic molecular
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Figure 1. Schematic illustration highlighting the dynamic cross talk between cells and the extracellular matrix
(ECM). Cells secrete and remodel the ECM, and the ECM contributes to the assembly of individual cells into
tissues, affecting this process at both receptor and cytoskeletal levels. Adhesion-mediated signaling, based on
the cells’ capacity to sense the chemical and physical properties of the matrix, affects both global cell physiology
and local molecular scaffolding of the adhesion sites. The molecular interactions within the adhesion site stim-
ulate, in turn, the signaling process, by clustering together the structural and signaling components of the

adhesome.

interrelationships between them—will be the
primary subjects of this article.

We will also describe the functional molec-
ular architecture of cell-matrix adhesions,
highlighting the structure—function relation-
ships between the numerous components of
cell adhesions that mediate or modulate numer-
ous cell adhesive, migratory, and regulatory
processes. We will discuss the mechanisms
underlying the scaffolding and sensing proc-
esses generated at integrin-mediated adhesions,
considering them along two major multiscale
conceptual trajectories: molecular complexity
and time—that is, a hierarchy of complexity
that spans the range from molecules to multi-
molecular complexes in mature adhesions,
as well as the temporal progression of struc-
tures during the assembly and maturation of
matrix adhesions, from initial cell-matrix
recognition to the formation, maturation,
and reorganization of cytoskeleton-associated
matrix adhesions.

MOLECULAR AND STRUCTURAL DIVERSITY
OF THE EXTRACELLULAR MATRIX

The ECM serves as a substrate to which cells
attach via cell-matrix adhesions, but it is also
initially constructed and remodeled by such
adhesions (Hay 1991; Alberts et al. 2008). The
ECM is highly diverse, ranging from loose con-
nective tissue to densely packed tendons and
sheets of basement membrane.

Chemical Composition

Depending on the type of matrix, the compo-
nents of ECMs can vary widely. For example,
fascia and tendons contain high levels of colla-
gen I with various minor components, whereas
basement membranes contain substantial
amounts of collagen IV, laminin, perlecan, and
other components (Ricard-Blum 2011; Yurch-
enco 2011). The molecular composition and
the organization of the ECM’s constituent
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molecules play major roles in the responses of
cells to their local matrix microenvironment.
Of particular interest in this respect are the spe-
cific associations of multiple growth factors
(e.g., fibroblast growth factors, transforming
growth factors, heparin-binding epidermal
growth factor, and others) with the matrix,
and their capacity to locally stimulate the adher-
ent cells (Gospodarowicz et al. 1980; Hay 1991;
Hynes 2009; Sarrazin et al. 2011; Sheppard and
Munger 2011). These findings suggest that sig-
naling from the ECM can be triggered by two
major mechanisms: the activation of intracellu-
lar signaling complexes through their recruit-
ment to the adhesion site, and direct
stimulation of specific growth factor receptors
by ECM-immobilized growth factors.

Dimensionality

The “dimensionality” of each ECM is another
key contributor to cell-matrix function. Cells
adhering to standard tissue culture surfaces
and basement membranes often flatten and
adhere tightly to the two-dimensional (2-D)
surfaces. In contrast, cells in connective tissue
or inside organs are generally embedded
within a three-dimensional (3-D) environment
(Elsdale and Bard 1972; Cukierman et al. 2001;
Nelson and Bissell 2006). In a strongly fibrillar
3-D environment, however, cells appear to rec-
ognize and form distinctive adhesions with
“one-dimensional” fibrils or linear patterns of
ECM (Doyle et al. 2009). Cells can also respond
to the micro-topography or even nano-topogra-
phy of a surface to which they adhere (Curtis
and Wilkinson 1997; Cukierman et al. 2001;
Geiger et al. 2001; Baharloo et al. 2005;
Grossner-Schreiber et al. 2006; Vogel et al.
2006; Geblinger et al. 2010). Furthermore, the
spacing between individual ECM ligand mole-
cules (e.g., the Arg-Gly-Asp-containing pep-
tide that binds to integrin) plays a key role in
the adhesion process. Specifically, effective
assembly of cytoskeleton-bound focal adhe-
sions depends on an inter-ligand spacing of
<60-140 nanometers (Massia and Hubbell
1991; Cavalcanti-Adam et al. 2007; Geiger
et al. 2009). The physical dimensionality of

Functional Architecture of Matrix Adhesions

different microenvironments can play critical
roles in biological activities, regulating cell mor-
phology, rates of adhesion, migration, prolifer-
ation, and biosynthesis (Nelson and Bissell
2006; Yamada and Cukierman 2007; Geiger
et al. 2009; Grinnell and Petroll 2010).

Mechanical Properties

In addition to composition and dimensionality,
a third key element of an ECM involves its
mechanical properties. Several important fea-
tures are rigidity (elasticity or compliance),
mechanical heterogeneity in terms of local
porosity and cross-linking, and overall aniso-
tropy. For example, human tumors are often
surrounded by a matrix with high local concen-
trations of collagen encircling the tumor, and
the tissue is more rigid and oriented, or iso-
tropic, than adjacent connective tissues—a
response of the surrounding tissue termed des-
moplasia (Beacham and Cukierman 2005;
Nelson and Bissell 2006; Butcher et al. 2009;
Klein et al. 2009). Such mechanical properties
of a matrix can have major regulatory effects
on the choice of stem cell fate, proliferation
rate, pattern of gene expression, migration,
and tumor progression (Engler et al. 2007;
Discheret al. 2009; Levental et al. 2009; Schwartz
2010). In fact, rigidity sensing can be a cell-type
specific property, and cells (e.g., fibroblasts,
myocytes, or neurons) grow optimally on adher-
ent surfaces that match the cells’ intrinsic elastic-
ity (Discher et al. 2005). Interestingly, fibroblasts
isolated from sites of desmoplasia close to
tumors can retain their ability to produce an
ECM with altered matrix morphology and
with distinctive effects on cells, even in the
absence of the tumor (Amatangelo et al. 2005);
such activated fibroblasts have been implicated
in epithelial cell cancer progression.

