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Complexomics Study of Two Helicobacter
pylori Strains of Two Pathological Origins

POTENTIAL TARGETS FOR VACCINE DEVELOPMENT AND NEW INSIGHT IN BACTERIA METABOLISM*(S]

Cédric Bernardet§1], Philippe Lehourst§, Jean-Paul Lasserret§, Michel Castroviejo||,
Marc Bonneu**, Francis Mégraud$§tt, and Armelle Ménardt§

Helicobacter pylori infection plays a causal role in the
development of gastric mucosa-associated lymphoid tis-
sue (MALT) lymphoma (LG-MALT) and duodenal ulcer
(DU). Although many virulence factors have been associ-
ated with DU, many questions remain unanswered re-
garding the evolution of the infection toward this excep-
tional event, LG-MALT. The present study describes and
compares the complexome of two H. pylori strains, strain
J99 associated with DU and strain B38 associated with
LG-MALT, using the two-dimensional blue native/SDS-
PAGE method. It was possible to identify 90 different
complexes (49 and 41 in the B38 and J99 strains, respec-
tively); 12 of these complexes were common to both
strains (seven and five in the membrane and cytoplasm,
respectively), reflecting the variability of H. pylori strains.
The 44 membrane complexes included numerous outer
membrane proteins, such as the major adhesins BabA
and SabA retrieved from a complex in the B38 strain, and
also proteins from the hor family rarely studied. BabA and
BabB adhesins were found to interact independently with
HopM/N in the B38 and J99 strains, respectively. The 46
cytosolic complexes essentially comprised proteins in-
volved in H. pylori physiology. Some orphan proteins were
retrieved from heterooligomeric complexes, and a func-
tion could be proposed for a number of them via the
identification of their partners, such as JHP0119, which
may be involved in the flagellar function. Overall, this
study gave new insights into the membrane and cyto-
plasm structure, and those which could help in the design
of molecules for vaccine and/or antimicrobial agent de-
velopment are highlighted. Molecular & Cellular Pro-
teomics 9:2796-2826, 2010.

Helicobacter pylori infection is one of the most common
chronic bacterial infections worldwide with up to half of the
world’s population infected (for a review, see Ref. 1). This
infection is involved in the development of various gastrodu-

From $£INSERM U853, 33076 Bordeaux, France and §Laboratoire
de Bactériologie, |Laboratoire de Microbiologie Cellulaire et Molécu-
laire et Pathogénicité, UMR CNRS 5234, and **Péle Protéomique,
Plateforme Génomique Fonctionnelle, Université Victor Segalen Bor-
deaux 2, Bordeaux, F 33076 France

Received, May 25, 2010

Published, MCP Papers in Press, July 7, 2010, DOI 10.1074/
mcp.M110.001065

odenal diseases including two malignant diseases, gastric
adenocarcinoma and gastric mucosa-associated lymphoid
tissue (MALT)" lymphoma (LG-MALT) (2-5). H. pylori infection
is associated with ~80% of extranodal marginal zone B-cell
lymphomas of MALT type (6). The causal role of this infection
in the lymphomatic process was proven by the beneficial
effect of H. pylori eradication on the regression of lymphoma
(7-9). Despite this proof, many questions remain unanswered
concerning the mechanism involved in the evolution of H.
pylori infection toward the development of an LG-MALT. In
fact, the development of an LG-MALT is a very exceptional
event because fewer than 0.1% of infected patients will de-
velop this cancer. Consequently, few strains are available,
and this lymphoma has not been extensively studied as com-
pared with gastric adenocarcinoma or duodenal ulcer (DU)
disease. To date, no environmental factor nor genetic host
factor has been found, and in contrast to other severe dis-
eases due to H. pylori infection, none of the virulence factors
known for this bacterium, including the presence of the cag
pathogenicity island (PAIl) or the VacA toxin, could be asso-
ciated with this pathology except for the vacAm2 allele (10—
12). However, phylogenic analyses, based on DNA array hy-
bridization, revealed that most of the H. pylori strains
associated with LG-MALT, although lacking the main H. pylori
virulence factors, cluster separately from strains associated
with other pathologies (gastric carcinoma or DU). This, in turn,
has led to the assumption that these strains have a specific
genetic material content involved in the clinical outcome of
LG-MALT (13). Given that the conventional methods used in
molecular biology and genetics did not allow the identification
of strains with specific virulence genes, it was proposed that
other strategies be implemented (11, 12, 14-17). Moreover
and despite the availability of 10 different H. pylori genome

" The abbreviations used are: MALT, mucosa-associated lymphoid
tissue; LG-MALT, gastric MALT lymphoma; BN, blue native; DU,
duodenal ulcer; OMP, outer membrane protein; BabA/B, blood group
antigen-binding adhesin A/B; Hor, Hop-related; UreA/B, urease o/f3
subunit; AlpA/B, adherence-associated lipoprotein AlpA/B; SabA,
sialic acid-binding adhesin A; PAI, pathogenicity island; FRD, fumar-
ate reductase; IEF, isoelectrofocalization; POR, pyruvate:flavodoxin
oxidoreductase; FAS, fatty acid biosynthesis; ACP, acyl carrier pro-
tein; ACX, acetone carboxylase; LC-MS/MS, liquid chromatography
mass spectrometry.
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sequences, there are many “orphan” genes from H. pylori for
which no function has been attributed, and few data on pro-
tein expression are available.

Certain studies have suggested that nearly all biochemical
processes are performed by protein complexes (18). The ex-
ploration of protein interactions (protein complexes or com-
plexome) is one of the main challenges of functional genomics
to get insight into protein function to understand the physiol-
ogy and pathogenesis of microorganisms. Among the high
throughput technologies used to study complexes, blue na-
tive/sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (BN/SDS-PAGE) is a highly resolvent separation method
(19). It was initially described for the separation under native
conditions of the membrane protein complexes of mitochon-
dria (20), chloroplasts (21), and more recently bacteria, such
as Paracoccus denitrificans (22), Synechocystis species (23),
and Escherichia coli (24). It was later applied to the study of
whole complexes of eukaryotic cells (25, 26) and of bacteria,
e.g. E. coli (27) and H. pylori reference strain J99 associated
with DU (28). This last study led to the description of 13
multiprotein complexes, 11 issued from the cytoplasm and
two issued from the membrane that were either partially or
totally reported previously in the literature.

In the present study, two-dimensional BN/SDS-PAGE was
applied, after technical improvements, to study the whole
complexome of two sequenced H. pylori strains to determine
whether some complexes were specific to one or the other.
Because patients with DU are not predisposed to LG-MALT
(29), the complexome of the J99 strain associated with DU
(30) was compared with that of the B38 strain chosen to be
representative of an LG-MALT-specific cluster (13). Protein
identification was performed by using liquid chromatography-
mass spectrometry (LC-MS/MS). Purification steps, such as
gel filtration, liquid isoelectrofocalization (IEF), and ionic col-
umn separation, were used to improve the multiprotein com-
plex separation.

EXPERIMENTAL PROCEDURES

Strains Used—H. pylori strain B38 was isolated from a 62-year-old
French male patient with extranodal marginal zone B-cell lymphoma
of MALT type whose lymphoma had regressed after eradication of H.
pylori. This patient was enrolled in a prospective multicenter study
carried out by the Groupe d’Etude Francais des Lymphomes Digestifs
of the Fédération Frangaise de Cancérologie Digestive (8). The ge-
nome of this strain, recently sequenced, is the smallest H. pylori
genome described to date (13). The B38 strain is lacking in all known
pathogenic determinants because it is negative for the entire cag PAI;
it appears that it does not produce a functional cytotoxin (positive for
vacAs2m?2) and the major adherence factors (absence of babB, babC,
sabB, and homB genes). This strain is positive for babA2, iceA1, and
hopQll genotypes, and it has a functional hopZ gene and non-func-
tional oipA and sabA genes. The second H. pylori strain, J99 (ATCC
700824), was isolated from a patient with DU in the United States (30).
The J99 strain is positive for the entire cag PAI; it is positive for
vacAs1m1, babA2, iceA1, and hopQll genotypes and has functional
hopZ, oipA, and sabA genes. Another characteristic of both strains is
that they do not carry plasmidic DNA. The genomes of the B38 and

J99 strains are available at the National Center for Biotechnology
Information (http://www.ncbi.nim.nih.gov/sites/entrez?db=genome).
More detailed information about the J99 genome (31) is available at
the PyloriGene World Wide Web Server (http://genolist.pasteur.fr/
PyloriGene/genome.cgi).

Bacterial Growth Conditions—H. pylori B38 and J99 cells were
cultured simultaneously and under identical conditions for 48 h on
Wilkins-Chalgren agar plates (Oxoid Ltd., Hampshire, UK) supple-
mented with 10% human blood and the following antibiotics: 1
mg/ml vancomycin (Lilly France S.A., Fergesheim, France), 5 mg/ml
cefsulodin (Takeda France S.A., Puteaux, France), 5 mg/ml Fungi-
zone (Bristol-Myers Squibb Co.), and 1 mg/ml trimethoprim (Glaxo-
SmithKline). The plates were incubated at 37 °C under microaero-
bic conditions (5% O,, 10% CO,, 85% N,). Bacteria harvested from
agar plates were suspended in ice-cold 0.85% NaCl (bioMérieux,
Marcy I'Etoile, France). For performance of the two-dimensional
BN/SDS-PAGE applied to the H. pylori cytosolic and membrane
extracts, a total of 3 g of each H. pylori strain was frozen at —80 °C.
All of the bacteria and sample manipulations (cytoplasmic and
membrane preparation) were performed at 4 °C (unless otherwise
indicated).

Cytoplasmic Extract Preparations — Bacteria were harvested from a
48-h culture by centrifugation at 6,000 X g for 10 min and washed in
ultrapure water. Bacteria were suspended in native extraction buffer A
(750 mm 6-amino-n-caproic acid, 50 mm Tris) supplemented with a 1
mw final concentration of phenylmethanesulfonyl fluoride and passed
through a One Shot disruptor (Constant Systems Ltd., Northants, UK)
at 2 kilobars (one shot). The lysate was centrifuged at 6,000 X g for 20
min, and a 0.2 mg/ml final concentration of DNase | was added to the
supernatant for 1 h at 25 °C. Then, the supernatant was centrifuged at
100,000 X g for 30 min at 4 °C and filtered with a Miracloth membrane
(Calbiochem). The pellet contained membrane (see “Membrane Ex-
tract Preparations”). The cytosolic multiprotein complexes contained
in the supernatant were desalted. Indeed, for H. pylori cytoplasmic
extracts, a preliminary dialysis is necessary to obtain highly resolvent
gels. Here dialysis was sometimes replaced by a desalting step,
which allows the elimination of small molecules and salts, as was
described for the purification of the human embryonic kidney cell line
HEK293 (25). The final result was the same for dialysis and the
desalting step, but the first technique allows sample concentration
using a dialysis membrane (cutoff, 14,000 Da) in buffer A with 30%
glycerol.

Membrane Extract Preparations—The pellet was resuspended in
buffer A with 1 mm phenylmethanesulfonyl fluoride and passed
through a One Shot disruptor at 2 kilobars (one shot). The resulting
lysate was centrifuged at 6,000 X g for 20 min, the pellet was
discarded, and the supernatant was centrifuged at 100,000 X g for 30
min. The extraction of the protein complexes from the resulting pellet
was then carried out by resuspending the membrane in 1 ml of buffer
A supplemented with 2% n-dodecyl B-b-maltoside detergent (Sigma-
Aldrich). This sample was then centrifuged at 100,000 X g for 30 min,
and the membrane multiprotein complexes contained in the super-
natant were separated by two-dimensional BN/SDS-PAGE.

Purification Steps— All of the steps were carried out at 4 °C. There-
fore, liquid IEF, exclusion filtration methods, and ionic column sepa-
ration were used as purification steps before applying the two-dimen-
sional BN/SDS-PAGE.

Liquid IEF purification was used to separate the multiprotein com-
plexes according to their pl in a pH range from 3.5 to 10, 4 to 6, 5 to
7, and 6 to 8. An aliquot of a crude cytosolic sample was analyzed in
a Rotofor system (Rotofor Prep IEF Cell, Bio-Rad). The protein mix-
ture was prepared according to the manufacturer’s recommendations
before filling the Rotofor chamber. The IEF method produced many
protein precipitates in the most abundant protein fractions with a pl of

Molecular & Cellular Proteomics 9.12 2797



Complexome of Two H. pylori Strains

~5-6. Very low protein concentrations were found in the basic frac-
tions, although a concentration step with Vivaspin column (Viva-
science, Aubagne, France) was used.