MOLECULAR DIVERSITY OF MATRIX
ADHESION RECEPTORS

In this article, we place major emphasis on
integrin-mediated adhesions, but it is impor-
tant to note that there are multiple adhesive
interactions mediated by nonintegrin receptors.
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Some of these molecular interactions are dis-
cussed below, but we first discuss a special class
of adhesion-related structures known as the
pericellular matrix, which is highly enriched
with glycosaminoglycans such as hyaluronan
(Zimmerman et al. 2002). This cell-bound
matrix can be quite thick (up to several micro-
meters in certain cell types such as chondro-
cytes), covering the entire cell surface. The
structure and function of this matrix layer are
elusive because of its transparency and high
water content, but its prominence in cells and
its thickness relative to the dimensions of trans-
membrane integrins suggest that the first con-
tacts between cells and the ECM involve this
pericellular matrix. The formation of initial
cell—substrate adhesions was monitored in liv-
ing cells by total internal reflection microscopy,
visualizing the pericellular matrix by labeling
with fluorescent quantum dots. The quantum
dots marking the matrix accumulate near the
substrate well before the establishment of focal
adhesions. Furthermore, removal of this coat
by hyaluronidase alters these early cell-matrix
adhesive interactions (Cohen et al. 2006).

The integrin family of matrix protein
receptors plays a central role in the formation,
maturation, and function of a variety of cell
adhesions. Integrins are heterodimers with
one o and one (B subunit that bind with a
specificity governed by each of the subunits
to ECM molecules including collagens, lami-
nins, fibronectin, vitronectin, and fibrin (Hynes
2011). The types of integrins in adhesions can
switch as they mature, which may be related to
distinct functions. For example, avpB3 and
a5B1 are involved in forming the initial
contacts required for adhesion formation and
signaling: 581 can be activated by force to
mediate firm adhesion to synergistic sites in
fibronectin; for example, when fibronectin is
immobilized (Friedland et al. 2009), but then
avf33 remains to provide firm anchorage in
focal adhesions (Pankov et al. 2000; Zamir
et al. 2000). On the other hand, a5B 1is initially
present in focal adhesions formed on a fibro-
nectin substrate, along with av33, but is lost
from these adhesions unless the fibronectin is
physically immobilized, in which case it forms

exaggerated a5@1-containing focal adhesions
(Katz et al. 2000; Pankov et al. 2000). Interest-
ingly, if the same cells adhere to fibronectin or
vitronectin via a5B31 or avf33, respectively, they
display very different patterns of cell spreading
and FA distribution on each matrix substrate.
Cells adhering to fibronectin spread much more
than those adhering to vitronectin, and their
FAs are located throughout the ventral mem-
brane, compared to the more peripheral distribu-
tion of FAs in cells on vitronectin (Fig. 2).
Naturally, given the rich variety of integrin o
and B chains, there are multiple integrin heter-
odimers with both distinct and overlapping
binding functions; this diversity includes the
differential capacity of specific integrins to
recruit cytoplasmic molecular partners and
interact with the actin cytoskeleton. Elucidating
these differences in integrin-specific adhesion
complexes will provide many opportunities
for identifying the basis of ECM ligand-specific
responses of cells; for example, in collagen-,
fibronectin-, or laminin-rich environments.

Forms of Integrin-Mediated Adhesions

A particularly noteworthy feature of integrin-
based adhesions, even within the same cells, is
their ability to form morphologically, molecu-
larly, and dynamically diverse types of adhesion
structures. In addition to the dimensionality
conferred by the particular topography of the
extracellular matrix, integrin-mediated interac-
tions with the ECM can trigger the formation of
different forms of matrix adhesions, which can
partially overlap or segregate into mutually
exclusive adhesions, as illustrated in Figure 3.
As discussed below, some of these adhesions
can evolve or mature into other forms of matrix
adhesions.

Distinct types of cell adhesions include: (1)
classical focal adhesions (Fig. 3A—E), typically
generated by interaction with a flat, rigid sur-
face; such adhesions are usually several square
micrometers in size, located at the ends of actin
stress fibers, and stimulated by the small GTPase
RhoA (Dubash et al. 2009; Geiger et al. 2009).
Actin filaments at these sites were shown to be
colinear with extracellular fibronectin fibrils,
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Figure 2. Differential effects of different matrices on fibroblast spreading and FA formation. This figure shows
morphological and molecular differences between integrin adhesions formed in response to adhesion to differ-
ent ECM matrices. Vinculin (Vin)-labeled adhesions (green) are shown following adhesion of fibroblasts to
fibronectin (FN) via the a5B1 integrin, or to vitronectin (VN) via the av3 integrin. Notice that VN induces
less cell spreading compared to cells adhering to FN, and that the distribution of FAs is largely peripheral. Orig-
inal images for this panel were provided by Baruch Zimerman.

suggesting that the two are tightly linked
mechanically (Singer 1979); (2) dotlike nascent
adhesions and focal complexes (Fig. 3C—E),
short-lived adhesions that can transform into
focal adhesions, both formed along lamellipo-
dial protrusions, and the latter induced by
Racl (Nobes and Hall 1995; Rottner et al.
1999; Choi et al. 2008); (3) elongated fibrillar
adhesions (Fig. 3B), enriched under the central
areas of cells and formed mainly along matrix
fibrils such as fibronectin (Chen et al. 1985;
Damsky et al. 1985; Zamir et al. 2000); and
(4) podosomes or invadopodia (Fig. 3F-G),
small, ringlike adhesions formed around an
actin bundle, apparently anchoring it to the
membrane, or thin membranous protrusions
associated with an actin—cortactin core, respec-
tively (Spinardi and Marchisio 2006; Block
et al. 2008; Gimona et al. 2008; Caldieri et al.
2009; Poincloux et al. 2009). Podosomes are
prominent in different monocyte derivatives
(e.g., osteoclasts, macrophages, and dendritic
cells). They can assemble into large, beltlike
superstructures, and are implicated in matrix-
modulating activities (e.g., bone resorption by
osteoclasts [Geblinger et al. 2010] and matrix
invasion by a variety of cancer cells [Gimona
et al. 2008]). Invadopodia are particularly

characteristic of invasive, transformed -cells
that invade by degrading the ECM. Although
podosomes and invadopodia can both mediate
cell invasion into the ECM, they appear to differ
in the localization of vinculin and in their mem-
brane dynamics (Artym et al. 2010).