Gel filtration purification was also carried out. An aliquot of crude
cytosolic or membrane sample was loaded on a Superdex™ 200
column (Amersham Biosciences). Buffer A was run at a flow rate of
0.3 ml/min using the FPLC AKTA (Amersham Biosciences). Multipro-
tein complexes were recovered in 250-ul fractions. The cytoplasmic
sample was separated into four peaks of major interest: 1,000, 450,
220, and 155 kDa. This method allowed the adaptability of the two-
dimensional BN/SDS-PAGE acrylamide gradient according to the
mass of interest of the complexes.

Complexes were also separated using an ionic column. Crude
extract was loaded on a 1-ml HiTrap™ Q XL column (Amersham
Biosciences) at a flow rate of 1 ml/min using the FPLC AKTA (Amer-
sham Biosciences) and was washed with 5 ml of buffer A before a
two-step elution using 5 ml of buffer A supplemented with 250 mm
NaCl and 1 m NaCl. The two last fractions were desalted using a
dialysis membrane (cutoff, 14,000 Da) (Medicell International Ltd.,
London, UK).

First Dimension: BN-PAGE—Sample preparation and BN-PAGE
were carried out as described previously (20, 28) with the following
minor modifications. The gel dimension was 20 cm X 14.5 cm X 1
mm. Separating gels with a linear 4-12, 4-13, 4-13.5, 3-14.6,
4-14.6, 7-14.6, or 7-18% acrylamide gradient gels were used. Anode
and cathode buffers contained 50 mm Tris, 75 mm glycine, and only
the cathode buffer was supplemented with 0.004% Serva Blue G
(Serva, Heidelberg, Germany). Before loading the sample, 2 ul of
buffer B (500 mm 6-amino-n-caproic acid, 5% Serva Blue G) was
added. The gel was run overnight at 4 °C at 1 watt. Thyroglobulin (669
kDa), ferritin (440 kDa), catalase (232 kDa), lactate dehydrogenase
(140 kDa) and Albumin (66 kDa) (GE Healthcare, Uppsala, Sweden)
were used for each BN-PAGE analysis as molecular mass size stand-
ards. Different acrylamide gradients were tested for the BN-PAGE to
improve the multiprotein complex separation. A certain balance
needs to be found to optimize both focalization and separation of
complexes with a mass greater than 60 kDa. A molecular mass could
be attributed to the membrane complexes based on a molecular
mass marker.

Second Dimension: SDS-PAGE —Individual lanes from BN-PAGE
were equilibrated for 5 min in an equilibrating buffer containing 1%
SDS (w/v), 125 mm Tris, pH 6.8 and then dipped into equilibrating
buffer supplemented with 50 mm dithiothreitol (Sigma-Aldrich) for 15
min. Individual lanes were subsequently soaked in equilibrating buffer
supplemented with 125 mm iodoacetamide (Sigma-Aldrich) for 15
min. An ultimate washing step lasting 5 min was performed in the
equilibrating buffer without supplement. Individual lanes were placed
on a glass plate at the usual position for stacking gels. After covering
with the second glass plate, the gel was brought into a vertical position.
Then the 10, 13, or 15% acrylamide separating gel mixture was poured.
After polymerization, the stacking gel mixture was poured.

Gel Staining— Silver staining was performed using a silver staining
kit (Sigma-Aldrich) according to the manufacturer’s instructions. Coo-
massie Brilliant Blue G-250 (Bio-Rad) was also used for gel staining.
After two ultrapure water washings of 3 min each, the gels were
placed overnight in an incubation solution (10% ammonium sulfate,
0.1% Coomassie Brilliant Blue G-250, 3% orthophosphoric acid,
20% ethanol). Gels were washed twice for 1 min in ultrapure water
and twice for 1 h in 5% acetic acid.

In-gel Protein Digestion—Silver-stained proteins separated by
SDS-PAGE were excised and destained using the PROTSIL2 silver
staining kit (Sigma-Aldrich) according to the manufacturer’s instruc-
tions. Spots were subsequently washed in ultrapure water until com-
pletely destained. The solvent mixture was removed and replaced by

acetonitrile. After shrinking of the gel pieces, acetonitrile was re-
moved, and the gel pieces were dried in a vacuum centrifuge. They
were then rehydrated in 10 ng/ul trypsin (Sigma-Aldrich) and 50 mm
ammonium bicarbonate and incubated overnight at 37 °C. Ammo-
nium bicarbonate (50 mm) was added to the gel pieces, which were
incubated for 15 min at room temperature under rotary shaking. The
supernatant was collected, and an ultrapure water/acetonitrile/acetic
acid (47.5:47.5:5) solution was added to the gel pieces for 15 min.
This step was repeated twice. Supernatants were pooled and con-
centrated in a vacuum centrifuge to a final volume of 25 ul. Digested
products were finally acidified by the addition of 1.5 ul of acetic acid
and stored at —20 °C.

On-line Capillary HPLC Nanospray lon Trap MS/MS Analysis—
Peptide mixtures were analyzed by on-line capillary HPLC (LC Pack-
ings, Amsterdam, The Netherlands) coupled to a nanospray LCQ™
ion trap mass spectrometer (ThermoFinnigan, San Jose, CA). Pep-
tides were separated on a 75-um-inner diameter X 15-cm C,4 Pep-
Map™ column (LC Packings). The flow rate was set at 200 nl/min.
Peptides were eluted using a 5-50% linear gradient of solvent B for
30 min (solvent A was 0.1% formic acid in 5% acetonitrile, and
solvent B was 0.1% formic acid in 80% acetonitrile). The mass
spectrometer was operated in positive ion mode at a 2-kV needle
voltage and a 38-V capillary voltage. Data acquisition was performed
in a data-dependent mode consisting of alternatively in a single run
full scan MS over the range m/z 300-2,000 and full scan MS/MS in an
exclusion dynamic mode. MS/MS data were acquired using a 3-m/z
unit ion isolation window, a 35% relative collision energy, and a 5-min
dynamic exclusion duration.

Data Analysis —Data were analyzed by SEQUEST (ThermoFinnigan)
against a subset of the NCBI database consisting of H. pylori strain
protein sequences. Carbamidomethylation of cysteines (+57 Da) and
oxidation of methionines (+16 Da) were considered as differential
modifications. Only peptides with an Xcorr greater than 1.5 (single
charge), 2 (double charge), and 2.5 (triple charge) were retained. In all
cases, AC,, had to be greater than 0.1.

Bioinformatics Tools—Protein sequences were compared with the
GenBank™ database with the Blast program “protein blast” (algo-
rithms: blastp, psi-blast, phi-blast; http://www.ncbi.nih.gov/BLAST/)
at the National Center for Biotechnology Information computer server
(82). The search tool for interactions of chemicals (STITCH; http://
stitch.embl.de/) was used to explore possible interactions between
partners of complexes identified with or without chemical intermedi-
aries (33).

RESULTS
Global Presentation of Results

In total, 329 proteins were identified by LC-MS/MS of which
32 were never mentioned in previous proteomics studies
(supplemental Table S1). Among these additional proteins, 27
have a “predicted” function deduced from homologs charac-
terized in other organisms (31), and nine proteins correspond
to open reading frames (ORFs) annotated as “predicted ORF/
hypothetical protein”, demonstrating that these ORFs really
do encode proteins, such as JHP0628 (HELPY_0684) or
JHP0905 (HELPY_0958) annotated as “predicted coding re-
gions” (31).

The basic condition for the identification of a multiprotein
complex is that proteins of the same multiprotein complex
co-migrate in the first dimension and are found aligned with a
similar shape in the second dimension (20). Multiprotein com-
plexes from the membrane were named “MB” and “MJ” for
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the B38 and J99 strains, respectively. Those from the cyto-
plasm were named “CB” and “CJ” for the B38 and J99
strains, respectively. The pattern of most of the complexes
presented in this study undoubtedly fulfilled these criteria (20).
Examples are provided with complexes MB2, CB29, MJ8, and
CJ9 (Figs. 1B, 3M, 2B, and 4B, respectively).

The 90 heterooligomeric complexes comprised 49 protein
complexes in the H. pylori B38 strain and 41 in the H. pylori
J99 strain. All of these complexes are shown in Figs. 1-4 and
are described in Tables I-IV. Fifty proteins whose functions
remain to be elucidated appear in heterooligomeric complexes,
and 14 of these 50 proteins correspond to genes annotated as
predicted coding regions. The presence of these proteins in
heterooligomeric complexes, through the identification of their
partners, should give more insight into their functions.

As previously pointed out by Schagger et al. (34), the
same shape benchmark can sometimes be difficult to apply;
consequently, the assignment of spots to a complex be-
comes difficult. In the present study, spots corresponding
to FrdA/B/C (MB4 and MJ5 for the B38 and J99 strains,
respectively) were found aligned (Figs. 1, A and B, and 2,
A-C, E, and J), but a spot corresponding to FrdA presented
a slightly oval shape, whereas spots corresponding to
FrdB/C had a rounded and more diffuse shape due to a
more diffuse gel migration in the lower approximate M,
range (28). However, these three proteins correspond to the
three subunits of the fumarate reductase (FRD) complex of
H. pylori (35, 36), and FrdA and FrdB were found previously
in a membrane complex of the J99 strain using the two-
dimensional BN/SDS-PAGE method (28). Consequently,
this complex was included given that its third evident part-
ner, FrdC, was identified on most of the gels (Figs. 1, A and
B, and 2, A-C, E, and J). It was also noted that the M, of
FrdB was higher than that of FrdC, whereas their deduced
M, values were in the same range. This apparent migration
of FrdB at 31 kDa was reported previously by Birkholz et al.
(35). The FRD complex, commonly associated with the
membrane of H. pylori (37), is the key enzyme of the Krebs
cycle involved in fumarate respiration in the case of anaer-
obic growth. This enzyme is indeed constitutively expressed
under microaerobic conditions and is essential for H. pylori
colonization of the mouse stomach (38).

Different migrations of some proteins were observed dur-
ing the separation in the second dimension electrophoresis
as was the case for TsaA (Fig. 3, A and G, Fig. 4, A and D);
the outer membrane proteins (OMPs) AlpB (MB17 and
MB18, Fig. 1, D and E) and HorK (MJ24, Fig. 2H); the
“predicted glycinamide ribonucleotide synthetase” PurD
(CB11 and CJ9, Fig. 3E and Fig. 4B), and the peptidyl-prolyl
cis-trans isomerase C, PpiC (CB24, Fig. 3/), suggesting that
multiple isoforms of these proteins do exist. Their occur-
rence can be explained by probable post-translational mod-
ifications changing their physicochemical criteria (pl, M,,
and binding affinity). In fact, H. pylori proteins are subjected

to a high degree of post-translational modification as is the
case for TsaA, Pfr, UreA, UreB, and RecA (28, 39, 40) and
also for some OMPs such as HopK (41). Different oligomer-
ization states of some complexes were also observed, e.g.
the BabA-SabA (MB14 and MB15, Fig. 1C) and HopM/N-
BabB (MJ7 and MJ18, Fig. 2E) complexes. This was also
previously reported in H. pylori (28).

Compared with the previous study performed on the H.
pylori J99 strain (28), four of the 11 cytosolic heterooligomeric
complexes could be totally or partially retrieved. Indeed, mod-
ifications in sample preparation were made to increase the
number of multiprotein complexes and to confirm certain
protein-protein interactions. In the present study, purification
steps were used, different amounts of proteins were loaded
onto the gels, and various acrylamide concentrations in the
first and second dimensions were used. Concerning mem-
brane complexes, the urease complex (MJ1) was partially
retrieved, and the FRD complex was completed by the third
subunit FrdC (see previous paragraph). Moreover, a partner of
SodB, AroQ, and FabZ, described previously to belong to
homooligomeric complexes (28), was found (Table Ill). These
partners, hardly or not visible during previous stainings (28),
were observed and identified in this study. For this reason and
to avoid the description of homooligomeric complexes with
an inadequate number of subunits, homooligomeric com-
plexes were not reported in the present study. Dotted arrows
in Figs. 1-4 indicate proteins that were not attributed to
heterooligomeric complexes.

Membrane Protein Complexes

At the membrane level, 19 and 25 heterooligomeric protein
complexes composed of 31 and 41 different proteins were
identified for H. pylori B38 (Fig. 1 and Table | complexes
named MB) and J99 (Fig. 2 and Table Il complexes named
MJ) strains, respectively. Although gel profiles remained sim-
ilar, only seven heterooligomeric complexes were common to
both strains: UreB-UreA, HefC-HefB, AtpA-AtpD, AtpD-
HELPY_1461 (JHP1381), FrdA-FrdB-FrdC, AlpB-AlpA, and
HopF-HopG.

New Insight into H. pylori Membrane lllustrated by Four
Examples—Examples of complexes are presented below and
classified by function. The complexes MB3 and MJ3 com-
prised the « and B chains (AtpA and AtpD) of the predicted F1
segment of the ATP synthase. In fact, the approximate M, of
550 kDA observed for this complex would correspond to the
entire complex of the ATP synthase. Indeed, the H. pylori ATP
synthase is predicted as a multisubunit enzyme comprising
the FO complex (consisting of three subunits, AtpB, AtpF, and
AtpE, forming a proton channel), the F1 complex (consisting
of five subunits, AtpA, AtpD, AtpG, AtpH, and AtpC, consti-
tuting the catalytic site for ATP synthesis), and an additional
subunit named AtpX (predicted ATP synthase FO B’ chain)
(42). The presence of this complex in the membrane is not

Molecular & Cellular Proteomics 9.12 2799



Complexome of Two H. pylori Strains

A MB2 MB5 MB6 MB9 MI?10 Box1 MB3
MB1 |MB3 MB4\_~MB7 135 MB11
MrDa) | || - |\/ A 1]
N 1D: 4-12%
250 2D: 13%
150 - Hefc ' ___Zduer
100 - —_— FrdA E -
75 :
S GroEL_ .2
5| 50— I | T
7]
g ........
£
E 37
&
reA ™
25 — —
20 HELPY 0130  Hor ”
i ' .
-
v | | — |
669 440 232 140 66 Mr (kDa)
1stdimension
Box3 MB3
=== | I —
1
B MB2 MB12 3
MB1 |MB3 MB4MBSMB(5 MB7 MB13_!
Mr (kDa) | | Y ™ _ o=

250 : o ey PR T e 1D: 3-14.6%
LR S T L T o e L e e 2D: 15%
100

2nd dimension

| |
669 440 232 140 66 Mr (kDa)

1stdimension

Fic. 1. Analysis of crude membrane samples of H. pylori strain B38. The first (BN-PAGE) and second dimension gel electrophoreses
(SDS-PAGE) were performed with various protein quantities and acrylamide gradients indicated on each gel (A-E). Dotted arrows indicate
proteins that were not attributed to heterooligomeric complexes. Enlargement and second migration of the MB3 complex are shown in boxes
1 and 3. Enlargement of the MB8 complex is shown in box 2. Protein identifications are presented in Table |. Multiprotein complexes isolated
from the membrane of the B38 strain were named MB. * represents spots where different proteins were identified (see Table I). A mixture
of proteins was identified in the following spots: spot number S1: HELPY_0856 (one peptide: K | DYKDYLTFFEK | S, coverage = 2.5%,
p = 1.01e”7) and SdaC (HELPY_0133, one peptide: K| EGLEGIIQSLK | L, coverage = 2.9%, p = 5.15e"“); and spot number S2:
PetC (HELPY_1541, one peptide: K| GEHGLNVFINDPQK | L, coverage = 4.9%, p = 2.03e /) and HELPY_0449 (one peptide:
K | NLFEIQTHTTK | Q, coverage = 4.3%, p = 8.46e%). &, spots for which identification has failed.
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FiG. 1—continued

surprising because the B subunit of bacterial ATP synthases
exhibits a tight membrane binding property (43), and AtpA
was identified previously in the H. pylori membrane (44). Func-
tionally, the H. pylori ATP synthase would be similar to other
bacterial ATPases in that it uses the proton motive force
generated by the electron transport chain to synthesize ATP
(45, 46). AtpA is very frequently recognized by sera from
patients with gastric cancer (47), and AtpD has been shown to
be immunogenic (48). This protein, never found in the cyto-
plasm, was also retrieved with the predicted secreted protein
JHP1381 (HELPY_1461) in the membrane fractions from both
B38 and J99 strains (MB13 and MJ17). The blastp search for
JHP1381 (HELPY_1461) revealed a conserved domain both
with the EmrA protein involved in the multidrug resistance
efflux pump and the subunit MacA of the macrolide-specific

ABC-type efflux transporter from E. coli. In this ABC-type
efflux transporter (49), MacA is a membrane fusion protein
that stimulates the ATPase activity of MacB, a membrane
protein that exports macrolide compounds in cooperation
with TolC, a multifunctional outer membrane channel (50).
Together, all of these observations suggest that JHP1381 is
probably involved in efflux resistance and could stimulate the
ATPase activity of its MacB counterpart, which is still uniden-
tified in H. pylori. Another probable subunit of the ATP syn-
thase, the predicted ATP synthase F1 & chain (AtpH), was
found in an interaction with JHP1494 (MJ25) (approximate M,
of 40 kDa), an uncharacterized protein conserved in numerous
Gram-negative bacilli.

MB2 and MJ2 complexes comprised the efflux pump HefB
and HefC whose genes are homologs to E. coli acrA and acrB,

Molecular & Cellular Proteomics 9.12 2801



Complexome of Two H. pylori Strains

6v622¢ dN 8¢¢0dHI  6€'9¢ € 179°91 (unisjousioeq) ydeN uteloid Buneanoe-jiydonnaN ¥G02/G0€00 dA 8720 Ad13H + vdeN

apndad
001722 dN  28ELdHI  G.'22 6 72895 [euBis eAeInd lopodsue.) SUBIGISW JOIN0 BAIEING  9018S0€00 dA 2971 AdT13H + 2971 Ad13H a 00€ ZLan
2rLeeZ dN  vevOdHr  88'92 ¥ ¥9.°02 epnded [eubis aAneind 340H uteloid sueiqBW JBINO  PHZLG0€00 dA 9570 AdT3H + 3I0H
120822 AN L0E€OdHIM 81’61 € 065°L2 epnded [eubls aaneind DJoH ulejoid sueiqWBW JBINO  8ZLLS0E00 dA  22E0 AdT3H + 0QJoH
apndad
162622 N vEOLDHP  0S°0E S Lov'le [eubis aaneind ‘uiejoud [eoneylodAy paniesuo)  G8LS0€00 dA  €6€0 AdT3H - HioH
0SL¥2Z dN  2ZEYLdHM  0£22 ¥ €09'92 apnded [eubls anieind UOH ulejoid BUBIGWBW JOINO  $GLBS0E00 A GEGH AdT3H + OH
opndad
€9e€2C AN S¥90dHIr 04’02 14 ¥8.'62 [eubis enneind ‘3doH uiejoid sueIqUIBW JOINO  LL¥/S0E00 dA 0990 AdT3H + 3doH
2e€€22 N vL90dHr 000+ € 152'0¢ 4I0H ulejoud BuBIqWBW JOINO  /¥PLS0E00 DA 8690 AdT3H + 4I0H v oz LLEN
urejoid aueiquusw
2r82eZ dN  lglodHr 62T (+hore 0619 aneind Ajiwey dyyvH ‘uleloid podsues) ploe ouly  $G6950€00 A €EL0° AdT3H +
uiejoid sueiquisaw aAleINd
/91622 dN  6¥YOdHr ST (+bore | 2626y ‘Jopiodsue) Juspuadep-epLojyo Pue-WwnIPos dAleINd  98G/G0€00 dA 9580 AdT3H + okS
91/€2¢ dN  6660dHI L9} 9 L9y utejoid sueiquisw aAleind fesesjoidojelow dAeINd  ¢€L/G0€00 dA  €V0L ADTaH - V0L Ad13H
apndad [eubis
996622 dN  8¥80dHr 891 S 2r6'sS anpeind :0doH uiseype pue ulod suBIqWBW JOINO  LZ9.G0€00 A 2680 AdT3H + (0doH) vdiy v oet 0LEN
1Gv€2C AN E€EL0dHI  09'6L 4 926'82 ulunnibBewsy Bulpuig-esojoejAuieinaN  EELG0E00 dA €950 AdTIH + vedH
08€€2Z N 2990dHI 0Lt S Sov'eL ddoH uisjoid suBIqUIBW IBINO  LOVLSOE00 dA  2¥90 AdT3H + (ddoH) vaes v 002 6anN
(+2) 29€ opnded
69622¢ AN 8€20dHr 0L  (+2)95e ¢ veL'LS [eubis eaeind ‘HdoH uejoid sueIqUIBW JBINO  £90/S0€00 dA 6520 AdT1IH + (AdoH) BdoH
apndad
8596222 N L€20dHM L9 € ¥20'€S [eubis aaneind :4doH uiejoid sueIquIBW JBINO  Z90ZS0E00 dA 8520 AdTIH + (xdoH) 4doH v 08l 8an
apndad [eubis
996622 dN  8¥80dHI  09'8) 9 2r6'sS aneind :0doH uiseype pue ulod suBIqWSW JOINO  129.G0€00 A 2680 AdT3H + (0doH) vdiy
apndad [eubis
195622 N 6780dHI  0£'02 8 620°.S aneind gdoH uiseype pue uuod sueiquidlw IBINO  229/S0€00 dA 8680 AdT3H + (gdoH) adiy a'v 002 Zan
apndad
218622 N 00LLdHM 06°€E S 26502 [eubis eaneind ‘uiejoud [eoneulodAy peaiesuo) 628250600 dA Lkl AdT3H + Ll AdT3H
opndad
0v82¢¢ dN  6LLOJHI 089t 14 2r9'ee [eubis eAeind ‘uiejoud [eoneulodAy peaiesuo)  ZG69S0€00 dA  0ELO AdT3H + 0€L0”Ad13H a'v 092 9gN
opndad |eubis
996622 dN  8780dHI  80'}e 9 2v6'ss anneind :9doH uiseype pue ulod sueIqWOW JAINO  L29.S0E€00 A 2680 Ad13H + (0doH) vdiy
apndad [eubis
195622 N 6¥80dHI L9k L 620°2S anpeind :gdoH uiseype pue uuod sueiqudWw 1BINO  2Z9/G0€00 dA 8680 AdTIH + (gdoH) gdivy o-v 092 san
uiejoid aueiquisw
006222 N 6LL0dHP  S9'Zk S 129'82 aAeINd PuUNQNS SUBJICUISLUSUEL) ‘OSEIONPal djejewny  600LS0€00 A 9610 AdT3H + Oopi4
868222 N L/LOdHM 0¥'2e ¥ 08v'Le HUNQNS JUNyINs-uoJ| ‘esejonpal ejesewny  /00.50€00 A ¥6L0 Ad13H + api4
(+e)eLe
668222 AN 8LL0dHr 08C (+2)eve ¢ 896'6. yungns ulejoidoneyy ‘osejonpas djesewny  800/S0€00 dA  G6L0 AdTIH + VP4 a'v 0ze yan
1116822 N 090LdHM  GS'L¥ L 12ELS (¢ nunqgns esed|y) g nunans ‘4 eseyluAs 41V 682/S0€00 dA  YOLL AdDTIH + ady
6/.622 AN 290LdHIM L0'2E L 286'%S 0 Jungns ‘L4 8SeYUAS 1V 16/.50€00 A 90LL AdT13H + vy av 0SS can
122622 AN €SS0dHIM  v2'6€ 8 868'GC walsAs xnjye OgvIey sy Jo uisjoid sueIquISW IBINO  GOGZS0E00 dA 9920 AdT3H + (ON) gjeH
2leeee AN $SSOdHP  0S'SH €L LS9'CL) woysAs xnjye OavIey ey} Jo uiejoid uoisny suBIqWSIN  $0G2G0600 dA 920 AdT3H + (V) OleH  3'g'V 029 2an
06122¢ AN 8900dHr 0€'¢2 S S9v'9C uungns v esealn  $069S0€00 dA 6900 AdT3H + vein
68.222 AN 1900dHM 0€£'SZ 0k  €55°L9 yungns g esealn)  €069S0€00 dA 8900 AdT3H + gein I-v 008 Lan
% eq ey
. . ssew i
NvEo ou dHr A0D 400X U Jenosion UOIJejoulE Ule}oid NvED ou Ad713H palnuspl Jone| o6 ssew -ou
Aisnoinaid 1e10id L Big Jejnosjoly xejdwon

gb6r ureas uoneuwloul SN/SIN-01 £8€9 ulens

‘sepiidad sy} jo (ebejusoiad) abeianod sousnbas uieloid ayy “A0D ‘sepidad jo Jequinu 8y} ‘U {(@dusnbag
9ouaIaiey [gON) Joquinu UoISS99. Yueguan) ‘NygD B Ul usAIb si ssew Jejnosjow arewixoidde [ejuswiadxe ay] "gIN POWeU 9J9Mm Ulel}s 889 U} JO SUBIGUISW Sy} WO Pa1e|OS]
soxa|dwod ueloidiyniy | Bi4 ul palussaidal ase pue Apnis siyl ul pawdopad s|ob JHVYJ-SAS/NG [BUOISUSWIP-OM] UO PazI|edo] || a4om d|ge} 8y} ul pajussald saxs|dwod ay |