Although cells frequently display well-
formed adhesions in vitro, rapidly migrating
cells can sometimes display few distinct adhe-
sions, except for diffuse adhesive zones in which
broad expanses of plasma membrane approach
to within 30 nm of the substrate (Izzard and
Lochner 1976; Couchman and Rees 1979;
Huang et al. 2003; Estrada-Bernal et al. 2009).
These close contacts or close adhesions appear
to be relatively diffusely organized, and do not
form the tight adhesions to the migratory
surface that would impede rapid migration
(Couchman and Rees 1979; Huang et al. 2003;
Estrada-Bernal et al. 2009).

Adhesions in Three-Dimensional
Environments

Cells in 3-D environments create a variety of
adhesions. Classically, the dense plaques of
smooth muscle (Small et al. 1986; Wang et al.
1998) form firm, integrin-based adhesions
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C Paxillin

Figure 3. Immunofluorescence images of different types of cell adhesions. (A) Fibronectin (FN) fibrils in human
foreskin fibroblasts, despite their capacity to induce FA formation, are generally excluded from bona fide FAs;
vinculin (red) and FN (green). (B) In contrast, FN fibrils are primarily associated with tensin-rich fibrillar adhe-
sions; tensin (green) and FN (red). (C—E) Major forms of integrin adhesions formed by cultured porcine aortic
endothelial cells and some of their molecular characteristics, in an endothelial cell labeled for paxillin (C: green)
and tyrosine-phosphorylated paxillin (D: pY-paxillin, red), and the merged image (E). In these images, three
major forms of integrin adhesions are detected: dotlike focal complexes (FX) located primarily at the cell’s lead-
ing edge, “classical” focal adhesions (FA), and fibrillar adhesions (FB) located near FAs but more toward the cell
center, in which FN fibrils are prominent. Interestingly, the three types of cell adhesion differ in their molecular
properties: In FX, paxillin is highly phosphorylated (about threefold higher than in FAs), whereas no paxillin
phosphorylation is detected along FB (see white arrowheads). Additional molecular differences include, for
example, the absence of zyxin from FXs, and selective enrichment of a581 and avf3 integrins in FB and
FA, respectively. (F) and (G) show another form of integrin adhesion, podosomes, formed in this case by cul-
tured osteoclasts. (See facing page for legend.)
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linking the actin cytoskeleton to the ECM. In
addition, endothelial cells at sites of high
hydrodynamic stress in blood vessels form
structures similar to FAs (Davies et al. 1994;
Girard and Nerem 1995). In 3-D matrices
from which cells have been detergent-extracted,
and in the loose craniofacial matrix in which
embryonic cells migrate in vivo, long, slender
3-D matrix adhesions appear to represent an
in vivo composite of focal and fibrillar adhesion
components (Cukierman et al. 2001). The full
diversity of adhesion morphologies, and their
functions in vivo in a wide range of tissues,
remain to be characterized.

Nonintegrin ECM Receptors

Cell surface receptors for ECM molecules other
than integrins can also play major roles in cell—
matrix interactions. DDR1 (discoidin domain
receptor 1) and DDR?2 are tyrosine kinase recep-
tors that bind to native collagens and can play
integrin-independent roles in signaling, cell
adhesion, proliferation, and matrix remodeling
(Vogel et al. 2006; Heino et al. 2009). CD44 and
RHAMM bind the widely distributed glycosa-
minoglycan hyaluronan and can stimulate cell
adhesion, proliferation, migration, invasion,
and matrix assembly (Turley et al. 2002; Pure
and Assoian 2009). Even though it is a trans-
membrane adhesion receptor, CD44 can be
cleaved from the cell surface to become a com-
ponent of the ECM (Cichy and Pure 2003). In
addition, integrin-mediated interactions may
be preceded by adhesions via other receptors
such as selectins, which mediate the “rolling
adhesion” of leukocytes on endothelial cells
prior to firm, integrin-mediated adhesion (Ted-
der et al. 1995; Vestweber and Blanks 1999; Ley
and Kansas 2004).

Functional Architecture of Matrix Adhesions

MOLECULAR AND STRUCTURAL
COMPLEXITY OF THE INTEGRIN
ADHESOME

The Adhesome

Over the past several decades, surveys of the
molecular constituents of cell-matrix adhe-
sions—particularly integrin-mediated adhe-
sions—indicate that they are composed of
multiple molecules, which together participate
in both the physical /structural and sensing/sig-
naling activities of these adhesion structures.
Based on their localization in FAs, interactions
with other adhesion components, or involve-
ment in the regulation of the organization and
function of these sites, the entire collective of
molecules associated with integrin adhesions
was termed the integrin “adhesome” (http://
www.adhesome.org; Zaidel-Bar et al. 2007a).
To date, the adhesome network (Zaidel-Bar
and Geiger 2010) includes 180 components,
based on immunolocalization studies, binding
assays, RNA interference, and yeast two-hybrid
analyses (Fig. 4). Particularly overwhelming
is the large number of direct interactions
(>700) reported among these various compo-
nents, which can be divided into “scaffolding
interactions” with direct binding between spe-
cific components, and “regulatory interactions”
involving specific modification of one compo-
nent by another component (e.g., phosphoryla-
tion and GTPase activation).