IDV4-SAS/NG [euoisuswip-omy buisn geg uredis 1ojAd “H ul payiuspil sexsejdwod uiejold sueiquisw jo uonduosesqg
| I1avy

2802 Molecular & Cellular Proteomics 9.12



Complexome of Two H. pylori Strains

"Jods puooses 8y} ul (N/INdoH pue zdoH) suiejoid om} JO 8iniXiw e suieluod 9LgiN
(,_9G1'G = d '%6'Z = 9beION0D ‘T = Z‘gpy'E = 8J00S ‘LG8LY L = WV 171 MISOIIDITDI 1 M :opndad suo ‘egL0” Ad1aH) OBPS pue (,_810'L = d
‘%G'¢ = 9beION0D ‘g = Z ‘9p’g = 8100S ‘€0GL9°0 = AV ‘S T MIJ4LTAAMAQ T M :@pidad 8uo) 9580 AdTIH : 1S Jequnu jods sy} ul suisjoid [euoiippe aAlrend surejuod gLain 5
"(1Bo ewousb/eusnIolAd/ly nelsed isijoush//:dny) (Lg) fe je BosUOg Ul 66 UIRJLS JO UOIIBIOUUR PasIAeI 8U} OS|e 88s (|gON Ul 8|gB|lBAR UOBULIO| 4
‘I9DN Ul 9|ge|leAe 8£g UlBJIS JO UOljelouue a8y} 0} Buipiodoe ssew Jeinosjow uigjold pue uolounyaonpoid ausy ,

apndad [eubis

996622 dN  8780dHI  S0'9L S 2v6'sS aneind :0doH uiseype pue uuod sueIqIW JAINO  129/G0€00 dA 2680 AdT3H + (0doH) vdivy
apndad [eubis
195622 AN 6¥80dHI 029 g 620°LS anpeind gdoH uiseype pue uuod sueiquislw JBINO 229250600 dA 8680 Ad13H + (gdoH) gdiy
apndad [eubis
195622 N 6Y80dHI  LL'LL 14 620°LS anpeind !gdoH uiseype pue uuod sueiquialw JBINO  229.G0€00 dA 8680 Ad13H + (gdop) gdiv 3‘a 08l 6LaN
apndad [eubis
195822 N 6v80dHM 089 € 62025 aAeind gdoy uiseype pue uuod sueiquBW JBINO  g29/G0800 dA 8680 Ad13H + (gdoH) gdiv
~ (+2) 28°¢ opnded [eubis B B
195622 AN 6Y80dHr 2€v  (+2)l€2 ¢ 620°LS anpeind gdoH uiseype pue uuod sueiquislw JBINO 229250600 dA 8680 Ad13H + (gdoH) gdiy 3‘a oke 8Lan
B apndad [eubis B B
195622 AN 6¥80dHI 089 € 620°LS anpeind gdoH uiseype pue uuod sueiquislw JBINO 229250600 dA 8680 Ad13H + (gdoH) gdiy
apndad [eubis
195622 N 6Y80dHI  L¥'LL 14 620°LS anpeind !gdoH uiseype pue uuod sueiquiaw JBINO 229250600 dA 8680 Ad13H + (gdop) gdiv 3‘a 0se LLan
6.6€2¢_ dN  L9ZLdHP opndad 686.50€00_ dA  LLEL_Ad13IH
/£€6222 N /2L20dHl  60°Sk 8 1G8°G. [eubis enneind {N/NdoH urejoid sueiquiew JBINO  /8£0.S0£00 dA  /LE20° AdT13H + pN/INdOH
apndad
62,222 AN L000dH"  697Ch 9 £70°€L [eubis aAneind zdoH uisjoid sueiquIBW JOINO  0S89S0E00 dA 2000 AdT3H - pZdoH
1G6662¢ AN €€80dHr  S8'8 S 51808 opnded [eubis aAneind fuisaypy  209/G0€00 dA 0880 AdT3H + (SdoH) vaeg o} 08t 9LEN
08€€2Z N 2990dHI 2’82 €L sov'es ddoH uiejoud sueiquIBW JBINO  LOPLS0E00 dA 290 Ad13H + (ddoH) vaes
166622 N €€80dHI 092k 9 51808 epnded [eubls aaneind ‘uiseypy  209/S0€00 dA 0880 AdT3H + (sdoH) vaeg ao ore SLan
08€€22 dN  2990dHI  €v've oL sov'es ddoH uiejoid sueiqIBW BINO  LOPLS0E00 dA 290 Ad13H + (ddoH) vaes
166622 N €€80dHI  9€'8k L 51808 opnded [eubis aAneind ‘uisaypy  209/G0€00 dA 0880 AdT3H + (SdoH) vaeg ao oce yLEN
660722 AN L8ELdHI  S9'vE LL 8e0'9e utejoud [eoneyiodAy peniesuod  GOLBS0E00 dA  LOYL AdTIH + 19¥L”AdT3H
62622 AN 090LdHI 082S 6L LZELS (¢ nunqgns esed|y) g Hunans ‘L4 8seUAS 1V 682250600 dA  YOLL Ad13H + ady a 08 cLan
% eg ey
‘ou “NO! Pilele) u SSewl uoljejouue uialol ‘ou
NYED dHr 0 X eInosIoN ey 1910.d NVED Ad13H paiyuep! uisio) 1eq9| 96 ssew ‘ou
Alsnoinaid 2UISI01d 1 B4 Jenosjoly  xe|dwon
4660 urens uoleuLIoUl SIN/SIN-OT 8€9 Ulens

panujuoos—| Iav)|

Molecular & Cellular Proteomics 9.12 2803



Complexome of Two H. pylori Strains

G/08S0€00 dA  lZ¥k Ad1aH 00°+e ¥ 8'€96'8L urejoidodi| peyeroosse-sueIquIB|N 190v22 dN 6VELdH + ozddq
880850£00 dA  LvPL AdTAH 0€'Lk ¥ $'680'82 [JOH Ulejold suBIqUIBW JBINO 080¥22 dN 29€LdHr + fIoH
/¥¥/S0€00 dA 8690 AdTIH 06'kL ¥ L'0eL'0e 4I0H urejo.d BUBIGUIBW JBINO “Paid zeeeze dN 7L90dHIP + 4I0H 0 082 ELPN
0v0.50€00 A €620 AdT3H 08'82 6 2GLe'CS urejoud utiod 566222 dN 7120dHr + vdoH
129/G0€00 dA 2680 Ad1IH 0Z'vL ¥ [elorAele} uisaype pue uuod sueiquisw 1IN0 995622 dN 8¥80dHI + (0doH) vdiy
9G2.50€00 A 6970 AdTAH  0£'Lk 2L €£9'6S OJOH UIe10Id SUBIGLISL JOINO "Paid 951€22 dN 8EY0dHI + OJOH 0 082 ZHPIN
81185000 dA  P.LPL AdTAH 092k € 8eLlLTy MIOH utejoud sueIqIBW JBINO Zhiree dN 76ELdHP + (MdoH) soH
0¥0/S0€00 dA €620 AdTAH 08'LI v 2Z'GL62S ursjoud ulod 566222 dN 7120dHr + vdoH
129/G0€00 dA 2680 Ad13IH 0Ov'GL 12 5€2'9S uisaype pue uuod sueiquisw 1IN0 995622 dN 8780dHI + (OdoH) vdiv 0 00¢ LLPN
G/08S0€00 dA  LZ¥L Ad1aH Ov'6L €  8'€96'8t urejoidodi| peyeroosse-sueIquIB|N 190v22 dN 6VELdHP + ozdd
#06950£00 dA 6900 AdTAH  05'92 9  ¥'8l¥'oe yungns v esealn 062222 dN 8900dHI + vein
€06950£00 dA 8900 Ad13H 0L'0E 0k G'60S°L9 Hunans g eseain 682222 dN 2900dHr + gein 0 008 0PN
996950€00 dA  6V10 AdTAH 00°€h € glar'oe HUNQNS SWAYOUOW SSBPIXO O SWO0IY0IAD "paid 758222 dN €E10dHr + oxi4
89695000 dA  LGLO AdTAH  0°CH €  6'lShee HUNGNS BW8YIP 8SBPIXO O SLIOIYI0IAD "paid 968222 dN SELOdHr - dxi4
yungns Buipuig
G969S0€00 dA  LPLO AdTIH 206 (+2)9S°€ b L.¥8'SS -19ddoo pue g sway 8SEPIXO O BUWIOIYOOMD "paid €5822¢ dN 2ELOdHP - (E] 49V 094 6rIN
129/50€00 A 2680 Ad13H 96°0€ 0L gee'os uiseype pue uuod aueiquIdW JAINO 995622 dN 8Y80dHI + (0doH) vdiy
229/G0€00 dA 8680 Ad1IH 062k S €85'09 uisaype pue uuod aueIquISW JBINO 195622 dN 6780dHI + (@doH)@dy  H'a@'v 002 8rN
/ / 0€L € 7915'9L uisaype "paid 288€2¢ dN Y9LLdHP + gaeg
686/50800 dA  ZLEL AdTIH (+2) or's 626822 dN L9ZLdHP
/8€0.S0€00 dA /L€20 Ad1AH 0€S  (+2) 2Ly 2  S9lv'SL N/WdoH uisjoid sueiquIsW J8INo “paid /€€622¢ dN /2+20dHr + N/WdoH 3V ort PN
(+2) 80'%
€90/G0€00 dA 6520 Ad1IH 0€9 (+2)8L'E 2  ¥'LE8LS DdoH urejoid sueiqwBW JBINO 656222 dN 8620dHr + (AdoH) BdoH
29050600 dA 8520 Ad13IH 0€2L S 092 4doH uiejoud sueiquisW 1BINO 856222 dN 1€20dHr + (xdoH) 4doH v 08L 9rn
600/G0€00 dA 9610 Ad1IH 02°0L €  PveelL'se HUNgNS g BWOIYO0MO ‘eSEIONPRI Bjesewn 006222 dN 6L1L0dHr + opi4
200/G0€00 dA  ¥6L0 Ad1IH 0802 v 9eLr'le HUNQGNS JUNyNS-UoJl ‘@sejonpai ejelewny 868222 dN 1210dHrP + apid
(+2) 66°€
800/50€00 A  S6LOAdTAH 22v (+2).5¢ ¢ €ve6'6L yungns uiejoidoneyy ‘esejonpal sjelewny 668222 dN 8L10dHr + vpid 30 oze SPIN
(+2) oze
G9Y/S0€00 dA  8LL0 AdT1AH OFZL (+€) Lb'v € 0LL'6k 1118} BululEu00-UOI! BWSYUON 9leeze dN 86S0dHI + 4d 5
16896000 dA 8000 Ad13H 2901 S 9'890'8% urejoud >ooys jeay pue suosedeyd 0€2222 dN 8000dHI + 09dsH 713019 IV 'Y 005 PPN
(+2) ¥8'¢
68//G0€00 dA  YOLL AdTIH 099 (+2)0F'€ 2  G0.24S ureyo ¢ |4 eseyiuhs d1v ‘paid 6..£2¢ dN 090LdHr + adw
162/G0€00 dA Q0L AdTIH 022 (+2)€0°€ L+  LL90'SS ureyo © |4 eseyjuhs d1v ‘peid 6.,£22 dN 290LdHP + vdiy a'v 0SS €PN
G0G/S0€00 dA  99.0 Ad13IH 06°GE 9 1'968'Gc  welshs xnye OgVIey ey} Jo uisjoid uoisny sueiquis |y L22€eg dN €5G0dHr + ajeH
weishs
#0G/G0€00 dA 920 AdT3H 00°S 14 PSS ELL Xn|ye Ogvey sy} Jo sutejoid duwnd oiwsejdoiho 2.2€eg dN 7SS0dHP + OBH 10V 029 2PN
(+2) 0e'e
06950£00 A 6900 AdTAH 088 (+2)Sb'e ¢  ¥8Ly'9e Hunans v esealn 062222 dN 8900dHI + vein
€06950€00 dA 8900 Ad13IH 0L'GE €L §'60S'19 yungns g eseain 68,222 dN 2900dHr + gain oY 008 LPIN
% eg 2]
‘ou “AO! 1109 u Sseu uoljejouue uiLloJ ‘ou
NVED AdT3H 0 X 1enos|op Bl 19101 NER) dHr pauIuSpl - o9 ssew ou
Alsnoinaid UlS10id 196 z ‘614 tenosjopy  xa|dwon
489 ulens uoljeuLIojul SIN/SIN-OT 66" UBAS