Scaffolding within Adhesions

The scaffolding interactions within cell adhe-
sions that connect the many components to
one another, and eventually link actin filaments
to the cytoplasmic tails of integrin receptors, are
indirect (Fig. 4). They involve two families of

Figure 3. (Continued) Podosomes consist of a core bundle of actin filaments (Act, green), oriented per-
pendicular to the plasma membrane; they are surrounded by a membrane-associated “adhesion
ring” containing typical FA plaque molecules, including paxillin (red). In osteoclasts, podosomes
accumulate along the cell edge, forming a belt-shaped “sealing zone” important for the process of
bone resorption. The area in (F) marked with the white rectangle is enlarged in G, highlighting
the relationship between the actin core and the adhesion zone. Original images for this figure
were provided by Tova Volberg, Ronen Zaidel-Bar, and Chen Luxenburg.
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Figure 4. Scaffolding interactions of the integrin adhesome network (see http://www.adhesome.org). Adhe-
some components include membrane receptors (dark green rectangles), adaptor proteins ( purple rectangles),
actin-associated proteins (magenta ovals), tyrosine kinases (red diamonds) and phosphatases (blue diamonds),
serine/threonine kinases (red elongated hexagons) and phosphatases (blue elongated hexagons), G-proteins
(orange ovals), GEFs (yellow diamonds), and GAPs (yellow elongated octagons). This diagram was prepared
by Ronen Zaidel-Bar, based on Zaidel-Bar et al. 2007a; Zaidel-Bar and Geiger 2010.

cytoplasmic molecules: “actin-associated mole-
cules” and “adaptor proteins.” The former pro-
teins interact predominantly with actin and
regulate its organization; only a few of these
molecules (e.g., tensin, filamin, talin, plectin,
and a-actinin) are reported to interact directly
with integrins. The adaptor molecules interact
with these actin-associated components, with
each other, and with integrin, forming a com-
plex network of mechanical scaffolding links

between actin and the membrane at the adhe-
sion site (Geiger et al. 2001; Zaidel-Bar et al.
2007a).

Regulation of Adhesions

As the adhesome network grows in complexity
and connectivity, it is increasingly apparent
that to accommodate the need for both robust-
ness and dynamic plasticity at the adhesion site,
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Figure 5. Regulatory (signaling) interactions of the integrin adhesome network; for details, see http://www.ad-
hesome.org. Signaling components include kinases, phosphatases, G-proteins and their regulators, as well as
proteases. Red arrows point to modifications such as phosphorylation and activation of Rho GTPases, and
blue arrows indicate dephosphorylation, inactivation of Rho GTPases, and protein degradation. The classes
of molecules are indicated in the legend to Figure 4. This diagram was prepared by Ronen Zaidel-Bar, based

on Zaidel-Bar et al. 2007a; Zaidel-Bar and Geiger 2010.

many of these interactions need to be regulated.
The signaling components of the adhesome
are prime candidates for locally regulating
adhesome connectivity, as well as for generating
signals that globally affect cellular processes
including cell division, migration, and differen-
tiation. These signaling molecules include mul-
tiple tyrosine-specific and serine/threonine-
specific protein kinases and phosphatases,
Rho-family GTPases, and their regulators (GAPs

and GEFs). Analysis of the nature of adhesome
connectivity indicates that the signaling com-
ponents bind to the adhesion sites via multiple
docking sites present on the scaffolding net-
work; they, in turn, modify this network and
thus modulate its connectivity (Fig. 5).
Various types of posttranslational signaling
modifications are known to directly affect the
adhesome, though many others that regulate
the functional interplay between scaffolding
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and signaling functions are likely to be found
(Zaidel-Bar and Geiger 2010). For example,
Crk, which has three major interaction domains
(a Src homology 2 [SH2] domain and two SH3
domains), can interact with at least 16 different
proteins, half of which can interact with the SH3
domains via their proline-rich sequences, and
half interact with the SH2 domain via phos-
phorylated tyrosine residues. The SH2-domain
partners are mostly other adaptor proteins,
whereas the SH3-domain partners are mostly
guanine-nucleotide exchange factors (GEFs)
for GTPases. Because only some of the potential
binding partners are expressed in any given cell
type, the actual partner “switchboard” might be
simpler than that derived from the adhesome
database. However, many of these switches are
real, and the choice of a particular interaction
partner can affect the structure and function
of the adhesion site.

Furthermore, different subpopulations of a
given protein may interact with different bind-
ing partners in parallel, in the same cell, and
possibly within the same adhesion site, com-
pounding the complexity of the functional net-
working of adhesome components. Crk is an
excellent example of a conformational switch.
Switching in Crk and other molecules can be
triggered by changes in temperature, pH, or
ion concentration; by the binding of another
protein; or, as with Crk, by a posttranslational
modification such as phosphorylation. Some
adhesome proteins, such as vinculin, talin, focal
adhesion kinase, Src, and TES (testis-derived
transcript), can exist in either a closed (inactive)
or open (active) conformation (Garvalov et al.
2003; Critchley 2004; Mitra and Schlaepfer
2006). In the closed conformation, which is
usually maintained by specific interactions
between the amino-terminal and carboxy-
terminal domains, important activity modules
are concealed within the folded protein. The
closed-to-open conformational switch involves
a dramatic change in protein folding. Other
conformational switches invoke smaller, but
no less crucial, changes in amino acid position-
ing. For example, the extracellular domains of
integrins are activated to bind ligands following
specific interactions between their cytoplasmic

tails and talin (Shimaoka et al. 2002; Campbell
and Humphries 2011). In short, the adhesome
interaction network is highly dynamic, and is
regulated by the cellular signaling machinery.