‘pajolpald “paid ‘sepndad auj jo (ebejusoiad) abeianod aousnbas uieloid sy} “A0D ‘sepndad jo Jequinu 8y} ‘U {(@dusnbag
9oUBIBRY |gON) Joguinu UoISSeooe YurguaL) ‘NygD "Bd¥ Ul USAIB S Ssew Jejnosjow ajewixoldde [ejuswiiadxs syl "M\ POWEU 8JoM UIBIIS GBI SY} JO dUBIQUUSW S} WOJ) Pa1e|oS]
soxa|dwoo uioidiny ‘g "Bi4 ul peyussaidas ase pue Apnis siy} ul pswiopad s|eb JHYJ-SAS/NG [BUOISUSWIP-OM} UO Pazi[edo) |e alem 8|ge) 8y} Ul pajussald sexa|dwod oy

IOVJ-SAS/NG [euoisuswip-omy buisn g1 uresys LojAd “H ul peyuspl sexsjdwod urejoid sueiquisw JO UoRALIOSET
|| av]

Molecular & Cellular Proteomics 9.12

2804



Complexome of Two H. pylori Strains

(,-968'¢ = d ‘%06'G = obeIBN0D ‘g = Z ‘6/'Z = ©I0DS ‘/8/GE’L = AV

M T MADANTOAONTVONVA 1 M) JdoH pue (, 868"/, = d ‘%06'S = 9b6eISN0D ‘g = Z ‘GL"¢ = 8100S ‘¥9/G0°L = AV 17 HIDONATADANSAHASD 1 d) G40H (5, 9889 = d ‘%0.°S

= 9bBISN0D ‘g = Z 68y = ©J00S ‘€£0.G°0— = AV ‘4 T MADIF4IHIAAITY T M) D40H (,_88€°2 = d ‘% /0°¢ = 86ISN0D ‘g = Z°9G°¢ = 81038 ‘6°0 = AV 11 MSISAAASTdANION 7 -)
NXId (,-8202 = d ‘%0gc = obesonod ‘z = z g0'¢ = @I00S ‘G/898'0 = WV ‘HTMSTAAAAITYH TH) vdiv :sjods eseyy ul paynuepl sem spnded ouo AuQ,
‘IGON Ul 8|ge|ieAe geg ulelis Jo uolelouue syl Buipiodoe uonewIo| o
(169 swousbeuaniolAd /iy inaised 1siiouab//:dny) (LE) 66 UBJS JO UOIIBlIOUUR PasiAaJ 8yl 0} Buipiodoe ssew Jejndajow uigloid pue uoijouny/onpold auay)

261/G0€00 dA  LOLL AdTIH 9502 € 8¥S5L0e ureys @ |4 eseyiuhs d1v ‘peid 082622 dN €90LdHr + Hdw

922850€00 A 265+ AdTAH S8'82 9 52e'8e 6% LdHP uolbal Buipod “paid zieree dN Y67 LdHP + Y67 LdHP r or GeriN

8L1850€00 dA  P.LPL AdTAH 286 € 8eLlTy MIOH ulejoud suBIqIBW JOINO ZLipee dN Y6ELHP + (MdoH) yoH

8L1850€00 dA  PLPL AdTAH  v¥EL v 8eLL'ey MIOH ulejoid suBIqISW JOINO ZLivee dN ¥6ELdHP + (MdoH) yoH

9¥9/G0€00 dA 8260 AdTAH LLEL ¥ £99r'8y JapodwAs suroh|B-auluele-a/wnipos "paid $65€22 dN 1/80dHr - vbeq H 08 vern
(+2) eee

90G/G0€00 dA /9.0 Ad13H 09S¢  (+g)8ee ¢ €851V weshs xnjye Dgviey 8y} Jo uieloid sueiqUIBW JBINO 0/2£22 dN 2SS0dHr + VieH

229/G0€00 dA 8680 Ad1IH 062k S €85'99 uiseype pue uuod aueIquISW JBINO 195622 dN 6¥80dH + (gdoH) adiy H 0se €2rN
(+2) 00'e seseqejep B

628.G0€00 dA  L¥LL AdTIH 1GEL (+2)2ke 2 9°€69'0¢  @ui ul Bojowoy ou yum QoL LdHr uoibas Bulpod "paid 218622 dN 00k LdHP + 00k kdHP

109/G0€00 dA 0880 Ad13H 059 ¥ 80208 uisaypy [Relelor AP\ €€80dHI + (SdoH) vaeg H oce 22N

LL¥2G0€00 DA 0990 Ad1IH 06'S  (+2)6LC o 8'00%'6¢ utod €9¢€2¢ dN S¥90dHP + 3doH

676950€00 dA 9210 AdT1IH 06'S  (+2)SL'E b peoLle gJoH uejoid suBIqUIBW JOINO "paId 868222 dN ZLLOdHP + gioH 3 ozt 12PN
(+2) 9e'v

672/G0€00 dA  LOY0 AdT1IH 098 (+2)85€ 2T  GLSTLY uie}0.d BUBIGISW JBINO “Paid 55622 dN 2G80dHr - MdoH
(+2) 8%

€90/G0€00 dA 6520 Ad1IH 0L'S  (+2) 95 2  vLe8°LS DdoH urejoid sueiqwBW JAINO 656222 dN 8€C0dHI + (AdoH) doH 3 ozt 02rn

0€'9 € polgos uisaype "paid 288€2¢ dN ¥9LLdHP + gaeg
£09/G0€00 dA 0880 Ad13H 068 9  80zro8 uisaypy 155622 dN €€80dHI + (sdoH) vaeg 3 oel 6L
0L'6 ¥ 9lg9L uisaype "paid 288€2¢ dN YOLLdHP + gaeg

686250600 dA  ZIEL_AdT3H 6.6€22_dN L9Z LdHP

/8€0.50€00 dA /L€20 Ad13H  05°02 6  S9lp'SL N/WdoH uigjoid sueIquIBW JeNno "paid /€£6222 dN /2+20dHr + N/WdoH 3 08} 8L

GOLBSOE00 dA  LOYL AdTIH  62%L € 6109 urejoud pe}eloss “paid 660122 dN L8ELdHI + 18ELdHP

682/G0€00 dA  ¥OLL AdTIH  9v'9€ 2Lk §0.248 ureyo g |4 eseyiuhs d1v ‘paid 121€22 dN 090LdHr + adwy a 0$ LLPIN

821.50€00 A 2280 AdTAH 02€  (+)6.8¥% oL  L'GBS'/Z OIOH dINO "Paid 9/€119G1 20€0dHr + OIoH
(+2) vee

LL¥2G0€00 AA 0990 Ad13H OFLL (+2) ¥y €  800v'6C utod €9¢€eg dN S¥90dHP + 3doH a 08 9PN
(+2) vy

¥66950€00 dA  6LL0 AdTAH 0.6 (+2)€2¥ ¢  6'G88'EE O oselawwos| sues}-sio Ajoid-|Apnded “paid 28822¢ dN L9LOdHP + Oldd

€90/G0€00 dA 6520 Ad13IH €v'L € vLe8'LS BdoH ulejoid sueiquisw JBINQ 656222 dN 8€20dHr + (AdoH) pdoH a 08 SLPN
(+2) 6LE

28160600 dA  06€0 Ad1IH 092k (+2)8L'S 2  ¥2928L urejoud eseoojsuely uiejold Juspuadepul-0eg “paid €EVLLOSL S9E0dHr - grel
(+2) 9Ly seseqelep B

G8L/G0E00 dA  €6€0 Ad1IH 896  (+2)9L'€ 2 9LLLZg @yl ul Bojowoy ou yum 89e0dHr uoibes bulpood "paid 180€22 dN 89E0dHI - 89€0dHI

087.G0€00 A  €€.0 Ad13H 1991 [oR O 4 A 2 HdoH uiejoid sueiqIBW JBINO 662€2¢ dN 18G0dHI + (vdi0) HdoH a 08 vLPN

% eg 2]
‘ou “NO! 1109 u Sseul uoijejouue uIeloJ ‘ou
NVED AdT3H 0 X 1enos|op Bl 19101 NVED dHr paIUSpI soros o9 ssew -ou
Alsnoinaid 2UISI0Id 196 z ‘614 tenosjopy  xadwon
48€8 utens uonewlojul SW/SN-071 66" Ulens

panuiuoo—i| I1avy

Molecular & Cellular Proteomics 9.12 2805



Complexome of Two H. pylori Strains

A MIZMJ4  MJS M7 MJ9
Mr (kDa) Mi“|~f"l|3 |I\|IIJ6 MuJﬂ

Box 1 MTJ3

250
150
100

75

50

37

2nd dimension

25

20

N o
669 440 232 140 66 Mr (kDa)

1stdimension

B MJ2 mJ8
Mr (kDa) MJ1 MJ3 MJ5 MJ9

150
100
75

50

37

2nd dimension

25

669 440 232 140 Mr (kDa)

1stdimension

Fic. 2. Analysis of crude and purified membrane samples of H. pylori strain J99. The first (BN-PAGE) and second dimension gel
electrophoreses (SDS-PAGE) were performed with the various protein quantities and acrylamide gradients indicated on each gel (A-J). Dotted
arrows indicate proteins that were not attributed to heterooligomeric complexes. More contrasted pictures of migration of the MJ3 complex are
shown in boxes 1 and 2. Protein identifications are presented in Table Il. Multiprotein complexes from the membrane of strain J99 were named MJ.
A-G represent the analyses of the crude membrane samples. H-J represent the analyses of the fractions eluted when the membrane sample was
purified using the ionic column (HiTrap Q column) before applying the two-dimensional BN/SDS-PAGE. H corresponds to the directly eluted
fraction. / and J correspond to fractions eluted with 250 mm NaCl from different sample preparations. &, spots for which identification has failed.

which encode membrane fusion and resistance-nodulation-  widespread among Gram-negative bacteria. They are associ-
division cytoplasmic pump proteins, respectively (51). The ated with bacterial resistance to antibiotics. In E. coli, AcrA
resistance-nodulation-division family of efflux systems is exists as a complex with AcrB on the periplasmic surface of
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C | MJ15 MJ17
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Lpp2
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v - 1stdimension o
T T
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E MJ7  MJ20 F G
I |
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100 Froa EroBde: BabA 63.72 g
75 s BabB
S L HopMIN” HopllIN c
50 w BabB ' BabB 2
[}
c
[
£
-]
c
| 371 g S
° g
B [
g £
E g
: 25 :
| 25 \
v
1D: 4-13.5 %
v 2D: 13%

440 232 140

|
66

37.2 ug
Mr (kDa)

1stdimension

FiG. 2—continued

the inner membrane (52). In fact, AcrA, AcrB, and TolC of
E. coli form a stable intermembrane multidrug efflux complex
(53). In H. pylori, the genes coding for this proposed efflux
system are composed of HefB, HefC, and HefA subunits
(corresponding to the AcrA, AcrB, and TolC complex in
E. coli, respectively) and have been shown to be highly con-
served in sequence and organization between multiple H. pylori

strains and to be expressed both in vivo and in vitro (54). In H.
pylori, HefC is involved in energy-dependent multidrug efflux
(55), and HefA, a TolC-like protein (56), plays an important role
in multidrug resistance (57, 58). MB2 and MJ2 complexes pres-
ent an approximate M, of 670 kDa, which would correspond to
three homotrimers of each subunit of this proposed efflux sys-
tem as reported previously in other bacteria (59). Thus, the HefA
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H

Mr (kDa) MJ|22 MJ|23M‘{8 MJ|24
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1stdimension
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1stdimension

FiG. 2—continued

subunit was probably lost during the purification of the complex.
It therefore remains to be determined whether HefA corre-
sponds to TolC in this complex.