Functional Molecular Architecture of
Adhesions

The molecular architecture of integrin adhe-
sions is currently under intense scrutiny. Ini-
tially, researchers used conventional electron
microscopy (Fig. 6A) combined with various
optical microscopy approaches, such as inter-
ference reflection microscopy, for visualizing
the adhesion area (Fig. 6B) to characterize the
internal structure of integrin adhesions. How-
ever, apart from detection of actin filaments
and an amorphous electron-dense “plaque”
associated with the membrane, no structural
information was obtained (Abercrombie et al.
1970; Heaysman 1973; Dunn and Jones 1998;
Weston 1982). Subsequent studies using differ-
ent sample preparation and imaging strategies
(e.g., whole-mount negative staining, wet cleav-
age, and high-resolution scanning electron
microscopy) have provided little additional
structural information, most likely because of
sample dehydration. Whole-cell cryo-electron
tomography (cryoET) and powerful super-
resolution optical microscopy constitute more
recent approaches to understanding the mo-
lecular organization of FAs. Correlated mi-
croscopy, combining fluorescence microscopy
with CryoET (Fig. 6C-F), shows that FAs are
laminated structures, containing arrays of
membrane-bound, doughnut-shaped particles
~25 nm in diameter, spaced at ~45 nm inter-
vals, which are associated with a bundle of
aligned actin filaments via short interconnect-
ing filaments in close association with vinculin
(Patla et al. 2010). Photoactivatable light mi-
croscopy (PALM) shows that in focal adhesions,
vinculin displays a scattered pattern, similar to
the distribution of the doughnut-shaped par-
ticles (Betzig et al. 2006). Further research using
high-resolution microscopy with structural and
molecular approaches will continue to clarify
the molecular structure of the adhesion sites
and the roles of the associated particles.
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Figure 6. Different views of FA structure: (A) Chicken lens cells were cultured on a flat surface, processed for trans-
mission electron microscopy, and sectioned perpendicular to the plane of the substrate. The image reveals multiple
cytoskeletal filaments accumulating at the adhesion site. The apparent gap between the ventral cell membrane and
the substrate (indicated by a “serum line”) is approximately 10— 15 nm. Bar = 1 pm. Original image provided by
Tlana Sabanay. (B) Interference-reflection microscopy (IRM) of cell-matrix adhesions. This image shows cell
adhesions of primary human fibroblasts, in which FAs appear dark gray or black, and the less tightly adhering
“close contacts” are light gray. Bar = 10 pm. (Image adapted from Akiyama et al. 1989 and reprinted with per-
mission from The Rockefeller University Press © 1989.) (C—F) Correlated microscopy, combining fluorescence
microscopy (C) of FAs in fibroblasts expressing fluorescent paxillin to identify adhesion sites, and cryo-electron
tomography (D—F). The inset in (C) shows a low-power image of the region bracketed on the fluorescence image.
(D) A 10-nm slice through a cryo-electron tomogram of the focal adhesion indicated in the inset in (C), showing
aligned actin filaments (white arrow), vesicle (black arrow), and the plasma membrane (white arrowhead). (E)
Surface-rendering view of the focal adhesion site as seen from the direction of the substrate toward the cell. Actin
is depicted in brown and membranes in blue; a large number of uniformly oriented particles, probably adhesion-
related and depicted in green, are located at the interface between the cytoskeletal bundle and the membrane. No
scale bar is shown in E, as itis a “rendered” version of D; the diameter of the enlarged “doughnut” shown in panel F
is noted. (F) An enlarged view of an individual particle (diameter=25 nm), and the associated filaments. Panels
C—F are based on data from Patla et al. 2010.

ASSEMBLY AND REMODELING OF
INTEGRIN ADHESIONS

and Hall 1995; Geiger et al. 2001; Alexandrova
et al. 2008; Choi et al. 2008) formed close to
the leading edge of migrating cells. In this region
of the cell, one can distinguish between the
lamellipodium—a ribbon-like, flat protrusion

The various forms of integrin-based adhesions
shown in Figure 3 are dynamic structures that

can undergo maturation or interconversion.

Early Adhesions and the Molecular Clutch

The earliest integrin-containing structures
detectable by light microscopy are the “focal
complexes” or “nascent adhesions” (Nobes

located at the periphery of a moving or spreading
cell, containing a network of actin filaments—
and the lamella—a flat, broad, sheetlike cellular
extension that is internal (medial) to lamellipo-
dia. A fan-shaped lamella is a prominent feature
that characterizes the leading edge of a cell that
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is undergoing locomotion on a flat surface.
Actin networks that contain myosin IIA are
the principal structures in lamellae. These early
nascent adhesions and focal complexes are
roughly 100 nm in diameter and positioned at
the interface between the lamellipodium and
the matrix; they are composed of only a few
hundred protein molecules, including integ-
rins, talin, and paxillin (Zaidel-Bar et al. 2003;
Ponti et al. 2004; Giannone et al. 2007; Alexan-
drova et al. 2008; Choi et al. 2008). Within the
lamelliopodium, actin polymerizes and flows
centripetally at a rate of a few micrometers per
minute (Ponti et al. 2004; Vallotton et al.
2004; Alexandrova et al. 2008), rubbing against
these newly formed adhesion complexes, and
apparently reinforcing integrin—cytoskeleton
bonds. In particular, the binding of vinculin
to talin triggers the clustering of activated integ-
rins (Humphries et al. 2007) and, through the
vinculin tail, their association with actin,
thereby strengthening the actin—integrin link
(Galbraith et al. 2002). These forces appear to
drive the growth of the nascent adhesions into
larger focal complexes, a process that can be
blocked by low doses of cytochalasin D to
inhibit the centripetal actin flow (Alexandrova
et al. 2008; Choi et al. 2008). This system is
thought to function as a “molecular clutch” to
mediate cell migration by linking integrins
and adhesion scaffolding molecules to the mov-
ing actin cytoskeleton (Huttenlocher and Hor-
witz 2011).

At the lamellipodial-lamellar interface—
usually located ~2-4 pm from the leading
edge of the cell—the density of the actin fila-
ment network is substantially lower, and its
architecture and protein composition are
altered: in particular, Arp2/3 complexes are
absent, whereas tropomyosin and myosin II
are prominent (Ponti et al. 2004; Vallotton
et al. 2004). The actin network in the lamella
continues to flow centripetally, but at a lower
speed than in the lamellipodium. Further
growth of the young adhesion, still in the lamel-
lipodial domain, depends not only on contin-
ued actin polymerization, but also on myosin
[I-driven contraction of the lamellipodium
(Giannone et al. 2007).

Role of Force in the Development of Focal
Adhesions

The transformation of focal complexes at the
cell edge into stress fiber-bound focal adhesions
is associated with changes in protein composi-
tion (e.g., the recruitment of zyxin), tyrosine
phosphorylation (e.g., of paxillin), and dynam-
ics (e.g., enhanced exchange rate) (Ballestrem
et al. 2001; Cluzel et al. 2005; Ballestrem et al.
2006; Zaidel-Bar et al. 2007b; Zamir et al.
2008). This transition appears to occur at the
boundary between the lamellipodium and the
lamella (Ponti et al. 2004; Alexandrova et al.
2008; Choi et al. 2008).

As the lamellipodium and lamella advance
during cell migration, the growing adhesions
remain attached to the substrate and undergo
a maturation process characterized by an
increase in their length and total area, as well
as association with the termini of actin stress
fibers. This association with the contractile
actomyosin machinery is critical for the growth,
maintenance, and stability of these adhesions.
Traction force microscopy indicates that the
cell is pulling on the matrix at these adhesion
sites, producing a local stress of ~5 nN/um’
(Balaban et al. 2001). If this force is increased
(e.g., by direct mechanical probing, shear flow,
or stretching of the substratum), the attached
adhesion grows; conversely, relaxation of ten-
sion (e.g., by inhibitors of actomyosin or Rho-
kinase) leads to its dissociation. The actual
forces at individual cell adhesions can be meas-
ured using different forms of force traction
microscopy, as well as with force biosensors
using fluorescence detection methods (Grash-
off et al. 2010).

Fibrillar Adhesions

An additional step in the maturation of integrin
adhesions, particularly in fibroblasts adhering
to a fibronectin matrix, is the formation of
“fibrillar adhesions” (Hynes and Destree 1978;
Chen and Singer 1982; Chen et al. 1985; Zamir
et al. 2000). These elongated matrix contacts
are particularly prominent in central regions
of cultured fibroblasts, and their formation is
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associated with fibronectin fibrillogenesis; the
a5B1 integrin, along with tensin, appear to
translocate away centripetally from focal adhe-
sions, potentially providing forces that promote
the formation of fibronectin fibrils (Pankov
et al. 2000; Zamir et al. 2000; Baharloo et al.
2005). Similar to the formation of focal com-
plexes and focal adhesions, matrix reorganiza-
tion and formation of fibrillar adhesions are
force-dependent processes (Zhong et al. 1998).
These functions of local force highlight the
mechanosensitive nature of integrin adhesions,
from the earliest to the most mature.

Adhesion Dynamics

Adhesion dynamics are particularly important
in cell migration (Huttenlocher and Horwitz
2011). There appear to be multiple mechanisms
underlying the molecular dynamics within
cell adhesions. The association of signaling
molecules can be relatively transient in newly
formed, integrin-based adhesions, whereas
scaffolding molecules are more stable in their
association, even if dynamic at a single-mole-
cule level according to FRAP analyses (Miya-
moto et al. 1996; Wolfenson et al. 2009b).
Microtubules play active roles in regulating
focal adhesion dynamics (Rinnerthaler et al.
1988; Small and Kaverina 2003). Microtubules
are thought to target focal adhesions and to
destabilize them, for example, potentially by
locally releasing tension (Broussard et al.
2008). Additional mechanisms of turnover or
removal of adhesion components include cleav-
age by the enzyme calpain (Zhong et al. 1998).
Analyses of the mechanisms and regulation of
adhesion dynamics will continue to be a fruitful
area of research for many years to come (Hut-
tenlocher and Horwitz 2011).

ECM SENSING VIA INTEGRIN ADHESIONS

Integrin adhesions have dual physiological
functions—a physical, structural role that is
critical for tissue and organ morphogenesis,
and a sensing and signaling role whereby
integrin-mediated interactions with the ECM
activate cascades of signaling events. These

Functional Architecture of Matrix Adhesions

signals act both locally and globally, regulating
local molecular interactions within the adhe-
sion site and modulating its scaffolding activity,
as well as affecting overall cellular physiology,
including cell proliferation, transcriptional ac-
tivity, migration, and survival.

The mechanisms underlying adhesion-
mediated signaling remain to be fully eluci-
dated. Unlike the signaling events initiated by
receptor tyrosine kinases that involve ligand-
induced activation of receptor-mediated phos-
phorylation of diverse cellular targets (Alberts
et al. 2008), adhesion-mediated signaling is
believed to involve the adhesion-dependent
clustering of adhesome-associated signaling
molecules and their downstream substrates,
thus initiating the signaling process (Miyamoto
et al. 1995; Schwartz et al. 1995; Katz et al. 2002;
Zaidel-Bar and Geiger 2010). A remarkable fea-
ture of cell adhesions is the large size of their
cytoplasmic scaffold, which enables extensive
cross talk between the localized signaling
molecules and their diverse targets, resulting
in cascading activation of multiple signal trans-
duction pathways. Furthermore, these resident
signaling molecules can also modify and modu-
late the scaffold, itself, to which the molecules
are bound, thereby affecting the scaffold’s struc-
ture and signaling activities. The signaling cas-
cades initiated or modulated by integrins
include nearly all well-known signal transduc-
tion pathways, including signaling through
focal adhesion kinase (FAK), various Src family
kinases, MAP kinases, PKCs, and phosphatidy-
linositol lipids (Clark and Brugge 1995;
Schwartz et al. 1995; Giancotti and Ruoslahti
1999; Hynes 2002; Schwartz and Ginsberg
2002; Berrier and Yamada 2007; Abram and
Lowell 2009; Harburger and Calderwood 2009;
Zaidel-Bar and Geiger 2010).