Another TolC-like protein was identified in the H. pylori
genome corresponding to JHP1382 (HELPY_1462) (56) and
was shown to be active in efflux (57). MB12 is composed of

HELPY_1462 and the secreted neutrophil-activating protein
NapA (60). Therefore, it is tempting to speculate that the outer
membrane efflux protein encoded by JHP1382 (HELPY_1462)
participates in the secretion of NapA.

Eight membrane complexes comprising orphan proteins
were retrieved (MB6, MB10, MB12, MB13, MJ14, MJ17,
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TABLE lll—continued

Strain J99°

LC-MS/MS information

Strain B38?

JHP no. GBAN

n Xcorr Cov.

Molecular
mass

Protein annotation

GBAN

Fig. 3 gel Protein? Previously
letter identified HELPY no.

Molecular
mass

Complex
no

%

Da
66,920

kDa

NP_222822

JHPO101

10.97

5

Chaperone protein dnaK (heat shock protein 70) (heat

YP_003056934

HELPY_0109

+

DnaK

40

CB30

shock 70-kDa protein) (HSP70)
Putative tautomerase, Dmpl-related protein

NP_223576

JHP0858

2.52 (2+) 38.24

3.06 (2+)

2

7,366

YP_003057631

HELPY_0908

+

Dmpl

2 Gene product/function and protein molecular mass according to the annotation of the strain B38 available in NCBI.

b |nformation available in NCBI; see also the revised annotation of strain J99 in Boneca et al. (31).

¢ According to this annotation, HELPY_1048 was annotated “hypothetical protein” whereas its corresponding protein in the J99 strain, JHP1004, was annotated “predicted

DsbC-like protein” by Boneca et al. (31) (http://genolist.pasteur.fr/PyloriGene/genome.cgi).

MJ22, and MJ25). The MB6 complex comprised two proteins
whose genes are present in all of the sequenced H. pylori
strains and were annotated as predicted coding regions with
no homolog in the databases, i.e. HELPY_0130 (JHP0119)
and HELPY_1147 (JHP1100), demonstrating that both of
these ORFs encode for proteins present in the membrane.
Analysis using the STITCH server (33) also revealed possible
interactions between these two proteins and five intermediary
proteins: four orphan proteins named JHP1044, HELPY_0788
(JHPO534), HELPY_0795 (JHP0527), JHP0526 and FIbA.
FIbA is a membrane protein involved in the coordinated
expression of the H. pylori flagellar genes, flaA and flaB, and
flbA mutants were aflagellate and completely non-motile
(61). Using a blastp search, no putative conserved domains
were detected for JHP0119, whereas a 56% identity in a
43-residue overlap was revealed with the dynein heavy
chain 6 of Tetrahymena thermophila, a free-living ciliate
protozoa. Dyneins are molecular motor complexes involved
in cilium and flagellum movement (62, 63). Taken together,
these results suggest that these two orphan proteins, in
particular JHP0119, could play a role in the flagellar function
of H. pylori.

Complexes Involved in H. pylori Adherence—Bacterial ad-
herence is considered to have an important role in the colo-
nization of gastric epithelium by H. pylori. Approximately 4%
of the H. pylori genome encodes at least 32 OMPs (64), but
the role of these individual OMPs in H. pylori adherence is still
poorly understood. The main OMPs associated with H. pylori
pathogenicity are BabA, SabA, OipA, AlpA, and AlpB, which
were all found in different complexes by two-dimensional
BN/SDS-PAGE. However, other OMPs, such as HopF (HopX)
and the essential OMP for mouse colonization, HopG (HopY)
(65), were found together in both strains (MB8 and MJ6).
HopG was found also with the predicted OMPs HopK and
PpiC in the MJ20 and MJ15 complexes, respectively. HorJ
(HopV) interacts with HorF and Lpp20 in the MJ13 complex,
and HorK (HopW) is associated with DagA (MJ24) and with
both AlpA and HopA (MJ11). All of these complexes contain at
least one of four highly conserved OMPs among H. pylori
strains, i.e. HopF, HopG, HorJ, and HorK (HorJ and HopF are
porins) (66). The expression of these OMPs/porins does not
seem to be regulated by phase variation (67), and they are
expressed at the surface of all H. pylori strains and appear to be
continuously expressed during all stages of H. pylori infection
(66). In fact, these four OMPs/porins are immunogenic in mice,
and the resulting sera recognize specifically the corresponding
proteins and no other member of the OMP family, suggesting
that the conserved regions do not contain immunodominant
epitopes (66) and may constitute an excellent vaccine target
because they seem to be constitutively expressed in H. pylori.

H. pylori porins are weakly expressed compared with those
of other bacteria. In addition to Hord and HopF, HopE, a
non-selective porin allowing the passage of hydrophilic sub-
stances by general diffusion (68), was found in complexes
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Fic. 3. Analysis of crude and purified cytoplasmic samples of H. pylori strain B38. The first (BN-PAGE) and second dimension gel
electrophoreses (SDS-PAGE) were performed with the various protein quantities and acrylamide gradients indicated on each gel (A-N). Dotted
arrows indicate proteins that were not attributed to heterooligomeric complexes. More contrasted pictures of migration of the CB2 and CB16

complexes are shown in boxes 1 and 2, respectively. Protein ident

ifications are presented in Table Ill. Multiprotein complexes from the cytosol

of the B38 strain were named CB. A-C represent the analyses of the crude cytoplasmic samples. D and F represent the analyses of the

fractions eluted when the cytoplasmic sample was purified usi
two-dimensional BN/SDS-PAGE. G-N represent the analyses of
before applying the two-dimensional BN/SDS-PAGE. J, spots fo

ng the gel filtration method (Superdex 200 column) before applying the
the fractions eluted by the isoelectrofocalization method (Rotofor system)
r which identification has failed.

MB11, MJ16, and MJ21 comprising proteins rarely studied be antigenic in humans and immunologically conserved with
from the hor family: HorB, HorF, HorL, HorH, HorC, and HorE.  both patients’ sera and specific monoclonal antibodies (68).
This can be explained by the fact that HopE forms large Among the proteins of MB11, HorH, HorE, and HorF were
channels (68, 186) compared with other porins described in H.  reported previously to be present in the membrane; HorE and
pylori or in other Gram-negative bacteria. HopE was shownto  HorF are also immunoreactive (69). All of these newly char-
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TABLE IV—continued

Strain B38°

LC-MS/MS information

Strain J99?

GBAN

Cov. HELPY no.

n Xcorr

Molecular
mass

Protein annotation

GBAN

JHP no.

Fig. 4 i a Previously
gel letter Protein identified

Molecular
mass

Complex
no

%
4190 HELPY_0025

Da
47,298.8

29,874.6

kDa

YP_003056867

15
10

NP_222745

JHP0023
JHPO181

+
+

led
Fabl

120 G

CJ16

YP_003057011

33.09 HELPY_0198

Pred. isocitrate dehydrogenase

NP4222902

Pred. enoyl-(acyl-carrier-protein) reductase (NADH)

2 Gene product/function and protein molecular mass according to Boneca et al. (31) (http://genolist.pasteur.fr/PyloriGene/genome.cgi).

® Information according the annotation of strain B38 available in NCBI.

(Part 2), and

HELPY_0676

¢ The gene corresponding to HyuA (JHP0633) is not found in the B38 strain; only three “pseudogenes” correspond to HyuA: HELPY_0677 (Part 1),

HELPY_0675

(Part 3).

acterized OMPs and their interacting partners may constitute
attractive targets for a vaccine.

The adherence-associated lipoproteins AlpA (HopC) and
AlpB (HopB) are encoded by highly homologous genes (64,
67) and were found in the membrane (69). Both lipoproteins
are involved in the adherence of H. pylori to the gastric epi-
thelium (70) in a different pattern than that observed for the
BabA-mediated adherence, suggesting that a different recep-
tor may be involved (71). AlpA and AlpB are required for
gastric colonization (72, 73) and are especially recognized by
sera from H. pylori-infected patients (69, 74). In addition,
AlpA/B may induce gastric injury by mediating adherence to
gastric epithelial cells and by modulating proinflammatory
intracellular signaling cascades (73). Both of these lipopro-
teins were found in interaction in MB5, MB7, MB19, and MJ8
complexes. Furthermore, AlpA and AlpB are both described
as outer membrane porins and adhesins, suggesting that they
have multiple activities. In fact, they were retrieved from sev-
eral complexes (MB10, MB17, MB18, MJ11, MJ12, and
MJ23), either alone or together, in association with different
OMPs, such as HopA (MJ12); the essential OMP for coloni-
zation, HofC (65); HorK; and JHP0999 (HELPY_1043), a pu-
tative metalloprotease/putative membrane protein, showing
the importance of AlpA and AlpB for the bacteria.

Examples of Membrane Complexes Retrieved from Only
One Strain—The proinflammatory OMP OipA (HopH) (75), an
adhesin involved in cytoskeleton reorganization (76), was only
retrieved from the J99 strain (MJ14), interacting with the pre-
dicted Sec-independent protein translocase protein TatB and
JHP0368, whose gene was annotated as a predicted coding
region with no homolog in the databases. This result is not
surprising because the B38 strain has a non-functional oipA
status.

The major H. pylori adhesin is BabA (HopS), which binds to
the fucosylated Lewis b blood group antigen (77) and has a
closely related paralog, BabB (HopT), whose function has not
yet been determined. BabA and BabB are associated in the
complex MJ19, which is undoubtedly specific for J99 strain
because the B38 strain does not express BabB. BabB was
also found to interact with HopM/N (MJ18) in the J99 strain.
In the B38 strain (MB16), BabA interacts with HopM/N as
well as with the predicted coding region JHP1100 (MJ22), a
protein with no homolog in the databases recently reported
to be present and immunoreactive in the H. pylori mem-
brane (69). Recent studies showed that neither BabA nor
BabB could induce an immune response in monkeys (78)
and that BabA and BabB were not immunodominant anti-
gens in humans (48, 79). One hypothesis is that the proteins
interacting with them in the membrane could mask the
BabA epitope and could consequently be exposed and
therefore be antigenic; this is probably the case of HopM/N
previously shown to be immunoreactive to sera from H.
pylori-positive patients (44, 80). These BabA/BabB-interact-
ing proteins (JHP1100, HopM/N, and HopZ) represent po-
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arrows indicate proteins that were not attributed to heterooligomeric complexes. Protein identifications are presented in Table IV. Multiprotein
complexes from the cytosol of the J99 strain were named CJ. A-F represent the analyses of crude cytoplasmic samples. G represents the
analysis of the fraction eluted at ~168 kDa when the cytoplasmic sample was purified using the gel filtration method (Superdex 200 column)
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before applying the two-dimensional BN/SDS-PAGE. J, spots for which identification has failed.
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tential antigen targets for the development of an H. pylori
vaccine. In the current study, BabA was also associated
with SabA in different oligomerization states in the B38
strain (MB14 and MB15); this complex was never retrieved
from the J99 strain. SabA (HopP) is the second most well
characterized adhesin of H. pylori; it binds to sialylated
Lewis X antigens and is up-regulated during persistent H.
pylori infection (81), strengthening the epithelial attachment
necessary to achieve successful colonization (82). These
BabA-SabA complexes could be potentially implicated in
development of malignant diseases because each protein
has been associated with gastric cancer (83-86). Indeed,
SabA anchors to cellular receptors (81) considered as tumor
antigens (87) and gastric dysplasia markers (88). Further-
more, a recent study has shown that BabA-positive strains
were associated with an intercellular localization of the bac-
terium, intestinal metaplasia, and degenerative alterations
observed on gastric biopsies (89). Thus, BabA-SabA asso-
ciation could permit strains expressing this complex to
reach the intercellular compartment and to persist between
host cells even during the development of a malignant dis-
ease. The sabA gene is among the most divergent genes in
the H. pylori genome (90), and its “on”/”off” expression is
regulated by phase variation (67). Although a non-functional
status was found for the sabA gene in the B38 strain (11),
the corresponding protein is undoubtedly synthesized be-
cause it was identified in two complexes. This is not sur-
prising because the SabA expression is frequently switched
on or off both in vitro (91) and in vivo (16).

Although never retrieved from the J99 strain, SabA appears
in three complexes in the B38 strain (MB14 and MB15) and
also in association with the neuraminyllactose-binding he-
magglutinin HpaA (MB9), an antigenic lipoprotein present in
the flagella sheath of H. pylori and expressed in all strains
(69, 92).