Integrins, ECM molecules, and growth fac-
tors function cooperatively to integrate extra-
cellular biochemical and physical inputs in
signaling pathways that regulate a host of cellu-
lar functions including cell survival, prolifera-
tion, and differentiation (ffrench-Constant
and Colognato 2004; Hynes 2009; Streuli and
Akhtar 2009). Although the specific mecha-
nisms that initiate integrin signaling are still

Cite this article as Cold Spring Harb Perspect Biol 2011;3:a005033 13



fggﬁﬁ) Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Voocd”

www.cshperspectives.org

B. Geiger and K.M. Yamada

being explored, two mechanisms in integrin-
based adhesions are (1) the targeting of signal-
ing molecules by integrins to the plasma mem-
brane and (2) the aggregation of kinases and
their substrates as cell adhesions form and
organize. For example, simple experimental tar-
geting of certain proteins such as FAK or Rac1 to
the plasma membrane can stimulate their phos-
phorylation or activity (Chan et al. 1994; Chao
et al. 2010). Moreover, mimicking the aggregat-
ing effects of integrin clustering by direct exper-
imental clustering of membrane-anchored FAK
can trigger downstream MAP kinase activity
(Katz et al. 2002), similar to the well-known
mechanism of signaling activation by aggrega-
tion of receptor tyrosine kinases after they
bind growth factors (Alberts et al. 2008). These
integrin signaling processes are accompanied
by reorganization of cytoskeletal components
at cell adhesions, including the formation of
actin stress fibers. These integrin-cytoskeletal
processes are coordinated by complex signaling
cross talk involving FAK, Src family kinases,
and various Rho family GTPases and their regu-
lators (Dubash et al. 2009; Huveneers and
Danen 2009).

Chemical Sensing of the Extracellular Matrix
and Signaling

What types of matrix information are sensed by
integrin adhesions to generate downstream sig-
naling? The two major categories are chemical
and physical cues. Cells sense the chemical
properties of the matrix environment, particu-
larly adhesive (e.g., fibronectin or vitronectin)
and associated signaling molecules (e.g.,
heparin-binding EGF or fibroblast growth fac-
tors) encountered at the cell surface. As shown
in Figure 2, interactions with different matrices
via distinct receptors can indeed trigger distinct
cellular responses. In addition, cells have exten-
sive abilities to sense the physical state of the
matrix, including its stiffness, topography, and
ligand spacing.

Chemical sensing of the extracellular matrix
microenvironment at cell adhesions involves a
wide variety of receptors, which include integ-
rin receptors for specific matrix molecules,

nonintegrin matrix protein receptors such as
CD44, proteoglycans such as syndecan-4, and
receptors for growth factors and cytokines
(Hay 1991; Alberts et al. 2008; Sarrazin et al.
2011; Sheppard and Munger 2011). These vari-
ous receptors can function additively, synergis-
tically, or antagonistically. Integrins can have
specificity for a particular class of ECM mole-
cule such as collagen or laminin (Hynes 2011).
They can function together, or in cooperation
with, molecules such as syndecans to promote
the formation of adhesions; for example, certain
cells require both integrin and syndecan-4 func-
tion to form focal adhesions (Saoncella et al.
1999; Mostafavi-Pour et al. 2003). Integrins
can also cross-inhibit the adhesive function of
another integrin, in a process termed integrin
cross talk, or transdominant inhibition (Bly-
stone et al. 1994; Diaz-Gonzalez et al. 1996; Bly-
stone et al. 1999; Gonzalez et al. 2010).

Integrins and growth factor receptors are
present together in cell adhesions, and a num-
ber of collaborative interactions occur between
integrins and growth factor receptors, with
adhesions functioning as cell signaling centers
(Schwartz et al. 1995; Miyamoto et al. 1996).
Because of the extraordinary complexity of the
adhesome (Figs. 4 and 5), innumerable cross
talk interactions are likely between the many
signaling and scaffolding interactions in cell
adhesions. These interactions will continue to
be elucidated by high-throughput analyses of
cell adhesions and adhesion-dependent proc-
esses such as cell migration (Simpson et al.
2008; Winograd-Katz et al. 2009). For example,
proteomics analysis of cell adhesions dependent
on different integrins identify both shared and
distinctive components with interesting poten-
tial functions; in one case, intersections between
integrin, Rac, and Arf signaling networks were
identified (Humphries et al. 2009).

Physical Sensing of the Extracellular Matrix

In addition to chemical sensing, cells can be
exquisitely sensitive to differences in the physi-
cal state of the matrix, such as density, spacing,
rigidity, and orientation. The mechanisms of
adhesion-mediated sensing of the physical
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properties of the matrix are still under intensive
investigation. It is known that the assembly of
focal adhesions and induction of actin organi-
zation require certain threshold densities of
adhesion ligands. As analyzed using precisely
nano-patterned adhesive surfaces, the assembly
of focal adhesions requires a ligand spacing
of no more than ~60—140 nm (Massia and
Hubbell 1991; Cavalcanti-Adam et al. 2007;
Geiger et al. 2009). Moreover, major differences
are found between adhesion sites formed on
compliant surfaces (sub-kPa to a few kPa),
compared with those formed on rigid surfaces
(hundreds of kPa to a few mPa) (Discher et al.
2005; Discher et al. 2009). Matrix geometry
and topography are additional surface features
that are known to play a role in guiding the for-
mation of matrix adhesions (Cukierman et al.
2001; Geiger et al. 2001; Baharloo et al. 2005;
Grossner-Schreiber et al. 2006), regulating their
dynamic properties (Geblinger et al. 2010), and
modulating their signaling activity.

It is interesting to note that this “multisens-
ing” property of living cells for chemical and
physical information implies that beyond the
local sensing of individual matrix features,
integrin adhesions are capable of integrating
complex information (multiple physical, me-
chanical, and biochemical cell surface inputs)
and developing a coherent, integrated response.
Understanding the workings of this integration
mechanism is a major challenge in the cell adhe-
sion field.