Cytosolic Protein Complexes

At the cytosol level, 30 and 16 heterooligomeric protein
complexes composed of 47 and 27 different proteins were
identified in the H. pylori B38 (Fig. 3 and Table Ill, complexes
named CB) and J99 (Fig. 4 and Table IV, complexes named
CJ) strains, respectively. Only five complexes were common
to both strains: UreB-GroEL-UreA, GatA-GatB-DnaN, DnaK-
GroEL, PurD-PurD, and HELPY_0317 (JHP0295)-FabZ.

New Insight into H. pylori Cytoplasm lllustrated by Six Ex-
amples—In this study, most of the complexes identified in the
cytoplasm contained proteins suspected to be involved in
metabolism, which is a prerequisite for virulence. For exam-
ple, the CB29 complex comprised two proteins predicted to
catalyze the second and third steps in the de novo pyrimidine
biosynthesis pathway, aspartate carbamoyl transferase (PyrB)
and dihydroorotase (PyrC), respectively (93). This complex
would allow the transformation of carbamoylphosphate into

dihydroorotic acid during the de novo synthesis of UTP and
CTP (94).

The major route for the generation of acetyl coenzyme A in
H. pylori is via the pyruvate:flavodoxin oxidoreductase (POR),
an essential heterotetrameric complex composed of PorA,
PorB, PorC (ex-PorG), and PorD (95, 96), which has also been
implicated in metronidazole resistance (95, 97). Although
PorA, PorB, and PorC subunits were found previously using
two-dimensional BN/SDS-PAGE (28), modifications were
made during sample preparation that did not allow us to retrieve
the POR complex. However, PorA and PorC were found sepa-
rately in 150-kDa complexes with RfaD (CJ7 and CJ10), a
“predicted  ADP-L-glycero-b-mannoheptose  6-epimerase”.
ADP-L-Glycero-pD-mannoheptose 6-epimerase is the last en-
zyme in the pathway for synthesis of ADP-heptose, a precursor
of core lipopolysaccharide in Gram-negative bacteria (98). Thus,
the interaction of RfaD with PorA and PorC suggests a new
activity related to the virulence of H. pylori POR.

Several complexes contain proteins predicted to be in-
volved in fatty acid biosynthesis (FAS). The FAS system is
divided into two different pathways named FAS | and FAS I
based on the architecture of the enzymes involved. In contrast
to the large multifunctional enzymes with multiple domains
that catalyze various reactions of the FAS | pathway in fungi
and mammals, FAS enzymes for bacteria belong to the FAS Il
pathway where the acyl chain covalently attached to the acyl
carrier protein (ACP) is elongated with five enzymes catalyzing
consecutively. Thus, the enzymes involved in the FAS Il path-
way represent a validated yet unexploited and very promising
target for antibacterial agent development (99, 100). In H.
pylori, the elongation phase of fatty acid biosynthesis could
imply FabF, FabH, FabG, Fabl, and FabZ (94). FabG, Fabl,
and FabZ were found in 10 different complexes (CB17, CB18,
CB27, CB28, CB7, CB8, CJ11, CJ14, CJ15, and CJ16). Each
of these three enzymes was found with the predicted isoci-
trate dehydrogenase Icd (CB28, CJ15, and CJ16), suggesting
that the enzymes of the FAS Il pathway are closely linked with
Icd. Such a link was demonstrated in Saccharomyces cerevi-
siae (101, 102) in which Icd provides NADPH for B-oxidation
of polyunsaturated fatty acids. Similarly, Icd could play a role
in fatty acid biosynthesis of H. pylori. Complexes including
orphan proteins associated with enzymes of the FAS Il path-
way were found: FabG interacts with HELPY_0235 (JHP0892)
in CB27, and FabZ is associated with HELPY_0317 (JHP0295)
both in B38 and J99 strains (CB17 and CJ14), suggesting a
possible role of these two orphan proteins in FAS. FabZ is an
important enzyme for the elongation cycles of both saturated
and unsaturated fatty acids in the FAS Il pathway. With regard
to H. pylori, FabZ was shown to be immunoreactive (69), and
its recent x-ray crystal structure revealed that it maintains its
unique features and suggests that it could be inhibited either
by occupying the entrance of the tunnel or plugging the tunnel
to prevent the substrate from accessing the active site (103).
FabZ was also found in complex CB7 with Fabl, a predicted

Molecular & Cellular Proteomics 9.12 2817



Complexome of Two H. pylori Strains

enoyl-ACP reductase (NADH) catalyzing the reduction of the
enoyl-ACP resulting from the FabZ reaction. Fabl is highly
conserved and widely expressed among bacteria with only a
single known isoform. This reductase is essential for the bac-
terial viability of E. coli (104) and now appears to be an ex-
cellent target for the development of narrow spectrum anti-
microbial agents that selectively target pathogens, such as
Mycobacterium tuberculosis (105, 106) or multidrug-resistant
Staphylococcus aureus (107). The presence of multiple tar-
gets in the FAS |l pathway presents the possibility of devel-
oping synergistic chemotherapeutic regimes that could inter-
vene simultaneously at multiple points in the biosynthesis of
fatty acids (100). Moreover, the identification of certain multi-
protein complexes with enzymes involved in FAS Il pathway
should help in developing new therapeutic strategies by in-
hibiting the formation of these complexes. Thus, the partners
of FabZ and/or Fabl could also be targets for antibacterial
drugs.

GmhA, a predicted phosphoheptose isomerase involved in
the biosynthesis of inner core lipopolysaccharides, was found
to be associated with MdaB (CB26), a predicted modulator of
drug activity and an important enzyme to fight against oxida-
tive stress (108), suggesting that this complex may be in-
volved in drug resistance.

The essential thioredoxin system of H. pylori comprises
thioredoxin Trx1 (TrxA; JHP0763) and thioredoxin reductase
TrxR1 (TrxB; JHP0764) (109). Trx1 and TrxR1 demonstrate
specialized catalytic properties because both form a reduc-
tase system for H. pylori TsaA/AhpC (110). Trx1 is considered
as a stress response element in H. pylori as its expression
increases dramatically under conditions of oxidative stress
(109). Trx1 also acts as an arginase chaperone capable of
renaturing the enzyme to a catalytically active state (111).
Another predicted thioredoxin reductase, TrxR2 (also named
FarB), was demonstrated to exhibit an NADPH oxidoreduc-
tase activity that is part of the pyruvate:ferredoxin oxi-
doreductase complex (112). Trx1 and TrxR2 were found in
complex CB21, suggesting that these enzymes really have
multiple functions in the bacteria: TrxR2 could also be impli-
cated in the H. pylori thioredoxin system, or conversely, Trx1
could be implicated in the pyruvate:ferredoxin oxidoreductase
activity.

Chaperones constitute a functionally related group of pro-
teins increasingly synthesized under heat shock conditions to
prevent protein aggregation (113), thus protecting the cell
from damage caused by the formation of improperly folded
polypeptides (114). Many heat shock proteins play a key role
in cellular metabolism under all growth conditions, assisting
the folding, assembly, and translocation of cellular proteins
(115-117). The presence of DnaK (Hsp70) with TsaA (CB20) is
not really surprising because TsaA was shown to switch from
a peroxide reductase to a stress-dependent molecular chap-
erone function (118). The best studied examples of such
“molecular chaperones” include the ubiquitous GroEL

(Hsp60) and DnaK proteins. In H. pylori, the most prominent
chaperone is GroEL and its co-chaperone GroES (119), both
immunogenic and present in the structure-bound and soluble
fractions (48, 120). In the present study, GroEL and DnaK
were found in complex CJ4. It was reported recently that the
two eukaryotic homologs of these chaperones are able to
interact to form a stable complex (121), whereas no similar
interaction seems to occur between their prokaryotic coun-
terparts, GroEL and DnaK. However, both of these chaper-
ones are up-regulated by cadmium in Rhodobacter capsula-
tus (122), and they cooperate in their chaperone functions in
E. coli (123). Moreover, their transcription is negatively regu-
lated by the same repressor in H. pylori (124). DnaK was also
found with Dmpl, a putative tautomerase (CB30), and with
HemE, a predicted uroporphyrinogen decarboxylase (CJ12).

Examples of Cytosolic Complexes Retrieved from Only One
Strain—The complex including JHP0631, JHP0632, and
JHP0633 (HyuA) (28) was again isolated in the J99 strain but
not in the B38 strain (CJ13). This was predictable because the
protein corresponding to JHP0633 is absent in strain B38.
JHP0632 and JHP0633 are annotated as predicted N-meth-
ylhydantoinase, and JHP0631 is annotated as a predicted
coding region. However, JHP0631, JHP0632, and JHP0633
show homologies with the y (AcxC), a (AcxB) and B (AcxA)
subunits, respectively, of the acetone carboxylase (ACX) of
numerous bacteria (Burkholderia species, Thauera species,
Ralstonia species, Xanthobacter autotrophicus, etc.) (125).
The approximate M, of 440 kDa observed for CJ13 is relatively
close to that observed for the heterohexameric ACX complex
of X. autotrophicus, comprising three different polypeptides
with M, values of 86 kDa, 78 kDa, and 19 kDa arranged in an
a2 B2 y2 quaternary structure (126). In H. pylori, the proposed
pathway for the conversion of acetone to acetyl-CoA involves
three steps. First, ACX (composed of JHP0632, JHP0633, and
JHP0631) is functional and may catalyze the conversion of
acetone to acetoacetate. The acetoacetate is subsequently
converted into acetoacetyl-CoA by the succinyl-CoA-trans-
ferase complex, ScoA/B (JHP0636/JHP0637), and finally
transformed by FadA (JHP0638) into two molecules of acetyl
coenzyme A that would feed into the TCA cycle to provide
energy for the bacteria (125). The fact that two complexes
involved in the first two steps of acetone utilization (ACX and
ScoA/B complexes) were purified from the J99 strain (28) but
never retrieved from the B38 strain is an argument in favor of
the specificity of ACX toward the J99 strain. In addition, the
transcriptional regulator JHP0403 was shown to strongly ac-
tivate the transcription of the acxABC and scoAB gene cluster
(127). ACX is expressed during infection (127) and enhances
the ability of H. pylori to colonize the mouse stomach (125).
Indeed, strain B38, which should be defective for ACX activity,
hardly colonizes the mouse.? In fact, the acxA gene seems to
be absent in strain B38 because it would be truncated into

2 C. Varon, personal communication.
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three parts, corresponding to the pseudogenes annotated
helpy_0675, helpy_0676, and helpy_0677, localized at the
acxBC locus (helpy_0674/helpy_0673). The fact that JHP0631
(AcxC) was retrieved from another complex (CJ3) with SodB,
a superoxide dismutase involved in detoxification and oxida-
tive stress resistance, suggests multiple functions for this
protein and could explain why its corresponding gene has
been conserved in the genome of B38 unlike acxA.

Complex CB5, comprising NapA and the predicted riboso-
mal protein L7/L12 (RpL7/L12), was only retrieved from the
B38 strain. Both of these proteins were reported to be among
the 20 most abundant proteins in H. pylori and to be antigenic
(48, 79, 119, 128, 129). NapA was found in the cytoplasm
(120) and in the membrane (69) and is also secreted (60).
RpL7/L12 was found both in the cytoplasm and membrane
fractions (120, 130). A recent study showed that RpL7/L12 is
overexpressed in LG-MALT-associated strains when com-
pared with DU-associated strains, suggesting that RpL7/L12
could be used as a biomarker for the differential diagnosis of
H. pylori-associated clinical outcomes (17). RpL7/L12 was
also reported previously to be overexpressed in gastric ade-
nocarcinoma-associated strains (131). Furthermore, NapA
was recently proposed as a novel up-regulated biomarker in
strains associated with gastric cancer (132) that may play a
role in the development of gastric carcinoma (133). Thus, the
RpL7/L12-NapA complex would be potentially implicated in
the occurrence of gastric cancer. However, it was not possi-
ble to determine whether this complex is really specific to the
B38 strain associated with LG-MALT because this complex
could not be detected in the J99 strain where the RpL7/L12
protein is known to be expressed in smaller quantities (17).
Moreover, it was recently demonstrated that NapA is able to
prolong the lifespan of monocytes and neutrophils (134),
which would contribute to the development of a malignant
disease like LG-MALT. This NapA-RplIL7/L12 complex is of
particular interest because both partners could play a role in
the development of LG-MALT. Further studies are necessary
to determine the exact role of this complex and of the Rpl7/
L12 overexpression in malignant strains.