ATWO-WAY DIALOGUE BETWEEN CELLS
AND THE EXTRACELLULAR MATRIX

The matrix is synthesized and organized by cells
but, as discussed above, the matrix itself can
reciprocally regulate cell behavior. The assembly
of fibronectin-based or collagen-based matri-
ces, compared to basement membranes (for
examples, see Schwarzbauer and DeSimone
2011; Yurchenco 2010), differs in terms of
molecular components and cellular structures
(e.g., fibrillar adhesions associated with fibro-
nectin, versus fibripositors with collagen
[Canty et al. 2004], versus other assembly
mechanisms for basement membranes). These

Functional Architecture of Matrix Adhesions

processes share, however, the principle features
of specific matrix molecule binding and spatial
organization of the ECM by integrins or other
matrix receptors. Similarly, reorganization of
matrix molecules in wounds, and the transition
from a provisional matrix containing fibrin and
fibronectin to dense collagen in scars, also
involves integrins and specific cell types (see
Clark 1996; Watt and Fujiwara 2011). Cell-type
specificity of adhesion and biosynthesis—for
example, fibroblasts in collagenous matrices
and epithelial cells on basement membranes—
can help to maintain overall tissue organization
and differentiation.

A further major role of the ECM, however, is
its function as a reservoir for growth factors,
cytokines, and other extracellular factors. For
example, both the glycoprotein and glycosami-
noglycan (especially heparan sulfate) compo-
nents of the matrix can enhance signaling,
adhesive functioning, and remodeling (Vaday
et al. 2001; Hynes 2009).

The bidirectional relationships of cells and
the ECM are particularly clear in the regulation
of cell migration directionality (Petrie et al.
2009; Huttenlocher and Horwitz 2011). Physi-
cal properties of the matrix conveyed through
cell adhesions include sensing rigidity and
orientation of fibrils. Stiffer matrices evoke
larger focal adhesions and increased intra-
cellular contractility, and cells will move toward
areas of greater substrate stiffness, in a process
termed durotaxis (Pelham and Wang 1997).
In addition, however, cells can reorganize a
random meshwork of collagen fibrils into ori-
ented fibrils (Provenzano et al. 2006), which
in turn promotes their migration along the
reorganized fibrils. This propensity to migrate
along oriented patterns such as fibrils or grooves
is known as “contact guidance,” which strongly
promotes integrin-dependent migration along
linearly patterned ECM and can involve un-
usually elongated cell adhesions (Cukierman
et al. 2001; Provenzano et al. 2006; Doyle
et al. 2009). Particularly dramatic switches
in adhesion—from cell-cell adhesion to
enhanced cell-ECM adhesion—can occur in
epithelial -mesenchymal transitions (EMT) or
weaker variants of this process, which appear
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to play important roles in embryonic cell migra-
tion, organ development, and tumor cell inva-
sion (Kalluri and Weinberg 2009; Thiery et al.
2009; Onodera et al. 2010).

CONCLUSIONS: INTEGRIN ADHESIONS AS
“INTERACTIVE INFORMATION INTERFACES”
BETWEEN CELLS AND THEIR ENVIRONMENT

Integrins and other cell surface receptors pro-
vide external links to the ECM, but their func-
tions at the cell-ECM interface require the
participation of a multiprotein complex of
adhesome components consisting of both scaf-
folding and signaling molecules. In a way, the
adhesion interfaces can be envisioned as two
intertwined multiprotein scaffolds (the extra-
cellular ECM and the adhesome network) that
reorganize each other under the control of the
adhesome signaling machinery. This “design
principle” is schematically illustrated in Figure
1 of this article, and the underlying molecular
mechanisms are outlined in this article as well.
It provides an interactive interface for the bi-
directional exchange of information and func-
tional alterations at the cell surface.

The temporal functional plasticity of adhe-
sion sites can be envisioned as the following
sequence of events: (1) Initial encounter
between the cell membrane and the ECM; (2)
Integrative assessment of the ECM by the cellu-
lar adhesion machinery; (3) Local assembly
and activation of the adhesion-associated sig-
naling system; (4) Modulation of the adhesome
scaffolding network and the associated cyto-
skeleton, resulting in: (5a) Mechanical reorgan-
ization of the ECM (which may trigger another
scaffolding—signaling cycle), and (5b) Activa-
tion of global adhesion-mediated signaling
that can regulate cell proliferation, migration,
survival, and differentiation.

An ongoing challenge in the field involves
testing this model, substantiating it, and deter-
mining the role of specific molecules in the
regulation and integration of the complex
functions of cell adhesions. There are likely to
be numerous variations on the theme of recep-
tor—-ECM binding, receptor—ligand aggre-
gation, adhesion assembly, and maturation,

along with a changing cast of molecular constit-
uents, depending on the cell type and the bio-
logical process or function involved. The
successful integration of cell adhesion functions
is essential for understanding normal develop-
ment and ongoing tissue function, as well as
mutations in the various adhesome compo-
nents that can result in diseases ranging from
fetal death, to skin blistering, to bleeding disor-
ders (e.g., see Wickstrom et al. 2010). Besides
such genetic diseases, altered cell adhesion
might contribute to diseases such as cancer,
skin disorders, and fibrosis (see Watt and Fuji-
wara 2011).

Major opportunities in the field will inc-
lude identifying the specific set of adhesome
structure—function relationships relevant to a
particular function, such as cell migration,
invasion, or disease, and then understanding
their regulation by both intracellular and extra-
cellular processes. This level of understanding
will require complex systems—level approaches
and computational modeling, which include
not only the molecular components and their
signal transduction relationships, but also a
thorough knowledge of mechanotransduction
principles and the bidirectional roles of local
and global forces acting on cell adhesions. These
conceptual and experimental challenges should
provide fruitful opportunities for research in
this area in the near future, and for many years
to come.
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