DISCUSSION

Although H. pylori infection is one of the most common
bacterial infections worldwide with up to half of the world’s
population infected (1), questions still remain concerning the
evolution of this infection toward gastroduodenal pathologies
and especially toward the development of LG-MALT. The fact
that it is possible to cure this lymphoma by an antibiotic-
based eradication treatment of H. pylori suggests an impor-
tant role of the bacterium in the development of this particular
cancer. However, no current known H. pylori virulence factors
could be associated with the development of this lymphoma
(10, 11).

Studies on the H. pylori proteome have intensified in recent
years, and various strategies have already been applied to

examine the H. pylori proteome, such as the yeast two-hybrid
method (135-138), two-dimensional electrophoresis (119,
120, 129, 139-145), tandem affinity purification (146), and in
silico analyses (147-150). The extracellular proteome from H.
pylori was also investigated (60, 151). Several studies exam-
ined the proteome of strains associated with different pa-
thologies (47, 48, 79, 80, 128, 131, 143, 152-155), most of
them based on immunoproteomics methods. However, only
one of these studies included strains associated with LG-
MALT (17).

Because the identification of protein complexes is an
important step in interpreting protein-protein interaction
data, the two-dimensional BN/SDS-PAGE method com-
bined with mass spectrometry has renewed interest be-
cause it can be applied to the study of the whole complex-
ome of an organism (24-28). In the current study, this
method was used to study the complexome of two H. pylori
sequenced strains, B38 associated with LG-MALT and J99
associated with DU.

Among the 329 proteins identified, only 145 could be
grouped in 90 complexes. Many proteins could not be attrib-
uted to complexes for different reasons. In some cases, some
visible intense spots could not be identified by LC-MS/MS.
Indeed, silver staining is not a quantitative method, and the
intensity of a spot does not reflect the quantity of proteins
present unlike colloidal blue staining. In addition, some pro-
teins are sometimes poorly ionized during the ionization pro-
cess before mass spectrometry and therefore cannot be iden-
tified. Furthermore, different proteins have sometimes been
identified in a single spot, and therefore, the Schagger et al. (20,
34) criterion of the “same shape” was not applicable. This is a
limit to the method. Moreover, a poor denaturation before the
second dimension sometimes occurs and can lead to the iden-
tification of a mixture of proteins in the same spot. This descrip-
tive study has nevertheless allowed the identification of genes
expressed in vitro in H. pylori and novel complexes that had not
yet been described. The main difficulty encountered during this
study was to assign the specificity of the complex to a particular
strain because subunits or whole complexes can be lost during
the sample preparation or can be hardly visible on the gels,
which is the case for complexes whose subunits have a low
intensity. It was not possible with such a method to achieve a
quantitative complexomics study. However, some complexes
specific to each strain could be easily described because some
of these proteins do not exist in one strain as is the case with
HopM/N-BabB and AcxA/B/C, which are specific to the J99
strain. Complexes retrieved from only one strain, such as BabA-
SabA and NapA-RplL7/L12 isolated in the LG-MALT strain,
open new fields of research to explore the implication of H.
pylori in the development of LG-MALT.

Among the 90 heterooligomeric complexes identified in this
study (49 in the B38 strain and 41 in the J99 strain), only seven
membrane and five cytosolic protein complexes were common
to both strains. This result is not surprising because of the huge
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genetic variability among H. pylori strains. In fact, based on the
study of a low number of strains, it appears that 200—-400 genes
would be variably present in each strain, giving a core of
~1,100-1,300 genes (156-158). However, as mentioned previ-
ously, the eventual loss of certain complexes during the prep-
aration steps of the samples must be kept in mind.

The relevance to study complexes from strain B38 is that it
is a type Il strain (lacking the cag PAI), whereas many pro-
teomics studies were performed on type | strains (28, 48, 69,
79, 119, 120). However, the choice to study complexes of a
type Il strain in LG-MALT is relevant because the presence of
the cag PAI is not associated with strains isolated from pa-
tients with LG-MALT (10, 11). Interestingly, no proteins of the
cag PAIl were identified in the J99 strain, a type | strain, and
the absence of cag PAI proteins does not seem to modify the
complexome, especially in the membrane fraction where
some of these proteins are expected to be localized (159). In
fact, few studies have reported the presence of cag PAI
proteins at the membrane level or in culture supernatants
(28, 60). Indeed, these proteins are obviously produced in
amounts that are below the detection limit of the applied
method and are rather detected by immunoblotting (48, 129,
140, 141). Moreover, it was suggested that some proteins of
the type IV secretion system contributing to virulence may not
be expressed under in vitro culture conditions; rather their
expression may be dependent on in vivo stimuli such as
bacterium-host cell contact (160, 161).

In most genomes, ~20-30% of all genes encode mem-
brane proteins (162), and because of their diverse functional-
ity (163-165), they provide one of the most important target
groups for drug design (163, 166). However, because of their
innate hydrophobic and amphiphilic nature, their low abun-
dance, and their general instability under diverse conditions of
purification, membrane proteins are often difficult to purify,
produce, and analyze, and as a result, their characterization
by proteomics analyses and structural studies has been in-
adequate (167). Numerous membrane proteins belong to
complexes involved in important cellular functions, such as
the regulation of energy metabolism, protein trafficking, trans-
port of molecules, and adherence (162, 168). H. pylori viru-
lence is due to unique soluble proteins and membrane pro-
teins that allow its survival at acidic pH (169) and successful
colonization of the gastric mucosa (65). Most of the reported
virulence factors of H. pylori are in relation to the membrane
because they are 1) secreted, such as urease (170) or the
VacA cytotoxin; 2) directly associated with the membrane,
such as BabA, HopQ, HopZ, OipA, and SabA OMP; or 3)
translocated into infected epithelial cells by the type IV secre-
tion system as is the case for CagA. In addition, many orphan
genes of H. pylori are believed to be associated with the
membrane, i.e. putative adhesins, lipoproteins, and other
OMPs (30, 31, 64, 67, 171). The identification of proteins that
are part of complexes in the H. pylori membrane contributes
to the elucidation of the membrane function; the challenge is

to propose a function for ORFs for which no data are available
and, in particular, to identify new virulence factors perhaps
hitherto unsuspected. This study suggests a role for some
proteins, such as JHP0119 (HELPY_0130), which may play a
role in the flagellar function, or isocitrate dehydrogenase,
which may have a role in fatty acid biosynthesis.

Some proteomics studies have been carried out to study
the membrane of H. pylori (69, 120, 139, 142, 172, 173), but
few membrane complexes have yet been described (28, 174 -
177), whereas the yeast two-hybrid method allowed the de-
scription of a large set of interactions (135) with a reliability of
~50% (178). Because of their diverse functionality (163-165),
membrane proteins provide one of the most important target
protein groups for drug design (163, 166). This study allowed
the description of 25 and 19 membrane complexes in the B38
and J99 strains, respectively; some of them were found sev-
eral times. Most of the proteins identified in this study were
reported previously to be associated with the membrane (28,
44, 69, 120, 128, 135, 139), validating the membrane sample
preparation. Some proteins, such as HopZ and NapA, were
reported to be present both in the extracellular compartment
(60) and in the membrane (69, 179), indicating the possibility
of variable localizations of these proteins. The membrane
complexes reported here, comprising numerous proteins in-
volved in H. pylori adherence, such as the major adhesins
BabA and SabA, the lipoproteins AlpA and AlpB, and numer-
ous porins, are reported to be weakly expressed. In various
studies aiming to design a vaccine against H. pylori, research-
ers looked for surface-exposed and/or antigenic proteins (47,
48, 79, 128, 139, 142, 152, 154, 155, 180). Among the anti-
genic proteins reported in H. pylori, most correspond to
housekeeping enzymes rather than to antigens associated
with the cell envelope (48). Attempts were made to develop a
vaccine against H. pylori with candidate antigens such as
urease (181), catalase (182), and CagA and VacA cytotoxins
(183). However, none of these vaccines showed satisfactory
protection against the infection. Because the OMP family of
H. pylori is a very particular family, these OMPs constitute
attractive targets for the design of a vaccine. All of the newly
characterized OMPs and their interacting partners give new
insight into membrane structure. However, a number of the
genes encoding these OMPs undergo phase variations in their
5’ region, and therefore, not all strains produce functional pro-
teins (64). To solve this problem, different strategies could be
developed. First, conserved regions exist in different H. pylori
OMPs (64) and could serve as vaccine targets. Indeed, a re-
combinant protein constructed from a conserved domain of
BabA, AlpA, AlpB, and HopZ was shown to be specifically
recognized by the patients’ sera (184, 185). A second possibility
would be to consider a vaccine targeting several OMPs.
Indeed, some H. pylori OMPs are highly specific to H. pylori
and would represent potential antigen targets, such as the
surface-exposed HorE, HorF, and HopE proteins and their
partners, i.e. HorC, HorH, and HorL, as well as the BabA-
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interacting proteins, i.e. SabA, HopM/N, and HopZ. Other-
wise, six (HopA, HopE, HopM/N, FrdA, PyrC, and PpiC) of
the 14 best candidate antigens to develop a vaccine against
H. pylori (80) were identified, and their partners could also
represent new targets. In addition, the characterization of
the functions of individual H. pylori OMPs may provide
further insight into essential mechanisms for H. pylori colo-
nization and persistence in the human gastric mucosa.
With regard to the cytosol, only 46 complexes were identi-
fied, whereas 41 were retrieved from the membranes where
~300 proteins are expected to be, showing that two-dimen-
sional BN/SDS-PAGE is better suited to the study of mem-
brane complexes. Most of the proteins identified in the
cytosol corresponded to proteins involved in H. pylori physi-
ology, i.e. glycolysis, tricarboxylic acid cycle, fatty acid bio-
synthesis, de novo purine and pyrimidine biosynthesis, amino
acid biosynthesis, catabolic pathway of aromatic compounds,
LPS biosynthesis, and translation. Enzymes involved in H.
pylori metabolism whose structure is very different from their
eukaryotic counterparts are very promising targets for the de-
velopment of new antibacterial molecules. Actually, numerous
studies are focusing on such novel targets (99, 100), and it is
conceivable to simultaneously target different pathways of bac-
terial metabolism, a strategy that has remained underexploited
in antibacterial molecule development. With regard to H. pylori,
numerous enzymes are predicted to be involved in metabolism,
but few complexes with metabolic enzymes have been re-
ported. This study described such complexes with enzymes
involved 1) in the FAS Il pathway (FabG, Fabl, and FabZz), 2) in
the pathway for synthesis of the core lipopolysaccharide (GmhA
and ADP-L-glycero-p-mannoheptose 6-epimerase), and 3) in
the major pathway for generation of acetyl coenzyme A (the
essential pyruvate:flavodoxin oxidoreductase). All of these pro-
teins involved in H. pylori physiology and their interacting part-
ners may constitute attractive targets for the design of novel
antibacterial agents. These metabolic complexes also involved
some proteins whose function is unknown because no coun-
terpart exists in other organisms, such as JH0295
(HELPY_0317) retrieved in association with enzymes involved in
the FAS Il pathway from both of the strains studied. These
proteins deserve full attention and should first be studied in
more detail, for example using reverse genetic experiments to
determine their implication in the physiology of H. pylori.
Conclusions from this study cannot be drawn regarding the
pathogenic properties of the strains studied; albeit a hypothesis
that two different mechanisms are used by DU- and LG-MALT-
associated strains is proposed. In fact, DU strains would be
more aggressive via surface expression of certain OMPs via
their association in different complexes by mediating adherence
to gastric epithelial cells and modulating proinflammatory intra-
cellular signaling cascades. These proteins would therefore be
responsible for a strong localized inflammatory response. On
the other hand, LG-MALT-associated strains, which seem to be
more “insidious” would induce a limited inflammatory response.

CONCLUSION

This study allowed the identification of 329 different pro-
teins of H. pylori as well as 49 protein complexes in H. pylori
strain B38 associated with LG-MALT and 41 protein com-
plexes in strain J99 associated with DU. Twelve of these
complexes were common to both strains.

With regard to previously published proteomics compara-
tive studies, this study is the first comparative study of the
complexome in H. pylori strains. It provides new insight into
the membrane and cytoplasm structure that can be used in
the design of future molecules for vaccine and/or drug devel-
opment. Moreover, this is the second study including an H.
pylori strain associated with LG-MALT (17) and the first com-
prehensive study of the complexome of an H. pylori strain
associated with LG-MALT. The resulting availability of the
genome of the first H. pylori strain associated with LG-MALT
should now help pave the way for other studies concerning
this very particular cancer.
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